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Abstract

Both noncooperative and cooperative game theory have been applied to business

strategy. We propose a hybrid noncooperative-cooperative game model, which we

call a biform game. This is designed to formalize the notion of business strategy

as making moves to try to shape the competitive environment in a favorable way.

(The noncooperative component of a biform game models the strategic moves. The

cooperative component models the resulting competitive environment.) We give biform

models of various well-known business strategies. We prove general results on when a

business strategy, modelled as a biform game, will be efficient.
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1 Introduction

There have been a number of applications of game theory to the field of business strategy

in recent years. Reflecting the two branches of game theory itself—the so-called noncooper-

ative and cooperative branches—these applications have taken two forms. Noncooperative

applications, which are the more numerous, use the more familiar language of game matrices

and trees. A leading recent example of this approach is Ghemawat [8, 1997]. Cooperative

applications use the less familiar characteristic-function language, and to date have been

much fewer in number. For this approach, see Brandenburger and Stuart [5, 1996], Lipp-

man and Rumelt [13, 2003b] (also their [12, 2003a]), MacDonald and Ryall [14, 2002], [15,

2004], Oster [19, 1999], Spulber [27, 2004], and Stuart [29, 2001].

The two approaches address different questions. The noncooperative model is useful for

analyzing strategic moves in business—say the decision whether to enter a market, where to

position a product, what brand to build, how much capacity to install, or how much money

to devote to R&D. The cooperative model is useful for addressing the basic question of how

much power the different players—firms, suppliers, customers, etc.—have in a given setting.

Both models have a role to play in understanding business strategy. In a cooperative

game, no player is given any price-setting power a priori, and all players are active negotiators.

Buyers compete for sellers and sellers compete for buyers, without any specific ‘protocol.’1

This direct analysis of the power of the different players in the marketplace has been basic

to the business-strategy field, going back at least to the Five Forces framework (Porter [21,

1980]). One can see the Five Forces—and other related frameworks which we mention later—

as a tool for assessing how much value is created in a certain environment, and how that

‘pie’ is divided up among the players. (It is notable that these frameworks embody a ‘free-

form’ view of competition. One reason is empirical. For example, in business-to-business

relationships—such as supplier to firm, and firm to distributor—prices and other terms are

often negotiated rather than posted by one or another party.)

Cooperative theory, then, offers a model of the competitive environment.2 But this is

1The term is from Kreps [11, 1990, pp.92-95].
2We remind the reader that, though standard, the terms “non-cooperative” and “cooperative” game

theory are perhaps unfortunate. In particular, cooperative theory can indeed be used to analyze the
implications of competition among the players.
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only the starting point for business strategy. The next step is to find ways to shape the

environment in a favorable way. A good strategic move is one that brings about favorable

economics to a player—one that enables the player to capture more value. This is where the

noncooperative theory is important, since it gives us a formal language in which to write

down such strategic moves (and countermoves).

In this paper, we put the twomodels together to create a hybrid noncooperative-cooperative

model which we call the biform3 game model. A biform game is a two-stage game. The

first stage is noncooperative and is designed to describe the strategic moves of the players.

(These might be entry, position, brand, capacity, R&D, etc. as above. More broadly, we

can think of the players’ first-stage moves as building their various “strategic capabilities.”4)

But the consequences of these moves aren’t payoffs (at least not directly). Instead, each

profile of strategic choices at the first stage leads to a second-stage, cooperative game. This

gives the competitive environment created by the choices that the players made in the first

stage. Analysis of the second stage then tells us how much value each player will capture

(i.e., gives us the payoffs of the players). In this way, the biform model is precisely a formal-

ization of the idea that business strategies shape the competitive environment—and thereby

the fortunes of the players. See Figure 1.1 for a schematic of a biform game.

UP

DOWN

up

down

Player A

Player B

Player B

Cooperative 
Game #1

up

down

Cooperative 
Game #2

Cooperative 
Game #3

Cooperative 
Game #4

Figure 1.1

We note that at the colloquial level, phrases such as “changing the game” or “choosing

the game” are often used when conveying the idea of business strategy. The biform model

fits with this language: In the first stage, the players are each trying to choose the best game

for themselves, where by “game” is meant the subsequent (second-stage) game of value.

Equally, they are trying to change the game, if we define one of the second-stage games as

the status quo.

3Having, or partaking of, two distinct forms (OED, 2nd edition).
4We are grateful to a referee for suggesting this wording.
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2 Examples

We now give two examples of biform games. (More examples can be found in Section 5.)

Example 2.1 (A Branded Ingredient Game) We start with a biform analysis of the

idea of a ‘branded-ingredient’ strategy.5 In the game, there are two firms each able to produce

a single unit of a certain product. There is one supplier, which can supply the necessary input

to at most one firm, at a cost of $1. There are numerous buyers, each interested in buying

a single unit of the product from one of the two firms. Every buyer has a willingness-to-pay

of $9 for firm 1’s product, and a willingness-to-pay of $3 for firm 2’s product.

The supplier has the option of incurring an upfront cost of $1 to increase the buyers’

willingness-to-pay for firm 2’s product to $7. This is the branded-ingredient strategy, under

which the supplier puts its logo on its customers’ products. (To make our point most clearly,

we assume that this does not affect the buyers’ willingness-to-pay for firm 1, the stronger

firm.)

Status quo

Branded-
ingredient 
strategy

$1
Firm 1

Supplier

$9

$1

$3

Firm 2

$1
Firm 1

$9

$1

$7

Firm 2

Figure 2.1

The game is depicted in Figure 2.1. Here, there is a simple game tree, in which only

one player (the supplier) gets to move. The endpoints of the tree are the cooperative games

induced by the supplier’s choices. The two vertical bars at the upper endpoint summarize

the cooperative game that results if the supplier chooses the ‘status-quo’ strategy. The left

bar shows the valued created if the supplier supplies firm 1 (and therefore not firm 2), and

5This example is taken from teaching materials written by Adam Brandenburger and Ken Corts. A
well-known instance of a branded-ingredient strategy is the Intel Inside campaign. See Botticelli, Collis,
and Pisano [4, 1997] for an account; also Footnote 8 below.
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vice versa for the right bar. The interpretation of the bars at the lower endpoint is similar.

(We don’t show the upfront cost here, but it’s included in the numbers below.)

How will this game be played? To see, we start by analyzing each of the cooperative

games, and then work back to find the optimal strategy for the supplier. Formally, we’ll

analyze cooperative games using the Core, a solution concept that embodies competition

among the players (see Section 4 below). The Cores in the current example are as follows.6

In the status-quo game, a total of $9− $1 = $8 of value will be created. Firm 2 and the
buyers won’t capture any value. The supplier will receive between $2 and $8, and firm 1 will

receive between $0 and $6 (where the sum of what the supplier and firm 2 get must be $8).

This is, of course, the intuitive answer: Competition among buyers ensures that the firms

can get their full willingness-to-pay. Firm 2 can then bid up to $3 for the input from the

supplier. Firm 1 has an advantage over firm 2 (since it commands the higher willingness-

to-pay) and so will be the one to secure the input. But because of the presence of firm 2,

it will have to pay at least $3 for it. Thus the supplier gets a minimum of $3− $1 = $2 of
value, and the remaining $9 − $3 = $6 is subject to negotiation between the supplier and
firm 1, and this could be split in any way.

The analysis of the branded-ingredient game is very similar: $8 of value will be created

gross of the $1 upfront cost, or $7 net. Again, firm 2 and the buyers won’t capture any

value. This time, the supplier is guaranteed $5, and the remaining $2 of value will be split

somehow between the supplier and firm 1.

We see that paying $1 to play the branded-ingredient strategy may well be worthwhile

for the supplier. For example, if the supplier is cautious about how the ‘residual pies’ will

get divided between it and firm 1, then it will prefer the guaranteed $5 in the bottom game

to the guaranteed $2 in the top game.

The ‘aha’ of the strategy is that it wouldn’t be worthwhile for firm 2 to pay $1 to

increase willingness-to-pay for its product from $3 to $7. It would still be at a competitive

disadvantage. But it is worthwhile for a supplier (at least if cautious) to pay the $1 to

increase this willingness-to-pay and thereby level the playing field. It gains by creating

6Core calculations for this and subsequent examples can be found in Appendix A in the online companion
to this paper.
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more ‘equal’ competition among the firms.7 This may be at least one effect of a branded-

ingredient strategy in practice.8

The next example involves strategic moves by more than one player.

Example 2.2 (An Innovation Game) Consider the following game of innovation between

two firms. Each firm has a capacity of two units, and (for simplicity) zero unit cost. There

are three buyers, each interested in one unit of product. A buyer has a willingness-to-pay

of $4 for the current-generation product, and $7 for the new-generation product. Each firm

has to decide whether to spend $5 to bring out the new product. The biform game is depicted

in Figure 2.2. (Each vertical bar represents one unit. Again, upfront costs aren’t shown.)

Current 
product

Firm 1

New 
product

Firm 2
Current product New product

$0

$4

Firm 1

$0

$4

$0

$4

Firm 2

$0

$4

$0

$7

Firm 2

$0

$7

$0

$4

Firm 1

$0

$4

$0

$4

Firm 2

$0

$4

$0

$7

Firm 2

$0

$7

$0

$7

Firm 1

$0

$7

$0

$7

Firm 1

$0

$7

Figure 2.2

The Cores of the four cooperative games are as follows: In the top-left game, each firm

gets $0 and each buyer gets $4.9 (This is intuitive, since supply exceeds demand.) In the
7In Porter terminology, we could say that the supplier’s strategy has reduced buyer power. (Its buyers

are the firms, of course.)
8Some facts on Intel (taken from Botticelli, Collis, and Pisano [4, 1997]): In 1990, Intel created its Intel

Inside campaign, which reimbursed PC makers for some portion of ad spending in return for their using

the Intel Inside logo on PCs and in their ads. By 1993, Intel had spent $500 million cumulatively on the
campaign. In 1994, IBM and Compaq both opted out of Intel Inside. IBM said: “There is one brand,
and it’s IBM as far as IBM is concerned. We want to focus on what makes IBM computers different, not
what makes them the same” (quoted from “IBM, Compaq Tire of the ‘Intel Inside’ Track,” by B. Johnson,
Advertising Age, 09/19/94, p.52). Compaq rejoined the campaign in 1996, IBM in 1997. (If we take IBM to
be like firm 1 in our example, then we can interpret IBM’s leaving the campaign as an attempt to undermine
its effectiveness.)

9The structure of this cooperative game comes from Postlewaite and Rosenthal [22, 1974].
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bottom-left game, firm 1 gets $6 gross (and $1 net of its upfront cost), firm 2 gets $0, and

each buyer gets $4. The same answer—with firms 1 and 2 reversed—holds in the upper-right

game. These two cases are a bit more subtle. The Core effectively says that what the two

firms offer in common is competed away by them to the buyers, but what firm 1 (resp.firm 2)

uniquely offers is competed away to it by the buyers. Finally, in the bottom-right game, each

firm gets $0 gross (and thus −$5 net of its upfront cost) and each buyer gets $7. (Supply

again exceeds demand.)

We see that analysis of the second-stage, cooperative games yields an induced nonco-

operative game, which is the Battle of the Sexes (Figure 2.3). Here then, unlike Example

2.1, finding the best strategy reduces to a game problem, not a decision problem. If firm

1 thinks that firm 2 won’t innovate, then its best strategy is to innovate (and vice versa).

Also, both firms may innovate, and lose overall, if each thinks the other won’t. Buyers will

win in this case.

Current 
product

Firm 1

New 
product

Firm 2

0, 0 0, 1

1, 0 -5, -5

Current 
product

New 
product

Figure 2.3

Examples 2.1 and 2.2 highlight two issues that arise in biform analysis. In Example 2.2,

each gets player a unique payoff under the Core, whereas in Example 2.1, the Core gives

some players a range of payoffs. That is, competition is determinate in Example 2.2 and

(partially) indeterminate in Example 2.1. In Section 4 we give the general definition of a

biform game, and a method of analysis that covers both the determinate and indeterminate

cases.

The two examples also differ in terms of efficiency. In Example 2.2, the efficient outcome

is when one firm innovates and the other doesn’t. The (net) value created is then $7 +

$7 + $4− $5 = $13, as opposed to $12 when neither innovates and $11 when both innovate.
The efficient outcome can therefore arise in this game, at least if we look at the two (pure-

strategy) Nash equilibria. By contrast, in Example 2.1 we saw that the supplier might

optimally choose the branded-ingredient strategy. This is inefficient—it costs $1 and does
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not increase the total (gross) value. In Section 5 we give a general biform analysis of the

efficiency or inefficiency of strategies. We prove that three conditions on a biform game—

Adding Up, No Externalities, and No Coordination—are sufficient for the outcome to be

efficient. (In getting to this result, we also give some additional specific examples of biform

games.) This analysis gives a general way of doing a kind of ‘audit’ of business strategies—if

modelled as biform games—to investigate their efficiency properties.

In Section 6, we conclude with a discussion of some conceptual aspects of the paper.

3 Related Models

The biform model is related to the two-stage models that are common in the game-theoretic

industrial organization (IO) literature. Typically, these models are purely noncooperative.

Firms first make strategic choices that define a resulting noncooperative subgame, in which

they then set prices and thereby compete for customers. Shapiro [24, 1989] uses this set-up

to give a taxonomy of a wide range of IO models. A similar formulation is also central to

Sutton’s [31, 1991] theory of market structure.

The difference between these models and the biform model is in the treatment of the

second stage. We have cooperative rather than noncooperative second-stage games, for

two related reasons, both mentioned in the Introduction. First, the cooperative model

addresses directly the question of the power of the different players (implied by the first-

stage strategic choices). This is the central question of a number of frameworks in the

business-strategy literature. (We’ve already mentioned Porter [21, 1980], and can add the

Imitation-Substitution-Holdup-Slack framework of Ghemawat [7, 1991], and the framework

in Spulber [27, 2004, Chapter 7], among others.) Second, the cooperative model embodies

an ‘institution-free’ concept of competition.10 This is clear in the examples above. In

Example 2.1, we didn’t say whether the firms set prices that buyers must take or leave, or

whether the buyers name prices. Nor did we specify how the supplier and the firms interact.

The prices we mentioned were the consequences of free-form competition among the players.

The same was true of Example 2.2—both the firms and the buyers were free to negotiate.

Of course, these two features of the cooperative approach—the direct analysis of power and

10Aumann [3, 1985, p.53] writes that “the core expresses the idea of unbridled competition.”
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the free-form modelling—are related. The free-form modelling ensures that the power of a

player comes solely from the structure of the second-stage game, and not from any procedural

assumptions. A good (first-stage) strategy is one that creates a favorable (second-stage)

structure for that player, in accordance with our conception of business strategy.

Two-stage models are used in the economics of organizations; see, in particular, Gross-

man and Hart [9, 1986] and Hart and Moore [10, 1990]. Both these papers have a non-

cooperative first stage and a cooperative second stage, just as we have.11 But then the

approaches diverge, reflecting the different contexts being studied. In particular, Grossman-

Hart (resp.Hart-Moore) use the Shapley Value (resp. the Nash Bargaining Solution) to say

how players who jointly create some value might agree to divide it. The difference is more

than a ‘technical’ one. For example, the Core and Shapley Value can give very different pre-

dictions.12 The Shapley Value (and Nash Bargaining Solution) always gives a determinate

answer, whereas, by definition, the Core does so only when competition is determinate.

Next, we mention briefly other work that applies cooperative game theory to business

strategy. In an earlier paper ([5, 1996]), we proposed using cooperative theory—the Core in

particular—to give foundations for business-strategy frameworks. Stuart [29, 2001] summa-

rizes some applications different from the ones we present in the current paper. MacDonald

and Ryall [14, 2002], [15, 2004] generate results based on the minimum and maximum values

a player can get in the Core, and relate these results to business strategy. Lippman and

Rumelt [13, 2003b] examine differences between cooperative game theory and general- or

partial-equilibrium price theory, and discuss the benefits of the first as a basis for business-

strategy research. (They consider several cooperative solution concepts apart from the Core—

the Shapley Value, the Nash Bargaining Solution, and the Nucleolus.) Adner and Zemsky

[1, 2004] employ some cooperative concepts in analyzing factors affecting the sustainability

of competitive advantage. Two recent textbooks on strategy (Oster [19, 1999] and Spulber

[27, 2004]) use ideas from cooperative theory.13 Finally, we mention work by Makowski and

11To be quite precise, Grossman-Hart start with a noncooperative second-stage game, from which they
then define an associated cooperative game.
12A case in point is monopoly, where the seller chooses capacity in the first stage, and the second stage is

a cooperative game between seller and buyers. See Stuart [30, 2006].
13For an application to the field of operations management, see Anupindi, Bassok, and Zemel [2, 2001],

who employ a hybrid noncooperative-cooperative model similar to a biform game.
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Ostroy ([16, 1994], [17, 1995]), which, while formally in the general-equilibrium setting, was

a very important influence on this and our earlier paper ([5, 1996]). (We say more about

this connection in Section 5.)

4 General Formulation

We now give the general definition of a biform game. Some notation: Given a set X, let

P(X) denote the power set of X, i.e., the set of all subsets of X. Also, write N = {1, . . . , n}.

Definition 4.1 An n-player biform game is a collection

(S1, . . . , Sn;V ;α1, . . . , αn),

where:

(a) for each i = 1, . . . , n, Si is a finite set;

(b) V is a map from S1 × · · · × Sn to the set of maps from P(N) to the reals, with
V (s1, . . . , sn)(∅) = 0 for every s1, . . . , sn ∈ S1 × · · · × Sn; and

(c) for each i = 1, . . . , n, 0 ≤ αi ≤ 1.

The setN is the set of players. Each player i chooses a strategy si from strategy set Si.

The resulting profile of strategies s1, . . . , sn ∈ S1×· · ·×Sn defines aTU (transferable util-

ity) cooperative game with characteristic function V (s1, . . . , sn) : P(N) → R. That
is, for each A ⊆ N , V (s1, . . . , sn)(A) is the value created by the subset A of players, given

that the players chose the strategies s1, . . . , sn. (As usual, we require V (s1, . . . , sn)(∅) = 0.)
Finally, the number αi is player i’s confidence index. Roughly speaking, it indicates how

well player i anticipates doing in the resulting cooperative games. The precise way the

indices αi are used, and a justification of the indices, are given below.

We note that the strategy sets S1, . . . , Sn can, of course, come from a general extensive-

form game, so that the definition of a biform game is certainly not restricted to a simultaneous-

move first-stage game.14

14Also, incomplete information about the characteristic functions V could be incorporated (along standard
lines) by adding first-stage moves by Nature that (along with the players’ choices s1, . . . , sn) determine
V (s1, . . . , sn).
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Write S = S1 × · · · × Sn, with typical element s.

Definition 4.2 A biform game (S1, . . . , Sn;V ;α1, . . . , αn) will be called inessential (resp.

superadditive) if the cooperative game V (s) is inessential (resp. superadditive) for each

s ∈ S.15

The biformmodel is a strict generalization of both the strategic-form noncooperative, and

TU cooperative, game models. Formally, write an n-player strategic-form noncooperative

game as a collection (S1, . . . , Sn;π1, . . . , πn), where the sets Si are as above and, for each

i, player i’s payoff function πi maps S to the reals. The following two remarks are then

immediate:

Remark 4.1 Fix confidence indices α1, . . . , αn. There is a natural bijection between the sub-

class of n-player biform games (S1, . . . , Sn;V ;α1, . . . , αn) that are inessential and superaddi-

tive, and the class of n-player strategic-form noncooperative games (S1, . . . , Sn;π1, . . . , πn).

Remark 4.2 Fix confidence indices α1, . . . , αn. There is a natural bijection between the

subclass of n-player biform games (S1, . . . , Sn;V ;α1, . . . , αn) in which the sets Si are single-

tons, and the class of n-player TU cooperative games.

We now turn to the analysis of a biform game (S1, . . . , Sn;V ;α1, . . . , αn), and adopt the

following procedure:

(4.1) For every profile s ∈ S of strategic choices and resulting cooperative game V (s),

(4.1.1) compute the Core of V (s),16

and, for each player i = 1, . . . , n,

(4.1.2) calculate the projection of the Core onto the ith coordinate axis,

and
15See, e.g., Owen [20, 1995, pp.145-147] for definitions of inessential and superadditive games.
16We assume that for each s ∈ S, the Core of V (s) is nonempty. See Section 6a.
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(4.1.3) calculate the αi : (1 − αi) weighted average of the upper and lower endpoints of

the projection.17

(4.2) For every profile s ∈ S of strategic choices, and each player i = 1, . . . , n,

(4.2.1) assign to i a payoff equal to i’s weighted average as in (4.1.3) above,

and

(4.2.2) analyze the resulting strategic-form noncooperative game.

Given a profile of strategic choices s ∈ S, the first step is to restrict attention to Core

allocations in the resulting cooperative game V (s) (Step 4.1.1). Second, we calculate the

implied range of payoffs to each player i (Step 4.1.2). Third, each player i uses confidence

index αi to evaluate the given cooperative game V (s) as a weighted average of the largest and

smallest amounts of value that i can receive in the Core (Step 4.1.3). Use of the confidence

indices reduces a biform game to a strategic-form noncooperative game (Step 4.2.1). This

game may now be analyzed in standard fashion—say, by computing Nash equilibria, iteratively

eliminating dominated strategies, or some other method (Step 4.2.2).

Conceptually, this method of analysis starts by using the Core to calculate the effect

of competition among the players at the second stage of the game—i.e., given the strategic

choices made in the first stage. This determines how much value each player can capture.

The Core might be a single point (as in Example 2.2). If so, competition fully determines

the division of value. But there may also be a range of values in the Core, so that compe-

tition alone is not fully determinate, and (at least some) players face a ‘residual’ bargaining

problem. For instance, in Example 2.1, competition narrowed down the outcomes, but left

a range of value to be negotiated between the supplier and firm 1. In the status-quo game,

the range for the supplier was [$2, $8]; in the branded-ingredient game it was [$5, $7]. The

supplier’s decision problem was then a choice between ranges of payoffs rather than single

payoffs. (See Figure 4.1 below.) In general, under some basic axioms, the players’ prefer-

ences over such intervals can be represented by confidence indices. An optimistic player i

will have a confidence index αi close to 1, indicating that player i anticipates capturing most

17Note that the projection is a closed bounded interval of the real line.
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of the value to be divided in the residual bargaining. A pessimistic player i will have an αi

close to 0, indicating that player i anticipates getting little of this residual value. Thus, a

player’s confidence index represents a view of the game—optimistic if the confidence index is

large, and pessimistic if the confidence index is small. (In Example 2.1, the supplier would

choose the branded-ingredient strategy if α7 + (1 − α)5 > α8 + (1 − α)2, or α < 3/4. So

the supplier would choose this strategy unless it was very optimistic.)

Status quo

Branded-
ingredient 
strategy

Supplier

[$2, $8]

[$5, $7]

Figure 4.1

Use of the confidence indices gives us an induced noncooperative game among the players.

Analysis of this game indicates which strategies the players will choose. Let us repeat that

we don’t insist on a particular solution concept here. We can use Nash equilibrium, or some

other concept.

A final comment on the formulation: Appendix B in the online companion gives axioms

on a player’s preferences over intervals of outcomes, from which the confidence index is

derived. The axioms are Order, Dominance, Continuity, and Positive Affinity. The first

three axioms are standard. The fourth is what accounts for the specific weighted-average

representation, but we show that this axiom is implied by our cooperative game context, so

the structure of a biform game (S1, . . . , Sn;V ;α1, . . . , αn) is a consistent whole. In Section

6d, we comment further on how the confidence indices represent the players’ subjective views

of the game.

5 Efficiency and Business Strategy

We now give some more examples of biform games, beyond those in Section 2. The examples,

like the earlier ones, show how to analyze business-strategy ideas using a biform game. They

also lead to a general analysis of the efficiency and inefficiency of business strategies.

We start with some notation and a definition. Write N\{i} for the set {1, . . . , i− 1, i+
1, . . . , n} of all players except i.
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Definition 5.1 Fix a biform game (S1, . . . , Sn;V ;α1, . . . , αn), and a strategy profile s ∈ S.

Then the number

V (s)(N)− V (s)(N\{i})
is called player i’s added value in the cooperative game V (s).

In words, player i’s added value is the difference, in the given cooperative game, between

the overall value created by all the players, and the overall value created by all the players

except i. It is, in this sense, what player i adds to the value of the game. This is

the standard cooperative-game concept of marginal contribution. Here we use the “added

value” terminology from our [5, 1996].18

The following well-known observation is immediate, and will be used below.19

Lemma 5.1 Fix a biform game (S1, . . . , Sn;V ;α1, . . . , αn), a strategy profile s ∈ S, and

suppose that the Core of V (s) is nonempty. Then if

nX
i=1

[V (s)(N)− V (s)(N\{i})] = V (s)(N),

the Core of V (s) consists of a single point, in which each player i receives V (s)(N) −
V (s)(N\{i}).

Proof. Given an allocation x ∈ Rn and T ⊆ N , write x(T ) =
P

j∈T x
j. Fix some i,

and note that the Core conditions x(N) = V (s)(N) and x(N\{i}) ≥ V (s)(N\{i}) imply
that xi ≤ V (s)(N) − V (s)(N\{i}). Summing over i yields x(N) ≤ P

i∈N [V (s)(N) −
V (s)(N\{i})], with strict inequality if xi < V (s)(N) − V (s)(N\{i}) for some i. But the
right side is equal to V (s)(N) by assumption. So strict inequality implies x(N) < V (s)(N),

a contradiction.

Example 5.1 (A Negative-Advertising Game) Here we look at a “generic” strategy

(Porter [21, 1980]), with a difference. Consider the biform game depicted in Figure 5.1.20

18We do so for the same reason as there: One frequently sees the term “added value” in business-strategy
writing, and the usage fits with the formal definition above.
19See, e.g, Moulin [18, 1995, Remark 2.3].
20Different formalisms aside, the example is essentially the same as Example 1 in Makowski-Ostroy [16,

1994], which they kindly say was prompted by discussions with one of us.
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There are three firms, each with one unit to sell at $0 cost. There are two buyers, each

interested in one unit of product from some firm. Firm 1 alone has a strategic choice, which

is whether or not to engage in negative advertising. If it doesn’t, then each buyer has a

willingness-to-pay of $2 for each firm’s product. If it does, then willingness-to-pay for its

own product is unchanged, but that for firm 2’s and 3’s products falls to $1. (The negative

advertising has hurt the image of firms 2 and 3 in the eyes of the buyers.)

Status quo

Negative-
advertising 
strategy

$0
Firm 1

$2

$0

$1

Firm 1

Firm 2

$0

$2

Firm 2
$0

$2

Firm 3

$0

$1

Firm 3
$0

$2

Firm 1

Figure 5.1

Along the status-quo branch, the overall value is $4. Each firm’s added value is $0; each

buyer’s added value is $2. By Lemma 5.1, each firm will get $0 in the Core, and each

buyer will get $2. (This is the intuitive answer, since the firms are identical, and supply

exceeds demand.) Along the negative-advertising branch, the overall value is $3. Firm 1’s

added value is $1, firm 2’s and 3’s added values are $0, and each buyer’s added value is $1.

Again using Lemma 5.1, firms 2 and 3 will get $0 in the Core, and firm 1 and each of the

buyers will get $1. (Similar to Example 2.2, the Core says that what the three firms offer in

common is competed away to the buyers, while what firm 1 uniquely offers is competed away

to it by the two buyers.)

Firm 1 will optimally choose the negative-advertising example, thereby capturing $1 vs. $0.

This is the opposite of a differentiation strategy, where a firm creates added value for itself by

raising willingness-to-pay for its product (perhaps at some cost to it). Here, firm 1 creates

added value by lowering willingness-to-pay for its rivals’ products. Notice that the strategy

is inefficient: it shrinks the overall value created from $4 to $3.

Example 5.2 (A Coordination Game) There are three players, each with two strategies,

labelled No and Yes. Player 1 chooses the row, player 2 chooses the column, and player 3

chooses the matrix. Figure 5.2 depicts the cooperative game associated with each strategy
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profile, where the value of all one-player subsets is taken to be 0.21 This example can be

thought of as a model of switching from an existing technology standard (the strategy No)

to a new standard (the strategy Yes). The new technology costs $1 more per player, and is

worth $2 more per player, provided at least two players adopt it.22

v(N) = 6
v(1, 2) = 4
v(2, 3) = 4
v(3, 1) = 4

No

Yes

No Yes

No

v(N) = 5
v(1, 2) = 3
v(2, 3) = 3
v(3, 1) = 4

v(N) = 5
v(1, 2) = 3
v(2, 3) = 4
v(3, 1) = 3

v(N) = 6
v(1, 2) = 6
v(2, 3) = 3
v(3, 1) = 3

v(N) = 5
v(1, 2) = 4
v(2, 3) = 3
v(3, 1) = 3

No

Yes

No Yes

Yes

v(N) = 6
v(1, 2) = 3
v(2, 3) = 6
v(3, 1) = 3

v(N) = 6
v(1, 2) = 3
v(2, 3) = 3
v(3, 1) = 6

v(N) = 9
v(1, 2) = 6
v(2, 3) = 6
v(3, 1) = 6

Figure 5.2
Using Lemma 5.1, it is easy to check that in each of the four cooperative games, the Core

will give the players exactly their added values. We get the induced noncooperative game

in Figure 5.3, which is a kind of coordination game. There are two (pure-strategy) Nash

equilibria: (No, No, No) and (Yes, Yes, Yes). The first is inefficient (the total value is $6),

while the second is efficient (the total value is $9).

2, 2, 2No

Yes

No Yes

No

2, 1, 2

1, 2, 2 3, 3, 0

2, 2, 1No

Yes

No Yes

Yes

0, 3, 3

3, 0, 3 3, 3, 3

Figure 5.3
We now show that Examples 5.1 and 5.2, together with Example 2.1, actually give a

complete picture, within the biform model, of how strategies can cause inefficiencies. (Ex-

ample 2.2 will also fit in.) We start with some definitions. As usual, we write S−i for

S1 × · · · × Si−1 × Si+1 × · · · × Sn.

Definition 5.2 A biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfies Adding Up (AU) if

for each s ∈ S,
nX
i=1

[V (s)(N)− V (s)(N\{i})] = V (s)(N).

21Properly, we should write V (No, No, No)(N) = 6, V (No, No, No)({1, 2}) = 4, etc. But the cell
identifies the strategy profile, so we use the simpler notation in the matrix.
22For more detail on this interpretation of the characteristic functions, see Appendix A in the online

companion.
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The game satisfies No Externalities (NE) if for each i = 1, . . . , n; ri, si ∈ Si; and s−i ∈
S−i,

V (ri, s−i)(N\{i}) = V (si, s−i)(N\{i}).

The game satisfies No Coordination (NC) if for each i = 1, . . . , n; ri, si ∈ Si; and

r−i, s−i ∈ S−i,

V (ri, r−i)(N) > V (si, r−i)(N) if and only if V (ri, s−i)(N) > V (si, s−i)(N).

The Adding Up condition says that in each second-stage cooperative game, the sum of

the players’ added values is equal to the overall value created in that game. (This is just

the condition of Lemma 5.1 applied to each second-stage game.) The No Externalities

condition says that each player’s strategic choice does not affect the value that the remaining

players can create (without that player). The No Coordination condition says that when

one player switches strategy, the sign of the effect on the overall value created is independent

of the other players’ strategic choices.

We need two additional (obvious) definitions: A profile of strategies s ∈ S in a biform

game will be called a (pure-strategy) Nash equilibrium if it is a (pure-strategy) Nash

equilibrium of the induced noncooperative game. (This is the noncooperative game induced

as in Section 5. That is, given a profile r ∈ S, we assign each player i a payoff equal to the

αi : (1 − αi) weighted average of the upper and lower endpoints of the projection onto the

ith coordinate axis of the Core of the cooperative game V (r).) A strategy profile s ∈ S will

be called efficient if it solves maxr∈S V (r)(N).23

We can now state and prove two results on efficiency in biform games.

Lemma 5.2 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU and NE, and

that for each r ∈ S, the game V (r) has a nonempty Core. Then a strategy profile s ∈ S is

a Nash equilibrium if and only if

V (s)(N) ≥ V (ri, s−i)(N) (5.1)

for every ri ∈ Si.

23An efficient profile always exists, since we’re assuming the strategy sets Si are finite.
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Proof. By Lemma 5.1, AU implies that for each r ∈ S, the Core of V (r) consists of a

single point, in which each player i receives V (r)(N)− V (r)(N\{i}). Therefore, a profile s
is a Nash equilibrium iff for each i,

V (s)(N)− V (s)(N\{i}) ≥ V (ri, s−i)(N)− V (ri, s−i)(N\{i}) (5.2)

for every ri ∈ Si. But NE implies that

V (s)(N\{i}) = V (ri, s−i)(N\{i})

for every ri ∈ Si. Thus, inequality (5.2) holds if and only if inequality (5.1) holds.

Proposition 5.1 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU, NE,

and NC, and that for each r ∈ S, the game V (r) has a nonempty Core. Then if a strategy

profile s ∈ S is a Nash equilibrium, it is efficient.

Proof. Write

V (s)(N)− V (r)(N) =

V (s1, r2, . . . , rn)(N)− V (r)(N)+

V (s1, s2, r3, . . . , rn)(N)− V (s1, r2, r3, . . . , rn)(N)+

. . .+

V (s)(N)− V (s1, . . . , sn−1, rn)(N).

NC and inequality (5.1) in Lemma 5.2 together imply that each pair of terms on the right-

hand side of this equation is non-negative, from which V (s)(N) ≥ V (r)(N).

Proposition 5.2 Consider a biform game (S1, . . . , Sn;V ;α1, . . . , αn) satisfying AU and NE,

and that for each r ∈ S, the game V (r) has a nonempty Core. Then if a strategy profile

s ∈ S is efficient, it is a Nash equilibrium.

Proof. We are given that V (s)(N) ≥ V (r)(N) for every r ∈ S, so certainly inequality

(5.1) in Lemma 5.2 holds. Thus the profile s is a Nash equilibrium.
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Propositions 5.1 and 5.2 provide, respectively, conditions for any Nash-equilibrium profile

of strategies to be efficient and for any efficient profile of strategies to be a Nash equilibrium.

They can thus be viewed as game-theoretic analogs to the First and SecondWelfare Theorems

of general-equilibrium theory. Both Proposition 5.1 and 5.2 are closely related to results

in Makowski-Ostroy ([16, 1994], [17, 1995]), as we’ll discuss below. First, though, we give

some intuition for the results, and also tie them back to our earlier examples of business

strategies.

For some intuition, note that Lemma 5.2 shows that AU and NE ensure a kind of ‘social

alignment.’ Under AU and NE, a player’s payoff increases if and only if the overall value

created (the ‘pie’) increases. In the presence of such social alignment, NC then ensures there

is a unique equilibrium.24 (If either AU or NE does not hold, then there can be multiple

equilibria even under NC.)

Next, back to our earlier examples: Table 5.1 summarizes which of the conditions—AU,

NE, and NC—are satisfied in Examples 2.1, 5.1, and 5.2.

Negative-
advertising 
game

Coordination 
game

Branded-
ingredient 
game

Adding Up
No 

Coordination
No 

Externalities

Table 5.1

Start with Example 2.1 (the branded-ingredient game). In the status-quo second-stage

game, the supplier has an added value of $8, and firm 1 has an added value of $6 (firm 2 and

the buyers have zero added value). The overall value is $8, so AU fails. (We could equally

have looked at the branded-ingredient second-stage game.) NE holds: Only the supplier has

a strategic choice, and the value created without the supplier is constant—at $0—regardless

of which strategy the supplier follows. Finally, it is easy to see that NC is automatically

24We are grateful to a referee for providing this intuition.
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satisfied in any game where only one player has a strategic choice.25 We conclude that

the possible inefficiency in this game (which we already noted in Section 2) comes from the

failure of AU. In plain terms, there is a bargaining problem between the supplier and firm

1 over the $6 of value that must be divided between them. To do better in this bargaining,

the supplier may well adopt a strategy (the branded-ingredient strategy) that decreases the

pie.

In Example 5.1 (the negative-advertising game), it is immediate from our earlier analysis

that AU is satisfied. NC is satisfied for the same reason as in Example 2.1 (only firm 1 has

a strategic choice). But NE fails: The value created by firm 2, firm 3, and the two buyers is

$4 when firm 1 chooses the status-quo strategy, but changes to $2 when firm 1 chooses the

negative-advertising strategy. Again, the outcome is inefficient.

Finally, in Example 5.2 (the coordination game), AU is satisfied. So is NE, as the reader

can check from Figure 5.2. But NC fails: For example, when player 1 changes strategy from

No to Yes, the overall value falls from $6 to $5 when players 2 and 3 are both playing No,

but rises from $6 to $9 when players 2 and 3 are both playing Yes. There is an inefficient

Nash equilibrium (No, No, No). Note that the efficient profile (Yes, Yes, Yes) is also a Nash

equilibrium, as Proposition 5.2 says it must be.

We see how the general results enable us to identify the source of the inefficiency of the

business strategy in each of our examples. We also know that if a biform model of a business

strategy satisfies our three conditions, then we’ll get efficiency. Of course, our examples are

meant only to be suggestive of how one might model many other business strategies as biform

games. But we now have a general way of doing a kind of ‘audit’ of any business strategy—if

modelled as a biform game—to discover its efficiency properties.26

Here is one more example, just to ‘redress the balance,’ since we’ve only given one example

of efficiency so far (Example 2.2). This time, AU, NE, and NC will all hold.

Example 5.3 (A Repositioning Game) Consider the biform game depicted in Figure

5.4. There are three firms, each with one unit to sell. There are two identical buyers,

25This is what we want, of course. The possibility of inefficiency due to coordination issues should arise
only when at least two players have (non-trivial) choices.
26In our [6, 2006], we use the same efficiency analysis to frame some of the ideas in the corporate-strategy

literature.
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each interested in one unit of product from some firm. Under the status quo, the firms

have the costs, and the buyers have the willingness-to-pay numbers, on the upper branch.

Firm 2 has the possibility of repositioning as shown by its vertical bar on the lower branch.

Specifically, it can spend $1 to raise ‘quality’ (willingness-to-pay) and lower cost as shown.

Along the status-quo branch, the overall value is $14. Each firm’s added value is $0;

each buyer’s added value is $7. Along the repositioning branch, the overall value is $15 ($16

minus the $1 repositioning cost). Firm 2’s added value is $1; firm 1’s and 3’s added values

are $0; each buyer’s added value is $7. AU is satisfied, as clearly are NE and NC. By

Proposition 5.1, we know that firm 2 must optimally make the efficient choice of the lower

branch, as indeed it will, to net $1.

Status quo

Repositioning 
strategy

$1

Firm 2

$8

Firm 1

$4

$11

Firm 2

$7

$14

Firm 3

$1

$8

Firm 1

$3

$12

Firm 2

$7

$14

Firm 3

Figure 5.4

This is a simple biform model of a (re)positioning strategy. Note that on the lower

branch, firm 2 still doesn’t have either the lowest cost or the highest quality among the three

firms. But it does command the largest gap between quality and cost. This is the source of

its added value.

Some further comments on Propositions 5.1 and 5.2: First, note that Table 5.1 establishes

the independence of the AU, NE, and NC conditions. It is possible for any two to hold,

but not the third.27 Next, we emphasize that the efficiency conditions in Proposition 5.1

are sufficient, not necessary. For instance, in Example 2.2, the (pure) Nash equilibria were

efficient (as we noted). But it is easily checked that AU and NC fail (NE holds).28 This

27It is easy to prove that if in a two-player game AU and NE are satisfied, then so is NC. This is why we
needed three players to get a failure of NC alone (Example 5.2).
28The same example shows that it’s also true that the conditions of Proposition 5.2 aren’t necessary. Both

efficient profiles are Nash equilibria, despite the failure of AU.
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said, the conditions do seem ‘tight.’ To maintain sufficiency, none of them can be left out

in Proposition 5.1, as our examples showed, and we do not see how they could be weakened

in general.

Finally, we note the considerable debt we owe to Makowski-Ostroy ([16, 1994], [17, 1995]).

Makowski-Ostroy (henceforth M-O) present welfare theorems to which our Propositions 5.1

and 5.2 are closely related. The M-O model is a reformulation of general-equilibrium theory,

in which the agents make choices (“occupational” choices in their terminology) that define

the subsequent economy in which they then produce and trade. It therefore has a two-

stage structure, just as our purely game-theoretic model does. There are some differences.

We define added value (marginal contribution) in the standard game-theoretic way, while

M-O’s definition effectively assumes that NE holds. Our NC condition is weaker than the

corresponding condition in M-O (they call it No Complementarities) ruling out coordination

issues.29

6 Discussion of the Model

The goal of this paper was to combine the virtues of both branches of game theory—the

noncooperative and the cooperative—into a hybrid model that could be used to analyze

business strategies. We conclude in this section with comments on some conceptual aspects

of the model.

a. Emptiness of the Core We’ve used the Core to analyze the various cooperative

games that result from the players’ strategic choices. We did this because we wanted to

capture the idea of free-form competition among the players. What if the Core is empty?

First, note that there are various important classes of TU cooperative games known to

have nonempty Cores. Examples of such classes that are of economic interest include the

“market games” and “assignment games” of Shapley and Shubik ([25, 1969], [26, 1971]).

Stuart [28, 1997] proves nonemptiness of the Core for a class of three-way assignment games

(think of suppliers, firms, and buyers) that satisfy a local additivity condition.30

Next, we observe that a biform model can restore nonemptiness to at least one scenario

29Our [6, 2006] contains more details on the relationship to M-O.
30Example 2.1 is a three-way assignment game, and Examples 5.1 and 5.3 are two-way assignment games.
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that is known to produce an empty Core when modelled purely cooperatively. The point

is essentially made by Example 2.2. Consider the following cooperative game: There are

two firms, each with capacity of two units, and zero unit (marginal) cost. There are three

buyers, each interested in one unit of product, and each with a willingness-to-pay of $4. If

a firm is ‘active,’ then it incurs a fixed cost of $ε, for some small ε > 0. (Formally, the

value of any subset containing that firm and one or more buyers is reduced by $ε.) This

game has an empty Core. (Telser [32, 1994] contains other examples of empty Cores.) But

there is a natural biform model of the scenario with nonempty Cores: Make paying the $ε

cost a first-stage strategic choice for each firm, and write down the resulting second-stage

cooperative games. (If a firm doesn’t pay $ε in the first stage, then it doesn’t increase the

value of any subset at the second stage.) Very similar to Example 2.2, the Cores of the

second-stage games will be singletons (in particular, nonempty!), and we’ll get an induced

noncooperative game that is the Battle of the Sexes (Figure 6.1).

Don’t pay

Firm 1

Pay $ε

Firm 2

0, 0 0, 8 - ε

8 - ε, 0 - ε, - ε

Don’t pay Pay $ε

Figure 6.1

Arguably, finding an empty Core in a model is a ‘positive’ finding, telling us something

important about the instability of the situation being studied. This seems true of the exam-

ple of nonemptiness above, though we also showed a way to avoid emptiness. Interestingly,

in our biform resolution, the instability of the empty core is replaced by a kind of strategic

instability: Each firm will want to be the one to pay $ε, hoping the other won’t and thereby

netting $(8− ε). But both might end up losing overall.

In sum, there are important classes of TU games that have nonempty Cores. The biform

model may enable us to circumvent the emptiness of the Core in at least some other cases.

(We just gave one example of this.) Finally, emptiness of the Core may be a valuable insight

in any case. This last possibility does raise the interesting question of how players, at the

first-stage of a biform game, might evaluate a second-stage game with an empty Core. We

don’t have an answer at present, and believe this question merits further study.
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b. Efficiency An objection that is sometimes made of cooperative game theory is

that it presumes efficiency. All potential value is created. This criticism is moot if the

biform model is used. The biform model does incorporate what might be called conditional

efficiency: Given a profile s ∈ S of strategic choices, use of the Core says that all of the value

V (s)(N) that can then be created will, in fact, be created. But overall efficiency would

require that the strategy profile s that the players actually choose maximize V (s)(N), i.e.,

that the profile be efficient as defined in Section 5. We’ve seen several times in the paper

that this need not be so. The biform model permits inefficiency.

c. Externalities Another long-standing issue in cooperative game theory is how to deal

with situations where the value created by a subset A of players—call it v(A)—may depend on

what players outside A do. Prima facie, v(A) does not depend on what the players outside A

do, for the simple reason that a cooperative model has no concept of action or strategy in it.

The approach in von Neumann andMorgenstern [33, 1944] was to start with a noncooperative

game, which does have actions, of course, and to define an induced cooperative game from

it. They then had to make a specific assumption about how the players outside A would

behave. (They assumed minimax behavior.31) The biform model avoids this difficulty by

simply positing that each strategy profile in the first-stage noncooperative game leads to a

different, and independently specified, second-stage cooperative game. The quantity v(A) is

then a function of the first-stage strategic choices of all the players—including, in particular,

the choices of players outside A. But this dependence is without prejudice, so to speak.

There is no built-in assumption of minimax or any other kind of behavior.32 Of course, the

biform model also allows for the special case in which v(A) does not depend on what the

players outside A do. This is precisely the situation of No Externalities, as in Definition

5.2.33

31Define v(A) to be the maximin payoff of A in the two-person zero-sum game in which the players are A
and the complement of A, and the payoff to A from a pair of strategies is the sum of the payoffs to the players
in A from those strategies. In effect, von Neumann-Morgenstern imagine that the players in A ‘assume the
worst’ about the players outside A.
32Zhao [34, 1992] and Ray and Vohra [23, 1997] have interesting alternative proposals for how to make

what the players in subset A can achieve depend in a ‘neutral’ way on what the complementary players do.

Unlike us, they derive cooperative games from noncooperative games. Also, their models are one-stage not
two-stage.
33That definition was restricted to subsets A = N\{i}. But it generalizes in the obvious way to other
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d. Interpretation of the Confidence Index The biform model makes no prediction

about how the value created at the second stage will be divided, beyond saying it must be

in accordance with the Core. It does say that players form views, as represented by their

confidence indices, as to how much value they will get.

Sometimes the confidence indices will play a small role. In particular, under AU, the Core

consists of a unique point (Lemma 5.1), in which case the division of value is independent of

the indices. In Example 2.1, the supplier’s confidence index played a big role—determining

whether it played the status-quo or branded-ingredient strategy.

We can think of the confidence indices as describing the players’ views on how good they

think they are at dealing with negotiation ‘intangibles’ like persuasion, bluffing, holding out,

etc. These are subjective views, not necessarily correct in any sense. The actual outcome

of the game for player i might be quite different from an αi : (1−αi) weighted average of the

upper and lower endpoints of the Core projection. Thus, in Example 2.1, the supplier might

forego the branded-ingredient strategy, anticipating doing very well in the bargaining with

firm 1, and then end up with less than $5, the minimum it would get under the branded-

ingredient strategy. Appendix B in the online companion formalizes this foundation for the

confidence indices: Proposition B1 gives a characterization of the confidence index in terms

of a player’s (subjective) preferences over intervals of outcomes.

We emphasize that since the confidence indices are subjective, they may or may not be

mutually consistent, in the following sense. Fix a second-stage game. Assign to each player

i an αi : (1 − αi) weighted average of the upper and lower endpoints of the corresponding

Core projection. Of course, the resulting tuple of points may or may not itself lie in the Core.

If it does for each second-stage game, we can say that the players’ confidence indices are

“mutually consistent.” If not, they are “mutually inconsistent,” and in at least one second-

stage game, one or more players would definitely end up with an outcome different from that

anticipated. Appendix B shows how mutual consistency can be achieved, if desired. But

we stress that there is no logical or conceptual difficulty with the inconsistent case, which is

also natural given the subjectivity of the players’ views of the game.

subsets—simply require that V (s)(A) be independent of the sj for j /∈ A.
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