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Abstract

Transcriptome-wide association studies (TWAS) are powerful tools for identifying puta-
tive causal genes by integrating genome-wide association studies and gene expression data.
Most existing methods are based on linear models and therefore may miss or underesti-
mate nonlinear associations. In this article, we propose a robust, quantile-based, unified
framework to investigate nonlinear transcriptome-wide associations in a quantile process
manner. Through extensive simulations and the analysis of multiple psychiatric and neu-
rodegenerative disorders, we showed that the proposed framework gains substantial power
over conventional approaches and leads to insightful discoveries on nonlinear associations
between gene expression levels and traits, thereby providing a complementary approach to
existing literature. In doing so, we applied the proposed method for 797 continuous traits
from the UK Biobank, and the results are available in a public repository.
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1 Introduction

Genome-wide association studies (GWAS) have been widely used to identify variants asso-

ciated with complex diseases and traits. Identifying which genes are responsible for these

association signals, however, remains challenging. Given that most of the associated vari-

ants are found in noncoding regions and may be involved in gene regulatory mechanisms,

transcriptome-wide association studies (TWAS) (Gusev et al., 2016; Gamazon et al., 2015;

Zhao et al., 2021; Xie, Shan, Zhao, and Hou, Xie et al.; Wainberg et al., 2019) have been

proposed to leverage existing reference panels on genetic variation and gene expression data

such as Genotype-Tissue Expression (GTEx) (Lonsdale et al., 2013; Consortium et al., 2020)

to discover the potential target genes. Relative to GWAS, TWAS results identify significant

genes, are less affected by linkage disequilibrium (Li et al., 2021), and provide more inter-

pretable results, efficiently bringing us closer to a better understanding of the underlying

causal mechanisms (Tang et al., 2021; Li et al., 2021).

TWAS is an integrative analysis that combines two distinct models – a gene expression

model (Model A in Figure 1) that models gene expression as a function of eQTLs (i.e.,

SNPs that regulate gene expressions), and a GWAS model (Model B in Figure 1) that

captures the associations between a trait and individual genetic variants. The two models

are estimated separately and then combined to infer the association between genetically

regulated gene expression and the phenotype (i.e. TWAS, represented by Model C in Figure

1). For example, the widely-used PrediXcan (Gamazon et al., 2015) first uses a sparse linear

model such as elastic net or lasso to estimate the cis-eQTL effect sizes and impute gene

expression levels. Then, in the second step, it formally tests the association between imputed

gene expression and the trait of interest. S-PrediXcan (Barbeira et al., 2018) expands its
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Figure 1: Quantile TWAS and classical linear TWAS models. Model A: model for SNP-gene
expression association (eQTL model). Model B: model for SNP-Trait associations (GWAS
model). Model C: model for expression-trait association (TWAS model).

application by only requiring GWAS summary statistics. Similarly, Gusev et al. (2016)

and Nagpal et al. (2019) considered Bayesian gene expression models (Model A) instead of

simple linear models in their TWAS approaches. To leverage multi-tissue data, UTMOST

(Hu et al., 2019) proposed a multi-task learning method to jointly impute gene expression

across tissues and then combine multiple tissue associations to obtain an overall gene-trait

association.

Existing TWAS approaches are built on the fundamental assumption that both gene ex-

pression models (Model A, SNP-gene expression association) and genome-wide associations

(Model B, SNP-trait association) are linear. However, there is ample evidence that suggests

extensive heterogeneity of gene expression patterns, which is driven by genetic profiles, cel-

lular and molecular heterogeneity, environmental, demographic, and technical factors (Leek

and Storey, 2007; Somel et al., 2006; Budinska et al., 2013). Likewise, partly due to the exis-

tence of gene-gene and gene-environment interactions, several works including Umans et al.

(2021) reported that many disease associated eQTLs are highly dynamic and context-specific

in their gene regulations. Recognizing that existing linear models are insufficient to capture

such heterogeneous associations, several nonlinear models have been proposed to identify

heterogeneous eQTL-gene expression regulation mechanisms (Song et al., 2017; Wang et al.,

2019; Geeleher et al., 2018). More recently, Lin et al. (2022) reported new TWAS discoveries

by studying quadratic gene expression models.
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We propose a quantile-based framework (Quantile TWAS or QTWAS) that allows us to

identify nonlinear transcriptome-wide associations. It helps identify such dynamic eQTLs

and uncover their links towards complex traits and disease. The key difference from the

existing approach is to model the entire conditional quantile/distribution of gene expressions

given their cis-variants. We then infer nonlinear TWAS association by combining such full-

spectrum distributional SNP-gene expression association with GWAS summary statistics

(Figure 1). We apply the proposed QTWAS framework to examine the transcriptome-wide

association using the GTEx (v8) (Consortium et al., 2020) gene expression data for all

protein-coding genes across 13 brain tissues, and the published GWAS summary statistics

from 10 studies on psychiatric and neurodegenerative disorders. We also systematically

evaluated the transcriptome-wide associations covering 797 continuous phenotypes in UK

Biobank based on the gene expressions in 49 human tissues in GTEx (v8).

Our QTWAS framework has contributed to TWAS in several ways. First, it has allowed

the inference of nonlinear transcriptome-wide associations. Second, the proposed framework

generalizes and enhances the detection power of the existing linear-based TWAS approaches.

Third, the proposed framework only requires GWAS summary statistics, and can therefore

be widely applied to many studies. Fourth, the proposed framework is flexible and can assess

both local and global associations. Finally, the proposed test statistics enjoy the advantages

of quantile regression, such as invariance to trait transformation, leading to a more direct

interpretation of the association patterns.

2 Model overview

The proposed QTWAS framework differs from existing linear model-based TWAS framework

in that it tests based on imputing the distribution of gene-regulated expression, rather than
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its conditional mean. Let G ∈ Rp be a set of genotypes of interest (i.e., p SNPs located

within ±1Mb from a gene’s TSS), E ∈ R be the expression level of a target gene and EG

be its genetic component that can be explained by genetic variants, T ∈ R be the trait of

interest, and C ∈ Rq be q demographic covariates such as age, gender, race, and ethnicity.

Throughout the paper, we denote QEG(τ) as the τth quantile of EG. We propose to consider

a more general model without assuming a linear association:

T = f(EG) + ε,

where f(·) is an unknown function and ε is the error term with mean zero. We are interested

in testing whether EG is significantly associated to T , that is, H0 : f(·) = 0 and Ha : f(·) 6= 0.

Though f(·) is unknown, it can be approximated by a piecewise linear function:

T =
K∑
k=1

(γ0,k + γkEG)1{EG ∈ Ak}+ ε, (1)

where Ak = {QEG(τk), QEG(τk+1)} is the quantile region from the τkth quantile to the τk+1th

quantile of EG and ∪kAk covers the range of EG values. The slope coefficient γk assesses the

localized gene-trait association within a quantile sub-region of EG. Equivalently, we can test

the null hypothesis above as follows:

H0 : γk = 0 for k = 1, ..., K; Ha : at least one γk 6= 0.

We first train the quantile prediction model from GTEx to estimate the conditional

quantile function of gene expression given a genotype profile, and then we construct test

statistics that integrate GWAS summary statistics with the estimated quantiles of gene

expressions (Figure 2).

Step 1: modeling the conditional quantile of EG | G. Defining QE(τ | G,C) as the

conditional quantile of gene expression E given genotypes G and covariates C, we assume
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Figure 2: QTWAS flow chart.

the following linear quantile model for QE(τ | G,C) (Koenker and Bassett, 1978):

QE(τ | G,C) = α0(τ) + C>α(τ) +G>β(τ) for all τ ∈ (0, 1), (2)

where α0(τ) ∈ R, α(τ) ∈ Rq and β(τ) ∈ Rp are quantile-specific intercept and slopes for

covariates and genotypes, respectively. With U ∼ Unif(0, 1), it is important to observe

from eq (2) that the gene-expression E can be viewed as a convolution of a genotype-related

random variable G>β(U) and an unrelated random variable α0(U) + C>α(U), and thus

genotype-related gene expression EG has the same distribution as G>β(U). Denote the data

in one tissue from GTEx as {Ei, Gi, Ci}ni=1 with sample size n. For a fine grid of τ ∈ (0, 1),
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we estimate β(τ) by solving

(α̂0,τ , α̂τ , β̂τ ) = arg min
α0,τ ,ατ ,βτ

n∑
i

ρτ (Ei − α0,τ − Ciατ −Giβτ ),

where ρτ (u) = |u|{(1− τ)I(u < 0) + τI(u > 0)}, u ∈ R.

Step 2: testing quantile-stratified nonlinear gene-trait association. Denote γ̂k as

the estimate of γk for region Ak, se(γ̂k) as the standard error of γ̂k, and NGWAS as the sample

size for GWAS data. Given the conditional independence assumption T ⊥⊥ EG | G (Barbeira

et al., 2018; Hu et al., 2019), the z score for gene-trait association for region Ak is

Zk =
γ̂k

se(γ̂k)
≈ γ̂k
se(γ̂Ak)

≈
β̂>Ak
σEAk

σ̂1 . . .

σ̂p

 Z̃,

where σEAk is the standard deviation of imputed gene expression in region Ak, β̂GWAS is the

SNP-level estimated effect size available from GWAS summary statistics, σ̂j is the estimated

standard deviation of the j-th SNP, Z̃ is the SNP-trait z scores, and β̂Ak =
∫ τk+1

τk
β̂(τ)dτ , in

which τk and τk+1 define the range of Ak (Methods).

If there is no SNP-trait association, Z̃ ≈ N(0, D), where D is the linkage-disequilibrium

matrix for SNPs, either estimated from the reference panel or external reference data. Hence,

under H0 : γk = 0 for k = 1, ..., K,

Zk ≈ N

(
0,

1

σ2
EAk

β̂>Akdiag(σ̂1, ..., σ̂p)Ddiag(σ̂1, ..., σ̂p)β̂Ak

)
.

After getting the p values for each regionAk, we combine them by the Cauchy combination

method (Liu and Xie, 2020), which avoids time-consuming numerical permutations and

provides an analytical form for combining correlated p-values.
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Model implementation and evaluation

Variant screening procedure. Based on empirical evidence, EG often depends on a

sparse set of SNPs (Barbeira et al., 2018; Gamazon et al., 2015). Most existing TWAS

approaches use penalized linear regression to select significant SNPs associated with the

mean of EG (Barbeira et al., 2018; Gamazon et al., 2015; Hu et al., 2019), which may

not be optimal at identifying more local (quantile-stratified) associations. We introduce a

new variant screening procedure to identify important SNPs separately for each region Ak.

The new screening procedure is more effective at identifying heterogeneous distributional

associations and non-normal outcomes. We outline the detailed algorithm below, and provide

a flowchart of the screening procedure in the Appendix (Figure 1). Specifically, we aggregate

multiple quantile rank score tests (Gutenbrunner et al., 1993) at selected quantile levels

within Ak to select region-specific SNPs. For each variant located within ±1Mb of a gene’s

TSS, we first perform quantile rank score test (Gutenbrunner and Jurecková, 1992; Song

et al., 2017) on several quantile levels selected from the target quantile intervals Ak’s and

then combine multiple p values using the Cauchy combination method (Liu and Xie, 2020).

We select significant variants while controlling the false discovery rate at the 5% level using

the method of Benjamini and Hochberg (1995). Among the selected SNPs, we further

filtered out highly correlated SNPs via hierarchical clustering (more details are described in

Appendix 1) and used the final set of SNPs as the G matrix used in model (2).

Evaluation of imputation accuracy. To evaluate the accuracy of the imputation model

(2), we consider the goodness of fit criterion RQ(τ) = 1−V̂ (τ)/Ṽ (τ) (Koenker and Machado,

1999), a measurement of explained deviance by the quantile model associated to genetic ef-

fects at a fixed quantile level, where V̂ (τ) = min
∑n

i ρτ (Ei − C>i ατ − G>i βτ − α0,τ ) and
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Ṽ (τ) = min
∑n

i ρτ (Ei − C>i ατ − α0,τ ) are optimized quantile loss under the null and alter-

native models, respectively. It is a natural analog to R2 in linear models. We integrate

RQ(τ) over the interval Ak, resulting in an average model adequacy in the quantile region

Ak. The smaller the value, the less evidence for a meaningful SNP-expression association

within the quantile region Ak. In practice, we screen out unreliable models (e.g., quantile

models in a specific region Ak) with imputation accuracy RQ
Ak
≤ 0.1 and replace their p

values by u ∼ Unif(0, 1). Then, the Cauchy combination method (Liu and Xie, 2020) is used

to combine p values from multiple regions Ak’s.

Implementation details in the GTEx data. We trained the gene expression prediction

model for 49 tissues from the GTEx project (v8) as described below. Gene expression levels

were normalized and adjusted for covariates, including sex, sequencing platform, and the top

five principal components of genotype data, as well as the top 15 probabilistic estimation

of expression residuals (PEER) factors (Hu et al., 2019; Stegle et al., 2010). We considered

protein-coding genes, removed ambiguously stranded SNPs, and only considered ref/alt pairs

A/T, C/G, T/A, G/C. SNPs with minor allele frequency less than 0.01 were excluded from

the analyses. For each gene, we used SNPs between 1Mb upstream and downstream of the

transcription start site. The LD matrix D is estimated from the GTEx data. The length

of Ak and the number of regions (K) can be tuned depending on the application. For

demonstration, we consider K = 4 regions: A1 for τ ∈ (0.05, 0.3), A2 for τ ∈ (0.3, 0.5), A3

for τ ∈ (0.5, 0.7) and A4 for τ ∈ (0.7, 0.95) such that ∪Kk=1Ak covers 5% percentile to 95%

percentile of the value of EG. We do not consider τ < 0.05 and τ > 0.95 as they are close

to the tails, and the estimates tend to have larger variance owing to inflated zeros in G. In

addition, we estimate βAk by a quantile region slightly larger than Ak for more numerically
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stable results (e.g., using βτ | τ ∈ (0.05, 0.35) to estimate βA1). The length of the Ak and the

number of regions K may affect the power of the QTWAS test statistic slightly in certain

cases. But, given our experience, QTWAS is robust, and splitting the quantile range (0, 1)

into smaller regions does not help improve the power significantly.

3 Simulation studies

3.1 Simulation settings

For simulations, we use genotype data on n = 670 individuals (from whole blood tissue in

GTEx v8) in order to generate gene expression levels, and then we resample (from whole

blood tissue in GTEx v8) n = 1000 subjects to generate the trait data from their genotypes.

Null model. We generate the gene expression E from the model: E = G>β + C>α + e,

in which β is estimated based on true GTEx data via elastic net with the tuning parameter

set as 0.5. For each gene, G includes all SNPs within ±1Mb from its TSS. The trait T is

generated by T = C>η + ε. Both error terms e and ε follow standard normal distribution.

Gene expression E is normalized before analysis. The set of covariates C is provided in

GTEx data, including the top five principal components, top 15 PEER factors, platform,

and sex. α and η are vectors with each element randomly drawn from Unif(0, 1). This

null model preserves the gene regulation from GTEx data with no gene-trait association. A

similar setting has been applied in Hu et al. (2019).

Alternative models. For power analyses, we consider three different SNP-gene expression

models in the reference panel, and we assume a linear SNP-Trait model in GWAS data (since

we use available GWAS summary statistics).

SNP-Expression models. We consider the following three models:
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(a) Location shift: E = G>β + C>α + e;

(b) Location-scale: E = G>β + C>α + (1 + 0.5G>β)e;

(c) Local signal: QE(τ > 0.7) = 5 τ−0.7
1−0.7G

>β + C>α + F−1e (τ).

In the location shift model (a), the genetic variants G only affect the mean of E, while in

the location-scale model (b), the genetic variants G affect both the mean and variance of

E. In the local signal model (c), the variants G only affect part of the distribution of E

(i.e. G only affect the upper quantile (> 0.7th quantile) of E). In each of the three sce-

narios, we consider two error distributions for e: standard normal and Cauchy distributions.

Under these alternative models, we show that TWAS is nonlinear when the SNP-expression

association is heterogeneous (Appendix Figure 2).

SNP-Trait model. We consider a simple linear model T = G>ζ+C>η+ ε, where ε follows

a standard normal distribution, and genetic variants G are generated by resampling from

GTEx v8 genotype data.

To illustrate the performance in different scenarios, we randomly select 1% of SNPs from

the 2Mb region around TSS to be causal (i.e., with non-zero effect sizes β and ζ). We set

ζ = 1p and β = 2 · 1p for local signal model, ζ = 0.2 · 1p and β = 0.4 · 1p for location-scale

model, and ζ = 0.1 · 1p and β = 0.2 · 1p for location shift model, where 1p represents a

column vector with all elements being 1. Gene expression E is normalized before analysis.

α and η are vectors with each element randomly drawn from Unif(0, 1). C is the same set

of covariates as in the null model.

Similar to Hu et al. (2019), we randomly select 500 genes, and generate expression data

and traits independently for each gene, as described above. For power analyses, we repeat

the data generation procedure two times per gene, and report the statistical power based on
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1,000 replicates at the significance threshold α = 2.5e-6. For type I error analysis, we repeat

the procedure for each gene 20,000 times, and report the results based on 107 replicates at

different significance thresholds ranging from 0.05 to 2.5e-6. In addition, we compare the

proposed framework with our own implementation of S-PrediXcan (note that we have re-

implemented S-PrediXcan as it needs to be trained based on simulated data, and we denote

it as ”S-PrediXcan∗”). For our method, we report results integrated across quantile levels

(denoted as ”QTWAS”) as well as quantile region stratified results, such as ”QTWASAk” for

k = 1, ..., 4. The choices of A1, ..., A4 are described in the implementation details in Section

6. For both integrated and region-specific QTWAS, we only report results for genes with

RQ
Ak
> 0.1, as previously mentioned. Similarly, for S-PrediXcan∗, we only report results for

genes with imputation R2 > 0.1. We randomly generate p ∼ Unif(0, 1) if the elastic net

model in S-PrediXcan∗ does not select any variables, or if none of the four regions A1-A4 in

QTWAS has valid p value (e.g., no variant is selected or the quantile model does not pass

the imputation accuracy check).

3.2 Simulation results

Type I error analysis. The type I error for both QTWAS and S-PrediXcan∗ are controlled

at all significance levels (Table 1).

α S-PrediXcan∗ QTWAS QTWASA1 QTWASA2 QTWASA3 QTWASA4
0.05 5.031E-02 5.001E-02 5.005E-02 5.000E-02 4.990E-02 4.996E-02
1e-2 1.008E-02 1.002E-02 1.003E-02 1.002E-02 9.969E-03 1.000E-02
1e-3 1.004E-03 1.005E-03 1.022E-03 1.029E-03 1.012E-03 1.016E-03
1e-4 1.009E-04 1.022E-04 1.044E-04 1.054E-04 1.034E-04 1.066E-04
1e-5 8.100E-06 1.060E-05 1.000E-05 9.800E-06 1.060E-05 1.170E-05

2.5e-6 2.100E-06 2.400E-06 2.200E-06 3.100E-06 2.800E-06 2.400E-06

Table 1: Type I error results for S-PrediXcan∗ and QTWAS as well as for quantile region
stratified QTWAS with A1-A4 based on 107 replicates.
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Power analyses. QTWAS, combining different quantile intervals, has improved power

in most scenarios compared to S-PrediXcan∗ (Figure 3). For the location shift models, S-

PrediXcan∗ and QTWAS have comparable power with normal errors, while QTWAS has

slightly higher power than S-PrediXcan∗ with Cauchy errors. For the location-scale mod-

els, QTWAS showed substantially improved power over S-PrediXcan∗, with its power gain

stemming from the stratified association QTWASA4 in the setting of normal errors and from

QTWASA3 and QTWASA4 in the setting of Cauchy errors. For local signal models, we

observed dominant power boost for QTWAS, owing to the power of QTWASA4 , correspond-

ing to the true signals simulated at the top quantiles (Appendix Figure 2 (c)). Therefore,

the region-specific quantile test statistic can reveal more complex and detailed association

patterns.

3.3 Additional comparisons with S-PrediXcan

Imputation accuracy. To compare the imputation accuracy for QTWAS and S-PrediXcan∗,

we plotted the average of RQ
Ak

over four regions against R2 (Figure 4). Except for the lo-

cation shift model with normal error, QTWAS generally explained more deviance than S-

PrediXcan∗. Specifically, in the location-scale and local signal models, S-PrediXcan∗ explains

low deviance, indicating poor goodness of fit using linear models.

Evaluation of variant screening procedure. To evaluate the quantile variant screening,

we measure the canonical correlation between selected sets and the causal set in the three

alternative models with normal errors. The proportion of replicates with correlation greater

than 0.95 is reported in Table 2 based on 1,000 replicates. For the location shift model,

both QTWAS and S-PrediXcan∗ select SNP sets highly correlated with the true causal set.

In the location-scale model, the proportion of replicates selecting highly correlated SNPs
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Figure 3: Power of S-PrediXcan∗ and QTWAS in location shift (top panel), location-scale
(middle panel), and local signal (bottom panel) models with normal error (left column) and
Cauchy error (right column), respectively. In each panel power is shown for S-PrediXcan∗,
QTWAS, and quantile region stratified QTWAS with A1-A4. The significance threshold is
α = 2.5e-6.

is increasing with the quantile levels and is comparable to S-PrediXcan∗ for interval A4,

consistent with the power results (Figure 3). In the local shift model, QTWAS selected a

set of SNPs with high correlation with the true causal set in the upper quantile interval A4

more often than S-PrediXcan∗, as expected. Thus, we have demonstrated that QTWAS can

select variants that are more correlated to the underlying causal variants.
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Figure 4: Explained deviance for QTWAS and S-PrediXcan∗. Location shift, location-scale
and local signal models are presented, with normal errors and Cauchy errors.

Model QTWASA1 QTWASA2 QTWASA3 QTWASA4 S-PrediXcan∗

location shift 97.9% 99.1% 99.1% 99.0% 99.8%
location-scale 31.3% 54.2% 70.4% 83.7% 85.4%
local shift 4.5% 0.5% 0.5% 39.1% 15.4%

Table 2: The proportion of replicates (out of 1,000) with canonical correlation values between
the selected variable set and the true causal set greater than 0.95.

4 Applications to psychiatric/neurodegenerative dis-

orders

We apply QTWAS and S-PrediXcan to summary statistics from ten GWAS studies on brain

disorders, including five neuropsychiatric traits: schizophrenia (SCZ, (Pardiñas et al., 2018)),
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attention-deficit/hyperactivity disorder (ADHD, (Demontis et al., 2019)), bipolar disorder

(BD, (Stahl et al., 2019)), autism spectrum disorder (ASD, (Grove et al., 2019)) and ma-

jor depressive disorder (MDD, (Howard et al., 2019)); and four neurodegenerative traits:

Alzheimer’s disease (AD Kunkle, (Kunkle et al., 2019); AD Jansen, (Jansen et al., 2019)),

Parkinson’s disease (PD, (Nalls et al., 2019)), multiple sclerosis (MS, (Andlauer et al., 2016))

and amyotrophic lateral sclerosis (ALS, (Van Rheenen et al., 2016)). Sample information for

those studies is summarized in the Appendix (Table 1).

For each trait, we applied S-PrediXcan and QTWAS to 13 brain tissues from GTEx v8

(namely Brain Cortex, Hippocampus, Cerebellum, Frontal Cortex (BA9), Hypothalamus,

Nucleus accumbens (basal ganglia), Spinal cord (cervical c-1), Substantia nigra, Amygdala,

Anterior cingulate cortex (BA24), Caudate (basal ganglia), Cerebellum Hemisphere and

Putamen (basal ganglia)). We focus on genes with RQ
Ak
> 0.1 for the imputation accuracy.

For S-PrediXcan, we use the pre-trained models directly downloaded from the PredictDB

website. Then, we use the Cauchy combination method (Liu and Xie, 2020) to combine the 13

individual tissue p values. We validate our discoveries using a spatiotemporal transcriptomic

dataset (Kang et al., 2011), and a single-cell transcriptomic dataset (Wang et al., 2018).

Single-tissue results for AD. We use the trait AD Jansen (Jansen et al., 2019) to illus-

trate the performance based on single-tissue data. Through the Quantile-Quantile (QQ) plots

per tissue (Appendix Figure 3), we show that QTWAS is more powerful than S-PrediXcan

while controlling the type I error. We further summarize the number of genes identified by

QTWAS and S-PrediXcan in each tissue with the imputation accuracy thresholds RQ
Ak
> 0.1

(default), 0.2, and 0.3 (Table 2). For all tissues, QTWAS with RQ
Ak

> 0.1 identified more

significant gene-trait associations compared to S-PrediXcan. QQ plots for other traits are
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shown in the Appendix (Figure 4-12). Full results on significant genes for all ten traits per

tissue can be found at https://tianyingw.github.io/QTWAS/.

Visualizing the nonlinear association in GTEx data. Owing to the lack of individual

genotype in GWAS data, we propose to investigate the genotype-expression model (model B

in Figure 1) to gain more insights on the nonlinear gene-trait associations. Specifically, we

compute a mutation burden score per gene for each individual by adding up the minor alleles

of reported cis-QTL from the GTEx portal website (denoted as X) and the residuals from

the linear model E ∼ C (denoted as Y ), and then we fit a lowess smoothing model on Y and

X. For illustration purposes, we present two genes only identified by QTWAS for the trait

AD Jansen, namely KRT39 and CDRT4. The association between Alzheimer’s Disease and

CDRT4 has been previously reported in literature (Liu et al., 2021). KRT39 has also been

found as an aging-related protein (Ma et al., 2020). After accounting for covariate effects,

lowess estimated curves clearly show nonlinear associations between the gene expression and

the mutation burden score (Figure 5).

(a) (b)

Figure 5: Examples of nonlinear SNP-expression associations: (a) gene KRT39 and brain
cerebellum tissue, and (b) gene CDRT4 and brain caudate basal ganglia tissue. The red
line is the lowess fitting curve; black dotted lines are 95% confidence band; grey points are
observed data.
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Combining multiple-tissue signals. As the sample sizes in GTEx data vary across

different tissues, the tissues providing the smallest p values are not necessarily the most

relevant for a given trait. Thus, we combined results from 13 brain tissues using the Cauchy

combination approach for a more comprehensive analysis. QQ plots for all ten traits based

on 13 brain tissues results are presented in the Appendix (Figure 13). For all traits, 95%

of the distributions of − log10 pQTWAS and of − log10 pS−PrediXcan are consistent with each

other, whereas QTWAS is more powerful than S-PrediXcan on the top 5% genes. We found

that multi-tissue results are more robust, with a substantially larger number of significant

genes identified by both QTWAS and S-PrediXcan (Figure 6). Again, we use AD Jansen for

illustration. Both QTWAS and S-PrediXcan identified strong associations on chromosome

19, while QTWAS also reported relatively strong signals on chromosome 6 and new significant

genes at several other locations (Figure 7). Similarly, QTWAS shows improved power in

detecting gene-trait associations for other traits (Appendix Figure 14-22).

QTWAS identified more loci than S-PrediXcan. Based on the GWAS summary

statistics from the ten traits we investigated, we select genome-wide significant SNPs (p

values < 2.5e-08) and define loci as ± 500kb centered at significant SNPs (to limit overlap,

only the locus corresponding to the most significant SNP is retained). Next, we report

the number of loci identified by QTWAS and S-PrediXcan, i.e. loci with a significant gene

(TSS) within the locus, based on multi-tissue results from 13 brain tissues. We observe that

QTWAS identified more new loci (Figure 8).

Validating the new gene discoveries by QTWAS

Next we show validation results for the set of genes identified by QTWAS only.
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AD Jansen. The significance threshold is 2.5e-6.
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Developmental transcriptomic data. We use spatiotemporal brain transcriptomic data

collected from clinically unremarkable donors without signs of large-scale genomic abnor-

malities (Kang et al., 2011). The data are available for six brain regions: neocortex (NCX),

mediodorsal nucleus of the thalamus (MD), cerebellar cortex (CBC), hippocampus (HIP),

amygdala (AMY), and striatum (STR). Here we focus on the cortical expression profiles

(NCX area), as in Ma et al. (2021), because of its relatively large sample size with 410 pre-

natal samples and 526 postnatal samples. The prenatal samples correspond to measurements

collected from 4 postconceptional weeks (PCW) till birth, and the postnatal samples corre-

spond to those collected from birth to age ≥ 60 years (Kang et al., 2011). The data have

been quantile normalized, and we further center the gene expression within each sample.

As some GWAS studies are underpowered, a liberal significance threshold of 10−4 is used.

We then compute the average gene expression levels of significant genes only identified by

QTWAS based on multi-tissue results (13 brain tissues) and compare the expression patterns

between prenatal and postnatal stages for each trait. We observe significantly higher prena-

tal expressions among all five psychiatric disorders, and higher postnatal expressions among

all five neurodegenerative disorders except for AD Jansen (Figure 9), consistent with results
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reported in Sey et al. (2020) and Ma et al. (2021). When performing the same analyses but

with all genes identified by QTWAS, we find similar patterns (Appendix Figure 24). These

results support the validity of the new discoveries from QTWAS.

Single cell expression profiles. We further explore the cell-type specific expression pro-

file for 285 single cells from 6 adult brain cell-types, including neurons (131 cells), astrocytes

(62 cells), microglia (16 cells), endothelial (20 cells), oligodendrocytes (38 cells) and oligo-

dendrocyte progenitor cells (OPC, 18 cells) from Wang et al. (2018). We standardized the

expressions for the six adult cell-types, then calculated the average expression level based

on significant genes across multiple cells within each cell type. We focused on those genes

only identified by QTWAS (not identified by S-PrediXcan). We observed different cellular

signatures and cell-type specificity, consistent with existing studies (Figure 9). Specifically,

neurons are important for all psychiatric traits. Similarly, microglia are important for AD

(Sarlus et al., 2017; Ma et al., 2021; Sey et al., 2020; Doens and Fernández, 2014); neurons

and oligodendrocytes have been recognized for PD (Azevedo et al., 2022; Sey et al., 2020);

and neurons are important for ALS (Sey et al., 2020). We also perform the same analyses

with all genes identified by QTWAS and obtain similar results (Appendix Figure 23).

Browser for results on UKBiobank traits In addition, we have applied QTWAS to

797 UK Biobank continuous phenotypes with their summary statistics for 28 million imputed

variants (available at https://pan.ukbb.broadinstitute.org). We provide phenome-wide re-

sults for genes, genome-wide gene-based results for each trait with respect to all 49 tissues

in GTEx. Results can be obtained from https://tianyingw.github.io/QTWAS/.
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Figure 9: Human brain developmental expression of significant genes identified by QTWAS
only. P-values of Wilcoxon rank sum tests comparing prenatal and postnatal expression
levels are also shown.
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trait.

5 Discussion

We have proposed a novel quantile-based TWAS approach to effectively leverage expression

reference panels and discover nonlinear gene-trait associations. Quantile regression tools

have been previously proposed in the context of genetic association studies (Song et al.,

2017; Wang et al., 2019). However, this is the first quantile-process-based method in TWAS.

A key reason for its appeal is the promise of prioritizing candidate causal genes whose

expression levels mediate the phenotypic effects in a dynamic and non-linear manner. As

shown in both simulations and applications, such quantile models are able to identify more

associations and provide more insights on how gene expression levels regulate phenotypes.

In addition, the interval-based variant screening through quantile rank test leads to a more

accurate and detailed imputation of gene expression in specific quantile intervals.

Compared to the mean-based approach S-PrediXcan, QTWAS showed more robust and

promising discoveries across different traits. In general, a large number of genes discovered by
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S-PrediXcan are also identified by QTWAS. Through validation analyses, we show that the

novel genes identified by QTWAS are likely to be functional and relevant to the trait under

study. In addition, QTWAS is more powerful, discovering more new loci and more genes per

shared locus. Note that, like other TWAS approaches, QTWAS inevitably identifies multiple

hit genes per locus due to LD confounding and co-regulation (Wainberg et al., 2019), and

hence fine-mapping such loci can further prioritize relevant genes at each locus.

Several emerging topics in TWAS are left for future work. Constructing imputation

models based on multi-tissues, such as UTMOST (Hu et al., 2019), can effectively increase

imputation accuracy and power. Multi-tissue quantile modeling may allow investigations of

more comprehensive nonlinear graphical associations across tissues. Furthermore, the current

QTWAS framework can be better developed when individual GWAS data are available,

which would allow nonparametric approaches to estimate higher resolution nonlinear gene-

trait associations.

6 Methods

Problem statement

Denote G ∈ Rp as a set of genotypes of interest (i.e., p SNPs located within ±1Mb from a

gene’s TSS), E ∈ R as the expression level of a target gene, T ∈ R as the trait of interest,

C ∈ Rq as q demographic covariates, and QEG(τ) as the τth quantile of EG. Assuming that

a gene expression level E is determined by both the genetic profile and other demographic

and environmental confounders, we decompose it by E = EG +EC , where EG is the genetic

component of gene-expression that can be explained by genetic variants, while EC is the

non-genetic component. The general TWAS goal is to establish an association between the

phenotype T and EG.
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Typical TWAS approaches start by building a linear prediction model of gene expression

given G and C and then by testing the association between a trait and the predicted EG

in GWAS data. Such approaches implicitly assume linear associations in TWAS. Here, we

consider the following model:

T =
K∑
k=1

(γ0,k + γkEG)1{EG ∈ Ak}+ ε, (3)

where Ak = {QEG(τk), QEG(τk+1)} is the quantile region from the τkth quantile to the τk+1th

quantile of EG. Eq (3) is a piecewise linear function approximating T = f(EG) + ε with an

unknown f(·).

By design, we approximate f(x) in the interval Ak by a linear function γ0,k + γkx, such

that (γ0,k, γk) = arg minγ ET (T − γ0 − γ1EG)21{EG ∈ Ak}. The slope coefficient γk assesses

the localized gene-trait association within a quantile sub-region of EG, which can be written

as

γk =
cov(EG, T | EG ∈ Ak)
var(EG | EG ∈ Ak)

, for k = 1, ..., K, (4)

and the null hypothesis is H0 : γk = 0 for k = 1, ..., K; Ha : at least one γk 6= 0. The

coefficient γk can be estimated by leveraging a conditional quantile process model of the

gene expression and GWAS summary statistics. The key idea is to decompose the covariance

cov(EG, T | EG ∈ Ak) in (4) by the law of total variance:

cov(EG, T | EG ∈ Ak) = E{cov(EG, T | G,EG ∈ Ak)}

+cov{E(EG | G,EG ∈ Ak),E(T | G,EG ∈ Ak)}. (5)

Assuming the conditional independence T ⊥⊥ EG | G as in Barbeira et al. (2018) and Hu

et al. (2019), the covariance is determined by the correlations between E(EG | G,EG ∈ Ak)

and E(T | G,EG ∈ Ak).
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Step 1: modeling the conditional quantile of EG | G

Defining QE(τ | G,C) as the conditional quantile of gene expression E given genotypes G

and covariates C, we assume the following linear quantile model for QE(τ | G,C) (Koenker

and Bassett, 1978):

QE(τ | G,C) = α0(τ) + C>α(τ) +G>β(τ) for all τ ∈ (0, 1), (6)

where α0(τ) ∈ R, α(τ) ∈ Rq and β(τ) ∈ Rp are quantile specific intercept and slopes

for covariates and genotypes, respectively. Denote the data in one tissue from GTEx as

{Ei, Gi, Ci}ni=1 with sample size n, where Ei ∈ R is the gene expression, Gi ∈ Rp is the

p−dimensional genotype data, and Ci ∈ Rq is the q−dimensional covariates, including sex,

sequencing platform, top three principal components of genotype data, and the top proba-

bilistic estimation of expression residuals (PEER) factors. Thus, for a fine grid of τ ∈ (0, 1),

we estimate β(τ) by solving

(α̂0,τ , α̂τ , β̂τ ) = arg min
α0,τ ,ατ ,βτ

n∑
i

ρτ (Ei − α0,τ − Ciατ −Giβτ ),

where ρτ (u) = |u|{(1− τ)I(u < 0) + τI(u > 0)}, u ∈ R.

In eq (6), the gene expression E has the same distribution as α0(U)+C>α(U)+G>β(U),

where U ∼ Unif(0, 1). One can view the gene-expression E as a convolution of a genotype-

related random variable G>β(U) and an unrelated random variable α0(U) + C>α(U). It

follows that genotype-related gene expression EG, as defined in the decomposition E =

EG + EC , has the same distribution as G>β(U). Thus,

E(EG | G,EG ∈ Ak) =

∫ τk+1

τk

G>β(u)du = G>βAk ,

where βAk =
∫ τk+1

τk
β(u)du. Accordingly, we have β̂Ak =

∫ τk+1

τk
β̂(τ)dτ , in which τk and τk+1

define the range of Ak.
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Step 2: testing quantile-stratified nonlinear gene-trait association

Denote γ̂k as the estimate of γk for region Ak, se(γ̂k) as the standard error of γ̂k, and NGWAS

as the sample size for GWAS data. The z score for gene-trait association for region Ak is

Zk = γ̂k/se(γ̂k). Given eq (4)-(5) and the conditional independence assumption T ⊥⊥ EG | G,

we have that E{cov(EG, T | G,EG ∈ Ak)} = 0, and E(T | G,EG ∈ Ak) = G>βGWAS, where

βGWAS is the SNP-level effect size. With σj representing the standard deviation of the j-th

SNP,

cov{E(EG | G,EG ∈ Ak),E(T | G,EG ∈ Ak)} = cov(G>βAk , G
>βGWAS) = β>Ak

σ
2
1

. . .

σ2
p

 βGWAS,

such that

γ̂k =
β̂>Ak
σ2
EAk

σ̂
2
1

. . .

σ̂2
p

 β̂GWAS,

where σEAk is the standard deviation of imputed gene expression in region Ak, β̂GWAS is

the SNP-level estimated effect size available from GWAS summary statistics, and σ̂j is the

estimated standard deviation of the j-th SNP. Regarding se(γ̂k), we have

se(γ̂k) =

√
var(ε)

NGWASvar(EG | EG ∈ Ak)
≈ σ̂T√

NGWASσEAk
,

where σ̂T is the estimated standard deviation of trait T . We have var(ε) ≈ σ2
T based on

the empirical observation that only a very small proportion of variability of the trait can

be explained by one gene (Hu et al., 2019; O’Connor et al., 2017). We then use the same

argument for the SNP level association statistics in GWAS data. For the jth SNP in the

model, its z score can be denoted as

Z̃j =
β̂GWAS,j

se(β̂GWAS,j)
≈
√
NGWASσ̂jβ̂GWAS,j

σ̂T
,
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and the matrix form GWAS z score is

Z̃ ≈
√
NGWAS

σ̂T

σ̂1 . . .

σ̂p

 β̂GWAS.

Combining the derivations for Zk and Z̃, we have the gene-level quantile-stratified z score

Zk =
γ̂k

se(γ̂Ak)
≈

β̂>Ak
σEAk

σ̂1 . . .

σ̂p

 Z̃.

Under the null hypothesis, Z̃ ≈ N(0, D), where D is the linkage-disequilibrium matrix for

SNPs, either estimated from the reference panel or external reference data. Hence, under

H0 : γk = 0 for k = 1, ..., K,

Zk ≈ N

(
0,

1

σ2
EAk

β̂>Akdiag(σ̂1, ..., σ̂p)Ddiag(σ̂1, ..., σ̂p)β̂Ak

)
.

After acquiring the p value for each region Ak, we combine them by the Cauchy combi-

nation method (Liu and Xie, 2020). For those genes measured in multiple tissues, one can

further combine multiple p-values across tissues by the same method.

Data availability and web resources: We use data from existing studies from GTEx

(v8, https://gtexportal.org/home/) and summary level GWAS results on neuropsychiatric

and neurodegenerative traits (Pardiñas et al., 2018; Demontis et al., 2019; Stahl et al.,

2019; Grove et al., 2019; Howard et al., 2019; Kunkle et al., 2019; Jansen et al., 2019; Nalls

et al., 2019; Andlauer et al., 2016; Van Rheenen et al., 2016). In data analyses, we use

pre-trained models for S-PrediXcan. The models are available at the PredictDB website

(https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/).

Code availability: We have implemented the proposed QTWAS framework in an R pack-

age QTWAS (https://github.com/tianyingw/QTWAS).
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