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Abstract

We propose BIGKnock (BIobank-scale Gene-based association test via Knockoffs), a
gene-based testing approach that leverages long-range chromatin interaction data, is appli-
cable to biobank-scale data, and performs conditional testing genome-wide via knockoffs.
Thereby BIGKnock reduces the confounding effect of linkage disequilibrium relative to
existing gene-based tests and can prioritize causal genes over proxy associations at a locus.
We applied BIGKnock to the UK Biobank data with 405,296 British subjects for multi-
ple binary and quantitative traits, and show that relative to conventional gene-based tests
BIGKnock produces smaller sets of significant genes that contain the causal gene(s) with
high probability (> 90%). We further illustrate its ability to pinpoint potentially causal
genes at ∼ 80% of the associated loci (4,829 loci across 24 diseases and traits), including
genes with well established causal links in the literature such as ASGR1 and ANGPTL4
and cholesterol, and ALDH2 and coronary artery disease, as well as plausible novel links
such as NGFR and asthma, AGPAT1 and type 2 diabetes, DBH and blood pressure, ZHX3
and calcium, PPARγ and LDL cholesterol. Relative to several methods for causal gene pri-
oritization such as closest gene, cS2G and L2G, we show that BIGKnock produces more
interpretable results and improves precision on two sets of gold standard causal genes.
Finally, we show that the prioritized genes have several interesting properties relative to
non-significant genes that are consistent with them being putative causal genes.

Introduction
Gene-based tests that incorporate regulatory variation from proximal and distal regulatory el-
ements are appealing given that most genetic variants associated with complex traits reside in
non-coding regions. Unlike single variant testing which requires follow-up investigations to
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identify the causal gene(s), gene-based testing that incorporates putative regulatory elements
provides a unified test at the gene level. Transcriptome-wide association tests (TWAS) are typ-
ical examples of gene-based tests that leverage expression quantitative trait loci (eQTL) data
from reference datasets such as GTEx1. However, a main challenge is the high false positive
rate for such tests caused by confounding due to linkage disequilibrium (LD) and co-regulation.
Although fine-mapping approaches have been proposed for TWAS2, these approaches are lim-
ited to eQTLs being present in the reference datasets, and the majority of genetic associations
cannot be clearly assigned to existing eQTLs3,4.

In our previous work5 we have proposed a new gene-based test that incorporates genetic
variation in proximal and distal regulatory elements (not restricted to eQTLs) and which per-
forms genome-wide conditional tests via knockoffs in order to reduce the confounding effect
of LD. In this paper we propose a scalable implementation that improves the computational
efficiency while maintaining the statistical performance (i.e., FDR control and power) of the
knockoff framework, making it applicable to biobank sized datasets, and demonstrate its abil-
ity to prioritize likely causal genes for several binary and continuous traits in the UK biobank
data. Relative to recent causal gene prioritization methods such as combined SNP-to-gene
(cS2G)6 and Locus-to-gene (L2G)7 which are based on supervised machine learning methods
to integrate various functional features predictive of the causal gene(s) at a locus, and which
are therefore dependent on good quality training data and high quality fine-mapping results,
our gene-based test avoids these limitations, produces more interpretable results (in terms of
q-values and FDR control) and naturally restricts false positives due to LD confounding.

Biobanks with comprehensive genetic and phenotypic data from electronic medical records
provide a powerful resource for genomic studies. For example, the UK biobank is comprised
of genotype and phenotype data on about 500,000 individuals and millions of genetic vari-
ants11. The size of such data poses challenges in terms of computational time and memory
requirements for conventional linear mixed models, and recent methods have been proposed
to make such models scalable to biobank sized datasets12,13. Furthermore, the proposed gene-
based test is based on knockoff inference, a statistical framework for variable selection in high-
dimensional settings14. The idea behind knockoff-based inference is to generate synthetic,
noisy copies (knockoffs) of the original genetic variants that resemble the true variants in terms
of preserving correlations but are conditionally independent of the phenotype given the true ge-
netic variants. The knockoffs serve as negative controls and help select significant genetic risk
loci while controlling the false discovery rate (FDR). Constructing multiple knockoff genotype
features is time consuming and recently efficient methods for knockoff generation have been
proposed15.

In this paper we leverage these methodological improvements, and propose a computation-
ally and memory efficient gene-based test via knockoffs for biobank sized data, BIGKnock.
Its ability to prioritize causal genes, e.g. those for which regulatory changes mediate genome-
wide association signals, through genome-wide conditional testing is a unique feature for our
test and we demonstrate its ability to prioritize putative causal genes at ∼ 80% loci for four
binary and twenty quantitative traits in the UK biobank. We illustrate with several examples of
well known causal genes along with new plausible ones that BIGKnock is able to identify. We
also show that the prioritized genes have interesting properties relative to non-significant genes
that are consistent with them being putative causal genes.
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Results

Overview of BIGKnock
We provide here a brief overview of the proposed gene-based test, BIGKnock, and the conven-
tional test GeneScan3D which we compare against. GeneScan3D incorporates classical Burden
and SKAT tests to test for association between genetic variation in the gene body (i.e., the inter-
val between the transcription start site and the end of 3’ UTR) and in proximal/distal regulatory
elements, and a trait of interest. GeneScan3D scans the gene body region and the associated
regulatory elements with varied window sizes and combines results using the Cauchy combi-
nation method16 to produce one single p-value per gene. BIGKnock extends GeneScan3D by
implementing the knockoff framework. BIGKnock computes for each gene a knockoff statistic
W that measures the importance of each gene (similar to a p-value), and then uses the knockoff

filter to detect genes with sufficiently large W, i.e. those genes significant at a specified FDR
target level14. We also compute a q-value for each gene. A q-value is similar to a p-value, ex-
cept that it measures significance in terms of FDR rather than FWER, and already incorporates
correction for multiple testing. The details on these specific tests can be found in the Methods
section.

Applications to UK Biobank: Binary Traits
We applied BIGKnock to four binary traits in the UK Biobank, including Hypertension (Phe-
code 401), Coronary Artery Disease (Phecode 411), Asthma (Phecode 495) and Type 2 diabetes
(Phecode 250.2) (See Table S1 for sample size information). Note that we have previously5

compared the performance of the original knockoff-based test, and GeneScan3D with other
commonly-used tests including STAAR-O8 and MAGMA/H-MAGMA9,10, and have shown
improved power and FDR control relative to these existing methods. Since BIGKnock is a
scalable implementation of the previous test, we only compare with GeneScan3D (see Meth-
ods and5), the conventional 3D gene-based test without knockoff-based inference, to illustrate
the advantages of the knockoff-based testing approach. We use a Bonferroni adjusted threshold
of 2.5 × 10−6 for GeneScan3D and an FDR threshold of 0.01 or 0.05 (depending on the size of
the study) for BIGKnock. For four binary traits we consider here, we identify 1,209 gene-trait
associations for GeneScan3D and 801 associations for BIGKnock (Supplemental Tables 1-4).
Among the 1,209 significant associations under GeneScan3D, only 688 (57%) are significant
under BIGKnock, despite the more liberal FDR threshold used by BIGKnock owing to LD
adjustement.

We use the significant GWAS SNPs (p < 5 × 10−8) to define 1Mb loci centered at the
most significant SNP. For each gene-based test (GeneScan3D and BIGKnock), we count the
number of loci that contain at least one significant gene for each test respectively. In terms of
the number of significant loci, GeneScan3D and BIGKnock show similar results, with most of
the significant loci shared between GeneScan3D and BIGKnock (Table S2). However, one of
our main interests in employing the knockoff framework is to filter out false positive genes that
appear in the conventional GeneScan3D test. We therefore consider shared loci that contain
at least one significant gene for both GeneScan3D and BIGKnock, and compare the number
of significant genes identified by the two methods at such loci. The knockoff test discovers a
smaller number of significant genes than GeneScan3D despite the more liberal FDR threshold
(Figure 1). We provide further evidence below that BIGKnock, by conditioning on nearby
variants, can prioritize genes more likely to be causal.
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BIGKnock can prioritize putative causal genes at significant loci. We demonstrate that
significant genes detected by BIGKnock tend to be enriched among genes nearest to the lead
GWAS SNP at significant loci, the class of genes most likely to be the causal genes17,18. We
first perform the enrichment analysis (Methods) based on 136 BIGKnock significant loci for
multiple binary traits. Knockoff significant genes are 4.6-fold (range 2.3-8.8 for four binary
traits) more likely to be the nearest gene relative to the rest of the genes at a locus (Figure 2a).
Similar results hold when we restrict the analyses to 127 loci shared between BIGKnock and
GeneScan3D (5.1-fold with range 2.3-10.7, Figure S1a).

Next, we focus on several loci where the knockoff-based test can prioritize only a few
genes at a locus relative to the conventional GeneScan3D test (Table 1), and there is com-
pelling literature support for a mechanistic role of the selected genes in the pathogenesis of the
corresponding traits.

ALDH2 (Aldehyde Dehydrogenase 2) and coronary artery disease. We illustrate first in
detail the association between ALDH2 and coronary artery disease. Although GeneScan3D
identifies 11 significant genes at this locus, BIGKnock identifies only two of them as signif-
icant including ALDH2 and BRAP (Figure 3(a)). The additional associations detected by the
conventional GeneScan3D test are likely due to LD between variants in those genes and putative
causal variants in the BRAP-ALDH2 neighborhood. ALDH2 is expressed across many tissues
in GTEx but is most abundant in the liver and adipose tissues (Figure 3(c)). The role of ALDH2
in cardiovascular disease is well-documented in the literature19. The ALDH2 Glu504lys poly-
morphism is widely considered as a risk factor for the development of coronary artery disease,
especially in Asian populations20–22. Furthermore, mitochondrial ALDH2 has emerged as a
key enzyme for removal of ethanol-derived acetaldehyde, and has been shown to play a role in
inflammation regulation and macrophages accumulation23. Epidemiological studies in humans
carrying an inactivating mutation in ALDH2, combined with genetic and pharmacological stud-
ies in animal models, have implicated ALDH2 in the development and prognosis of coronary
heart disease, hypertension, type 2 diabetes, and stroke, and suggest ALDH2 as an important
target for generating new treatments for heart diseases24.

Additional loci with strong literature support. NGFR (nerve growth factor receptor) and
asthma (Figure 4a): Nerve growth factor has been implicated in both the immune and neuronal
components of allergic asthma pathogenesis. Furthermore, the nerve growth factor (NGF) tar-
geting treatment may be an important therapy for antigen-induced airway hyper responsiveness
via attenuation of airway innervation and inflammation in asthma25.

AGPAT1 (1-acylglycerol-3-phosphate O-acyltransferase 1) and type 2 diabetes (Figure 4b):
AGPAT1 is a metabolism (lipid biosynthesis) gene and plays important functions in the physi-
ology of multiple organ systems. In particular, Agpat1-deficient mouse developed widespread
disturbances of metabolism including low body weight and low plasma glucose levels26. Fur-
thermore, Agpat1 mouse knockout has low circulating glucose and increased urine glucose and
urine microalbumin (International Mouse Phenotyping Consortium).

MARCHF5 (membrane-associated RING-CH-type finger 5) type 2 diabetes (Figure 4c):
MARCHF5 is a PPARγ target gene that influences mitochondrial and cellular metabolism in
adipocytes27. These functions likely alter the utilization of lipid, which subsequently impacts
glucose metabolism.
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Effector BIGKnock Genes. We further restrict the list of BIGKnock significant genes by
identifying those that coincide with the closest gene (among all genes) to the top significant
GWAS SNP at a locus. Among 136 significant loci across four binary traits, we identify 91
(67%) such loci (Supplemental Table 5). We call these genes effector BIGKnock genes. For
loci that do not have effector BIGKnock genes, 22 loci have only one BIGKnock significant
gene. Therefore, we prioritize one potentially causal gene at 83% of the loci.

Mouse phenotype enrichment analyses. Using ToppFun28 we have tested whether the ef-
fector BIGKnock genes are enriched in sets of genes associated with mouse phenotypes. The
mouse phenotype data are extracted from the Mammalian Phenotype Ontology, and consists of
mouse genes that cause phenotypes in genetically engineered or mutagenesis experiments. Ef-
fector BIGKnock genes are enriched in gene sets corresponding to relevant mouse phenotypes
(Figure S2). For example, among the most significantly enriched phenotypes were abnormal
circulating insulin levels, and increased circulating glucose levels for Type 2 diabetes, abnor-
mal systemic arterial blood pressure for hypertension, abnormal CD4-positive, alpha-beta T
cell physiology and abnormal T-helper 2 physiology for asthma, and increased susceptibility to
atherosclerosis and abnormal hepatobiliary system physiology for coronary artery disease.

Applications to UK Biobank: Quantitative Traits
We have also applied BIGKnock to 20 quantitative traits in the UK Biobank, including esti-
mated glomerular filtration rate (eGFR), Body Mass Index (BMI), Diastolic Blood Pressure Au-
tomated Reading (BP-Diastolic), Systolic Blood Pressure Automated Reading (BP-Systolic),
Cystatin C, Platelet count, Mean platelet volume (MPV), Apolipoprotein A, HDL cholesterol,
Cholesterol, Glycated haemoglobin (HbA1c), Mean reticulocyte volume (MRV), Mean sphered
cell volume (MSCV), Red blood cell (erythrocyte) distribution width (RDW), Neutrophil count,
Reticulocyte count, Calcium, insulin-like growth hormone factor-1 (IGF-1), LDL direct (LDL
cholesterol) and Direct bilirubin (samples sizes for individual traits are in Table S1). For quan-
titative traits we use more stringent FDR thresholds (0.001 or 0.005) due to large sample sizes
and consequently large number of significant findings. For these 20 quantitative traits, we
identify 57,043 gene-trait associations for GeneScan3D and 37,391 associations for BIGKnock
(Supplemental Tables 6-25). Among 57,043 associations significant under GeneScan3D, only
36,086 (63%) are significant under BIGKnock, due to LD adjustement.

We report the number of significant loci/genes per trait in Table S3. As with the binary
traits, for most of the significant shared loci, BIGKnock can reduce the number of significant
associations despite the more liberal (FDR) thresholds being used (Figures S3-S6).

BIGKnock can prioritize putative causal genes at significant loci. As with binary traits,
we demonstrate that significant genes detected by BIGKnock tend to be enriched among genes
nearest to the lead GWAS SNP at significant loci. We first perform the enrichment analysis
(Methods) on 6,195 BIGKnock significant loci for multiple quantitative traits. In particular,
knockoff significant genes are 2-fold (range 1.6-2.9 for individual traits) more likely to be the
nearest gene relative to the rest of the genes at a locus (Figure 2b). When we restrict the
analyses to 6,001 loci shared between BIGKnock and GeneScan3D, similar enrichment can be
observed (Figure S1b).

Next, we focus on several loci where the knockoff-based test can prioritize few genes at a
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locus relative to GeneScan3D (Table 1), and there is compelling literature support for a mech-
anistic role of the selected genes in the pathogenesis of the corresponding traits.

ASGR1 (asialoglycoprotein receptor 1) and cholesterol. We illustrate first in detail the ex-
ample of ASGR1 and cholesterol. At the 1 Mb locus containing ASGR1, BIGKnock prioritizes
two genes including ASGR1 among 43 genes significant using the conventional GeneScan3D
test (Figure 3(b)). Most of the GeneScan3D associations are due to gene-enhancer links for
two enhancers (Figure S7). Specifically, 18 associations are due to variants in an enhancer
GH17F007167 just upstream of gene ASGR1, and when accounting for LD with nearby vari-
ants, BIGKnock no longer detects them as significant. Furthermore, additional associations that
are removed by BIGKnock are 12 genes linked to ABC enhancer chr17:7,144,929-7,146,587
(hg19) downstream of gene ASGR1, and 6 genes linked to 4 other enhancers (Supplemental
Table 26). Therefore, at this locus, BIGKnock is able to prioritize two genes by adjusting for
linkage disequilibrium in the region. ASGR1 is also highly expressed in liver (Figure 3(d)). The
role of ASGR1 in the control of non-HDL cholesterol levels and in regulation of the endoge-
nous levels of at least some asialoglycoproteins has been established29. Specifically, Nioi et
al.29 have identified rare loss-of-function variants in ASGR1 that are associated with lowering
of non-HDL cholesterol levels and a reduced risk of coronary artery disease. Recent mecha-
nistic studies also support a role of ASGR1 in cholesterol. For example, ASGR1-deficient pigs
show lower levels of non-HDL cholesterol and less atherosclerotic lesions than that of controls,
therefore targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and
atherosclerosis33.

Additional loci with strong literature support. SLC39A8 (solute carrier family 39 member
8) and diastolic blood pressure (Figure 4d): Slc39a8 deletion in mice results in increased ni-
tric oxide (NO) production, decreased blood pressure, and protection against high-salt-induced
hypertension, while homozygosity of the SLC39A8 loss-of-function variant in humans is as-
sociated with increased NO, providing a plausible explanation for the association of SLC39A8
with blood pressure34,35.

DBH (dopamine beta-hydroxylase) and diastolic blood pressure (Figure 4e): Dbh(-/-) mice
had a low heart rate, were severely hypotensive, and displayed an attenuated circadian blood
pressure rhythm36.

ANGPTL4 (angiopoietin-like protein 4) and cholesterol (Figure 4f): ANGPTL4 was uncov-
ered as a novel modulator of plasma lipoprotein metabolism. In 24-hour fasted mice, Angptl4
overexpression increased plasma triglycerides (TG) by 24-fold, which was attributable to ele-
vated VLDL-, IDL/LDL- and HDL-TG content37.

RAB11A (ras-related protein Rab-11A) and neutrophil counts (Figure 4g): In mice chal-
lenged with endotoxin, intratracheal instillation of Rab11a-depleted macrophages reduced neu-
trophil count in bronchoalveolar lavage fluid, increased the number of macrophages containing
apoptotic neutrophils, and prevented inflammatory lung injury38.

ZHX3 (zinc fingers and homeoboxes 3) and calcium (Figure 4h): Zhx3-KO mice have in-
creased bone mineral density (International Mouse Phenotyping Consortium), and ZHX3 may
be useful as an early osteogenic differentiation marker39.
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PPARγ (peroxisome proliferator- activated receptor gamma) and LDL cholesterol (Figure
4i): PPARγ regulates fatty acid storage and glucose metabolism. The genes activated by PPARγ
stimulate lipid uptake and adipogenesis by fat cells. PPARγ plays a regulatory role in the first
steps of the reverse-cholesterol-transport pathway through the activation of ABCA1-mediated
cholesterol efflux in human macrophages.40

POLDIP2 (polymerase delta-interacting protein 2) and LDL cholesterol (Figure 4j): Poldip2
was shown to increase Nox4 enzymatic activity by 3-fold and to positively regulates basal re-
active oxygen species production in vascular smooth muscle cells41. The authors suggest that
Poldip2 may be a novel therapeutic target for vascular pathologies with a significant vascular
smooth muscle cell migratory component, such as restenosis and atherosclerosis.

BIGKnock can prioritize putative effector genes in Backman et al.30. We use data on pu-
tative effector genes identified in a recent study by Backman et al.30 using rare-variant exome-
wide association studies in 454,787 participants in the UK Biobank study. Specifically, Back-
man et al. first identify common variants independently associated with each trait (i.e., GWAS
sentinel variant), which are then included as additional covariates for Burden association tests
with rare variants focusing on pLOF (including stop-gain, frameshift, stop-loss, start-loss and
essential splice variants) and deleterious missense variants with a minor allele frequency (MAF)
of up to 1%. Overall, 168 significant genes adjusting for GWAS signals (with Burden p-values
≤ 2.18 × 10−11) and that are nearest to the GWAS sentinel variant are defined as the likely
effector genes30. Here we consider the 120 effector gene-trait associations corresponding to
the quantitative traits considered in our analyses (Supplemental Table 27). We identify 116 ef-
fector gene associations that are significant under GeneScan3D with 106 (91%) also significant
under BIGKnock. Note that this is a significantly higher retention rate for effector gene associa-
tions than the expected rate (63%, see above) based on all genes significant under GeneScan3D
(two-sided p= 6.4×10−10), and supports the claim that BIGKnock retains the truly causal genes
but removes many of the false associations due to LD. Several examples include ASGR1 and
SH2B3 and cholesterol, and APOB and Apolipoprotein A. ANGPTL4 was also prioritized by
BIGKnock for cholesterol, and identified as effector gene for HDL cholesterol (Table S4 and
Figure S8).

In addition, Backman et al.30 identified 564 genes associated with traits using rare variant
association tests focusing as above on pLOF and deleterious missense variants with a MAF of
up to 1%. Among 134 genes that correspond to the quantitative traits considered in our analyses
(Supplemental Table 28), we identify 111 GeneScan3D significant genes with 99 (89%) being
significant under BIGKnock. Again, this is a significantly higher proportion than expected
based on all GeneScan3D associations (two-sided p=2.6 × 10−8). Several example include
DBH associated with BP-Diastolic, gene SLC5A3 associated with Cystatin C and gene POLE
associated with MRV.

Another recent study using whole-exome sequencing data on 200,337 UK Biobank par-
ticipants and focused on cardiometabolic traits has also performed exome-wide rare variant
analyses with rare (pLOF and deleterious missense) variants42. Restricting to the traits in-
cluded in our analyses (BMI, HDL, LDL and IGF-1) and the 19 gene-trait associations with
q-value< 0.05 in42, we find that 17 of them are significant in GeneScan3D, of which 16 (94%)
are significant in BIGKnock (two-sided p= 1.7 × 10−2).
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Effector BIGKnock Genes. We further restrict the list of BIGKnock significant genes by
identifying those that coincide with the closest gene (among all genes) to the top significant
GWAS SNP at a locus. Among 6,195 significant loci across 20 quantitative traits, we identify
3,839 (62%) such loci (Supplemental Table 29). Effector BIGKnock genes have significantly
higher pLI scores relative to GeneScan3D significant genes as well as genes that are never se-
lected by BIGKnock across a variety of binary and quantitative traits considered here (Figure
S9). Furthermore, for significant loci that do not contain effector BIGKnock genes, an addi-
tional 877 (14%) loci have only one gene significant under BIGKnock. Therefore, using the
BIGKnock significant genes we can prioritize one potentially causal gene for 76% of the loci.

Mouse phenotype enrichment analyses. Using ToppFun28 we have tested whether the effec-
tor BIGKnock genes are enriched in sets of genes associated with mouse phenotypes (Figures
S10-S11). Effector BIGKnock genes are enriched in gene sets corresponding to relevant mouse
phenotypes. For example, among the most significantly enriched phenotypes were abnormal
systemic arterial blood pressure for BP-diastolic, abnormal erythroid progenitor cell morphol-
ogy for RDW, abnormal calcium level for Calcium, abnormal circulating LDL cholesterol level
for LDL cholesterol, decreased circulating HDL cholesterol level for HDL cholesterol, abnor-
mal circulating hormone level and abnormal postnatal growth for IGF-1.

Comparisons with other locus-to-gene linking methods on gold-standard gene sets. We
have compared the accuracy of effector BIGKnock genes to other methods to prioritize putative
causal genes at GWAS loci, including the closest gene footprint to the top GWAS SNP as well
as more recent methods such as combined SNP-to-gene (cS2G)6 and Locus-to-gene (L2G)7,
using two gold-standard gene sets from the literature.

Specifically, we first consider 36 expert-curated genes with high confidence7, as well as
120 effector genes identified using rare pLOF variants in30. For our analyses we focus on
138 gene-trait associations overlapping loci that are significant using the BIGKnock test. As
control genes we consider the remaining genes at those loci for a total of 2,013 genes. For
cS2G, we focus on a subset of 84 gold-standard genes and 1,303 control genes for 10 traits
analyzed both here and in6. We compare methods in terms of precision and recall, where
precision for a method is computed as the fraction of positive genes among the genes prioritized
by that method, and recall is computed as the fraction of positive genes prioritized by that
method (Figure 5a). BIGKnock effector genes have the highest precision among all methods
considered, i.e. 0.67; the recall is also high (0.77). By comparison, cS2G achieves a higher
recall (0.9 for cS2G score > 0.5) but at a greatly reduced precision (0.3). Closest gene footprint
has similar recall (0.83) as effector genes, but reduced precision (0.59). L2G has lower recall
(0.7) and precision (0.56) relative to effector genes. Furthermore, combining BIGKnock with
other scores (such as cS2G and L2G) generally leads to improved precision over the individual
cS2G and L2G scores (Supplemental Table 30).

We consider a second set of stringently defined positive genes, including Mendelian disease
genes and drug targets as described in Forgetta et al.31. Specifically, we consider 199 genes that
corresponded to traits Type 2 diabetes, BP-Systolic, BP-Diastolic, LDL-Cholesterol, Calcium,
Direct bilirubin and RDW considered in our analyses. We focus on 62 genes residing at BIG-
Knock significant loci. As control genes we consider all genes at these 1Mb loci for a total of
973 genes. For cS2G, we focus on a subset of 55 gold-standard genes and 831 control genes
for 5 traits analyzed both here and in6 (Calcium and Direct bilirubin do not have cS2G gene
scores). BIGKnock effector genes have the highest precision among all individual methods
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considered, i.e. 0.41; the recall is also relatively high (Figure 5b, 0.42). By comparison, cS2G
achieves a higher recall (0.53) but at a greatly reduced precision (0.2). Closest gene footprint
has higher recall (0.5), but slightly lower precision (0.39). L2G has slightly lower recall (0.4)
and precision (0.39). Furthermore, combining BIGKnock with other scores (such as cS2G and
L2G) generally leads to improved precision over the individual methods (Supplemental Table
31).

Finally, we have compared BIGKnock with L2G and cS2G for several known causal genes,
including ASGR1-Cholesterol, ANGPTL4-Cholesterol and ALDH2-CAD, as previously dis-
cussed (Figure S12). For ASGR1, all three methods identify ASGR1 with high scores; however,
cS2G identifies four such genes at the locus. For ANGPTL4, only BIGKnock and cS2G iden-
tify it among high scoring genes. However cS2G identifies three other genes with similar high
score at this locus. For ALDH2, only BIGKnock and L2G identify it among the highest scoring
gene; however L2G identifies five such genes at this locus. Results for all putative causal genes
and loci highlighted before are similar (Figures S13-S14).

Characteristics of prioritized genes. We have focused here on prioritizing genes at ∼ 80%
loci that have either effector genes, i.e. the gene closest to the most significant GWAS SNP is
significant using the BIGKnock test, or loci where BIGKnock prioritizes only one gene. We
show that these genes have certain interesting properties: (1) they have significantly longer CDS
(Coding DNA Sequence), and (2) higher LOF mutation rates than genes that are not significant
using the BIGKnock test (Figure S15). Note that these properties are true more generally for
BIGKnock significant genes relative to genes that are not significant using the BIGKnock test
at effector loci, but not at non-effector loci. However focusing on those non-effector loci where
BIGKnock prioritizes only one gene we find that the prioritized genes have significantly longer
CDS and higher LOF mutation rates than non-significant genes. Our results are consistent with
previous studies that showed that highly conserved genes (including putative disease causing
genes) have, rather counterintuitively, higher mutation rates32. Specifically, Michaelson et al.
showed that hypermutability is correlated with highly conserved sequence using whole genome
sequencing data. Although the exact mechanisms underlying this relationship are not known,
one possible explanation is that these genes, on account of their essential nature, are highly
transcribed and consequently more susceptible to transcription-mediated mutagenic events.

Discussion
A main limitation of gene-based tests when incorporating putative regulatory variants, such
as eQTLs or variants residing in regulatory elements such as promoters and enhancers, is the
potentially high false positive rate due to LD confounding and co-regulation. We propose here
a scalable gene-based test that reduces the LD confounding effect and can prioritize putative
causal genes at GWAS significant loci. The proposed test goes beyond state-of-the-art gene-
based tests by allowing integration of a wider class of regulatory variants than eQTLs, and by
performing conditional analysis, thereby adjusting for LD, at genome-wide level.

We show that BIGKnock reduces the number of significant associations at a locus relative
to conventional tests despite a more liberal FDR adjustment, and retains with high probability
(> 90%) the likely causal genes as shown using the effector and rare variant association results
in30. Furthermore, between 62%−67% of loci with BIGKnock significant genes have the clos-
est gene to the top GWAS SNP at the locus being significant under BIGKnock (Supplemental
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Tables 5 and 29). In addition to such effector BIGKnock genes, BIGKnock also prioritizes
genes that are not necessarily nearest to the top GWAS SNP. Overall, approximately 80% of
loci have one single gene prioritized based on significant genes detected by BIGKnock.

BIGKnock is complementary to other locus-to-gene strategies in the literature that are based
on supervised machine learning models and fine-mapping results. BIGKnock prioritizes causal
genes via a formal gene-based test that limits confounding due to LD relative to existing tests
in the literature. Therefore BIGKnock is less functionally informed relative to existing locus-
to-gene strategies, and therefore less affected by potential biases in existing training datasets.
Combining significant genes in BIGKnock with other functionally informed causal gene prior-
itization methods is a promising avenue for increasing performance. We show that relative to
other causal gene prioritization approaches, the proposed method has improved precision while
achieving high recall, which is important in this setting due to costly follow-up functional stud-
ies. Note that for ∼ 20% of the loci we are not providing a single prioritized putative causal
gene; such loci include those with multiple potentially causal genes, for example loci with co-
regulation where a causal enhancer may regulate multiple genes, which further complicates the
prioritization task.

Although it is a challenging task to prove that the prioritized genes from any method are
indeed causal, we show multiple lines of evidence from mouse phenotype data, curated gold-
standard gene lists, mutation rate data and supporting literature that BIGKnock is helpful in
identifying putative causal genes including several examples with known causal links in the lit-
erature such as ASGR1 and ANGPTL4 and cholesterol, and ALDH2 and coronary artery disease.
These prioritized genes can serve as good candidates for further functional studies.

We have implemented BIGKnock in a computationally efficient R package that can be
applied generally to the analysis of biobank scale data.

Methods

Overview of GeneScan3D and knockoff-based extensions
We first describe the details of a gene-based test (GeneScan3D) that incorporates noncoding
variants using long-range chromatin data5. Assume there are n samples with p variants in a
gene plus buffer region as well as the corresponding regulatory elements. For i-th individual,
we denote Yi as the phenotype, GGGi as the p × 1 genotype vector and XXXi as the d × 1 covariate
vector including an intercept. We are interested in testing for association between the phenotype
and the p variants, while adjusting for covariates. For unrelated individuals, we consider the
generalized linear model (GLM):

g(µi) = XXXT
i ααα + GGGT

i βββ,

where µi is the conditional mean of phenotype Yi conditional on covariates, ααα is a d × 1 vector
of regression coefficients for d covariates (including an intercept) and βββ is a p × 1 vector of
regression coefficients for p variants.

We scan the gene plus buffer region (± 5 Kb) using L 1D windows with sizes 1-5-10 Kb,
then construct 3D windows by adding one enhancer to each 1D window. For each gene, we
focus on GeneHancer and ABC enhancers46,47 that are outside the gene plus buffer region,
containing at least 2 variants and with length between 0.5 Kb to 10 Kb. In the ABC model47,
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we only incorporate predicted ABC enhancers with ABC scores ≥ 0.02 for 5 human cell types
and tissues, i.e., K562, GM12878, NCCIT, LNCAP, hepatocytes.

Assuming R enhancers for a gene, then we construct L × R 3D windows. For each 3D
window, we conduct (i) Burden and SKAT tests for common variants (MAF ≥ 0.01) with
weights one; (ii) Burden and SKAT tests for rare variants (MAF < 0.01 and MAC ≥ 10) with
weights Beta(MAF j; 1, 25); (iii) Burden test for aggregation of ultra-rare variant (MAC< 10)
and (iv) Single variant score tests for common and rare variants with MAC ≥ 10. The Cauchy
combination method16 is applied to combine p-values from the above tests within each 3D
window. Finally, we compute the GeneScan3D p-value by combining L × R 3D window’s
p-values using Cauchy combination method.

Knockoffs-based extension. By incorporating distal regulatory elements, gene-based tests
can leverage noncoding genetic variation to improve power of gene-based tests. However, due
to linkage disequilibrium (LD) and/or co-regulation of multiple genes by the same regulatory
element, many of the significant genes may be false positives. Hence, the multiple knockoff

framework is implemented to attenuate the confounding effect of LD and prioritize putative
causal genes with controlled false discovery rate (FDR). Note that co-regulation is still a prob-
lem and cannot be addressed by the proposed approach.

To generate multiple knockoff genotypes, we consider the general sequential conditional
independent tuples approach14,48,49. Specifically, we sequentially sample G̃1

j , . . . , G̃
M
j indepen-

dently from L(G j| G− j, G̃1
1... j−1, . . . , G̃

M
1... j−1), where M is the number of knockoffs. Note that we

can leverage the approximate block structure for LD in the genome to only include variants in a
neighborhood of the current variant j. The knockoff genotypes are exchangeable with the orig-
inal genotypes G, and lead to guaranteed FDR control. With the assumption that genotypes can
be approximately modeled by a multivariate normal distribution, we consider a computational
efficient auto-regressive model to estimate:

Ĝ j = α̂ +
∑
k, j

β̂kGk +

M∑
m=1

∑
k≤ j−1

γ̂m
k G̃m

k . (1)

By calculating the residual ε̂ j = G j − Ĝ j and its M permutation, the knockoff features G̃ j
m

=

Ĝ j + ε̂ j
∗m are obtained.

After generating multiple knockoffs, we conduct the proposed gene-based test on the orig-
inal genotype and knockoff genotypes for each gene. The feature statistic for each gene G is
then defined as

WG = (TG −median T m
G̃ )ITG≥max1≤m≤M T m

G̃
,

where TG = − log10(pG) and T m
G̃

= − log10(pm
G̃

) are the importance score for gene G in original
genotype and knockoff cohort, and I is an indicator function. We compute the threshold τ for
FDR control at a certain level q:

τ = min
{

t > 0 :
1
M + 1

M #{G : κG ≥ 1, τG ≥ t}
#{G : κG = 0, τG ≥ t}

≤ q
}
,

where κG = argmax0≤m≤MT m
G̃

(note that T 0
G̃

= TG) and τG = TG −median T m
G̃

. Finally, we select
as significant those genes with WG ≥ τ (Ma et al.5).
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q-value. We additionally compute the corresponding q-value for a gene, qG. The q-value
already incorporates correction for multiple testing, and is defined as the minimum FDR that
can be attained when all tests showing evidence against the null hypothesis at least as strong
as the current one are declared as significant. In particular, we define the q-value for a gene G
with feature statistic WG > 0 as

qG = min
t≤WG

1
M + 1

M #{G : κG ≥ 1, τG ≥ t}
#{G : κG = 0, τG ≥ t}

,

where
1
M + 1

M #{G:κG≥1,τG≥t}
#{G:κG=0,τG≥t} is an estimate of the proportion of false discoveries for multiple knock-

offs if we were to select all genes with κG = 0, τG ≥ t (with t > 0). For genes with feature
statistic WG = 0 (i.e., κG ≥ 1), we set qG = 1 and never select those genes.

Shrinkage leveraging algorithm for knockoffs generation
The computational cost of knockoff generation is substantial for biobank-scale data with hun-
dreds of thousands of samples and millions of genetic variants. To reduce the computational
time, we optimize the knockoff generation using the shrinkage leveraging (SL) algorithm15.

To filter out highly-correlated variants in the knockoff generation, we apply hierarchical
clustering. We compute correlations for all pairs of variants in regions containing the gene plus
buffer region (±100 Kb neighborhood) and enhancers (±50 Kb neighborhood). Variants with
correlation ≥0.75 are clustered together and one representative variant is selected for each clus-
ter. Specifically, if a cluster contains variants inside the gene plus buffer/enhancer region, we
randomly select one representative variant inside the gene plus buffer/enhancer region. Other-
wise, we randomly select one variant as representative.

We draw r = 10n1/3 log n subsamples from n samples with importance sampling probabili-
ties:

πi = 0.5πLev
i + 0.5πUnif

i , i = 1, . . . , n,

where πUnif
i = 1/n follows uniform distribution and πLev

i =
∑p

j=1 U2
i j
/∑n

i=1
∑p

j=1 U2
i j, U is the

orthogonal singular vectors of (1,G, G̃). We then form a weighted linear regression model (1)
with weights wi = 1/(r

√
πi) for r subsamples and compute the least square estimates:

(α̂SL, β̂ββ
SL
, γ̂γγSL) = [cov(1,GSL, G̃SL)]−1(1,GSL, G̃SL)TGSL

j ,

where (1,GSL, G̃SL) are the weighted genotypes and knockoffs for r shrinkage leveraging sub-
sampling from (1,G, G̃) and GSL

j corresponds to r sampling rows of G j. The inverse term
[cov(1,GSL, G̃SL)]−1 can be approximated by spectral decomposition15. Finally, we generate
the knockoff features for n samples using the least square estimates (α̂SL, β̂ββ

SL
, γ̂γγSL). In sum-

mary, we select a subset of “informative” samples to estimate intermediate parameters used
for knockoff generation and thus improve the computational efficiency while maintaining the
statistical performance (i.e., FDR control and power) of the knockoff framework15.

To efficiently store the knockoff genotypes, we use the Genomic Data Structure compressed
files based on gdsfmt R package15,51.
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Generalized linear mixed effects model for related samples
For very large sample sizes as in biobanks, we account for sample relatedness using the gener-
alized linear mixed-effects model (GLMM). Specifically, we assume:

g(µi) = XXXiααα + GGGiβββ + bi,

where the random effect bbb = (b1, . . . bn)T ∼ MVN(000, τψψψ) and ψψψ is the n × n genetic relationship
matrix (GRM).

Following SAIGE-Gene13, we consider three steps for the UK Biobank data. In step 1 we
construct the sparse GRM ψψψS with cutoff 0.125 for n = 405, 296 British samples using 106,256
pruned markers. In step 2 we fit the null GLMMs for binary and quantitative traits. Both
steps are using the existing software implementation in SAIGE/SAIGE-Gene12,13. In step 3 we
perform the gene-based test for each gene using the fitted values µ̂ and estimated variance ratio
r̂ obtained in step 2. Note that due to the light sample relatedness of UK Biobank data, one
can use the sparse GRM to fit null GLMM and estimate variance ratio, which is much more
computationally efficient than using the dense GRM13.

To fit the GLMM under the null hypothesis H0 : βββ = 000 in a computationally efficient way,
SAIGE uses the preconditioned conjugate gradient method52 that allows calculating the log
quasi-likelihood and average information without take the inverse of n × n matrix. Specif-
ically, SAIGE maximizes the log quasi-likelihood using the average information restricted
maximum likelihood algorithm (AI-REML)53 to iteratively estimate (α̂αα, b̂bb, φ̂, τ̂) (note that the
dispersion parameter φ̂ = 1 for binary traits). Denote Σ̂ = Ŵ−1 + τ̂ψψψ, where Ŵ = φ̂−1I
for quantitative traits and Ŵ = diag(µ̂1(1 − µ̂1), . . . µ̂n(1 − µ̂n)) for binary traits. Denote the
covariate-adjusted genotype matrix as G̃ = G − X(XT WX)−1XT WG and the projection matrix
P̂ = Σ̂−1 − Σ̂−1X(XT Σ̂−1X)−1XT Σ̂−1.

After fitting the null GLMM, we obtain the variance ratio r̂ = g̃ggT P̂g̃gg/g̃ggT P̂S g̃gg where g̃gg is
the covariate-adjusted single variant genotype vector, P̂S = Σ̂−1

S − Σ̂−1
S X(XT Σ̂−1

S X)−1XT Σ̂−1
S and

Σ̂S = Ŵ−1 + τ̂ψψψS . The variance ratio, which is estimated using a set of 30 randomly selected
variants and shown to be approximately constant for all variants12, is used to calibrate the score
test statistics and variance-covariance matrix of gene-based tests for GLMM.

For the single variant score test in GeneScan3D, S j =
∑n

i=1 G̃i j(Yi − µ̂i)/φ̂. We consider the
variance-adjusted test statistic:

T adj
j =

S j√
g̃ggT

j P̂g̃gg j

,

where g̃gg j is the covariate-adjusted genotype vector of j-th variant. The approximation of
var(S j) = g̃ggT

j P̂g̃gg j = r̂g̃ggT
j P̂S g̃gg j ≈ r̂g̃ggT

j Σ̂−1
S g̃gg j and the score test p-value can be computed based

on S 2
j
/
var(S j) ∼ χ2

df=1.

The Burden and SKAT test statistics in GeneScan3D can be written as:

QBurden =

( p∑
j=1

w jS j

)2

, QSKAT =

p∑
j=1

w2
jS

2
j ,

where w j is the weight of each variant. The joint null distribution of SSS = (S 1, . . . S p) follows
a multivariate normal distribution with mean 000 and covariance matrix G̃T P̂G̃ = GT Σ̂−1G −
(GT Σ̂−1X)(XT Σ̂−1X)−1(XT Σ̂−1G) = GT P̂G. We adjust the covariance matrix for GLMM as K =
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r̂GT P̂S G. Since both Σ̂ and G are sparse matrices, K can be calculated by using the sparse LU
decomposition (solve function in R) for each 3D window. Then the Burden p-value is obtained
from a scaled chi-square distribution λ̃Bχ

2
1, where λ̃B = (w1, . . . ,wp)K(w1, . . . ,wp)T . The SKAT

p-value is obtained from a mixture of chi-square distribution
∑p

j=1 λ̃S jχ
2
1 using Davies method54,

where λ̃S j are the eigenvalues of diag(w1, . . . ,wp)Kdiag(w1, . . . ,wp).

Saddlepoint approximation for gene-based test
One challenge for binary traits in biobanks is the possibility of highly unbalanced case:control
ratios. In such cases we implement the saddlepoint approximation (SPA) to recalibrate the
score test statistics for gene-based testing55,56. Specifically, under case-control imbalance, the
distribution of score statistics SSS = (S 1, . . . S p) is skewed, in which case one needs to adjust the
covariance matrix K using SPA. As in13,56, we first compute the p-values of single-variant score
test by SPA p̃ j, then the SPA-adjusted variance ṽ j = S 2

j/Q(1− p̃ j), where Q is the quantile func-

tion of χ2
1. The adjusted covariance matrix K̃ =

√
ṼK
√

Ṽ , where Ṽ = diag(ṽ1/v̂1, . . . , ṽp/v̂p)
and v̂ j = K[ j, j] is the estimated variance of S j. The adjusted covariance matrix K̃ is used to
compute the SPA gene-based p-values of SKAT and Burden.

UK Biobank data analyses
The UK Biobank data contains data on 488,377 individuals. All individuals underwent genome-
wide genotyping with UK Biobank Axiom array from Affymetrix and UK BiLEVE Axiom
arrays (∼ 825,000 markers). Genotype imputation was carried out using a 1000 Genomes ref-
erence panel with IMPUTE4 software11. We apply several quality-control filters, keeping only
variants with MAF≥ 0.01 imputed with high confidence (R2 ≥ 0.8). This resulted in 9,233,477
imputed variants that were available for the analyses. We restrict our analyses to 405,296 par-
ticipants (218,068 females and 187,228 males) with British ancestry. We adjust for covariates
including sex, age, age2, age × sex and 5 principal components. For principal component anal-
ysis, we used a set of common genotypes (MAF> 0.01) pruned using the following command
in PLINK –indep-pairwise 500 50 0.05 with 35,226 pruned variants using FlashPCA58. A total
of 17,753 genes with gene length < 500 kb and with at least 2 variants in the gene plus buffer
region were tested. The details on the traits analyzed are given in Table S1.

We use 106,256 pruned genotyped markers to construct the sparse GRM with relatedness
coefficient cutoff ≥ 0.125, then fit null GLMMs for several binary and quantitative traits using
SAIGE12,13. The 106,256 markers were pruned from the UK Biobank genotype data using
PLINK with pairwise LD threshold r2 ≤ 0.05, MAF≥ 0.01, 95% genotyping rate, window size
of 500 bp and step size 50 bp. Based on the sparse GRM, there are 21,397 related pairs among
the 405,296 participants, including 8 duplicate twins (kinship coefficient >0.354), 8,275 1st-
degree relatives (kinship coefficient between 0.177 to 0.354) and 13,114 2nd-degree relatives
(kinship coefficient ≤ 0.177)57.

Enrichment of BIGKnock associations among genes closest to lead GWAS
SNPs
We consider the significant loci for different UK Biobank binary and quantitative traits. We
use the SAIGE summary statistics from the existing UK Biobank studies for binary traits
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(https://pheweb.org/UKB-SAIGE/) and the GWAS summary statistics for UK Biobank quanti-
tative traits were obtained from the Neale Lab (https://www.nealelab.is/ukbiobank). For each
significant locus, all genes within the locus are ranked according to the distance to the lead
GWAS variant. The enrichment is then defined as the ratio of the proportion of BIGKnock
significant genes that are ranked k-th and the proportion of the remaining genes at the locus
that are ranked k-th, where k = 1, . . . , 10.

Locus-to-gene scores
L2G. We selected GWAS analyses from the OpenTarget Genetics Portal7 to match the 24
traits tested by BIGKnock. For the four binary traits we use summary statistics from SAIGE12.
For ten quantitative traits (Apolipoprotein A, Calcium, Cholesterol, Cystatin C, Direct biliru-
bin, eGFR, Glycated hemoglobin HbA1c, HDL cholesterol, IGF-1, and LDL direct) we use
summary statistics from59. The remaining ten quantitative traits are part of the Neale lab UKB
GWAS round 2 results. OpenTarget used the “locus-to-gene” (L2G) model to prioritize likely
causal genes at each GWAS locus detected by these studies. An L2G score is derived from gene
distance, molecular QTL colocalization, chromatin interaction, and pathogenicity to quantify
the causal probability of a gene. We downloaded the L2G scores and selected the gene with the
highest L2G score for each GWAS locus for the 24 traits.

cS2G. The combined SNP-to-gene strategy (cS2G)6 includes seven SNP-to-gene (S2G) link-
ing strategies such as Exon, Promoter, two fine-mapped cis-eQTL strategies, EpiMap enhancer-
gene linking, Activity-By-Contact, and Cicero. A cS2G score is computed for a SNP and a gene
as a linear combination of linking scores from different S2G strategies, and the optimal weights
are estimated to maximize the recall under a constraint of precision ≥ 0.75 with non-trait-
specific training critical gene set. cS2G was applied to fine-mapping results of 49 UK Biobank
diseases and traits; a cS2G score > 0.5 was used to identify high-confidence SNP-gene-disease
triplets. In our analyses, we considered the cS2G predicted target genes of fine-mapping re-
sults for ten UKBB traits: CAD, Cholesterol, HDL cholesterol, LDL cholesterol, HbA1c, MPV,
Platelet count, RDW, BMI and BP-Diastolic, all with cS2G scores > 0.5.

Gold-standard genes. For 4 binary traits and 20 quantitative traits considered in our anal-
yses, we identified 36 expert-curated gold-standard genes with high confidence for CAD,
Cholesterol, HDL cholesterol and LDL cholesterol7. 120 effector genes are identified in30 for
18 quantitative traits (Cholesterol, HDL cholesterol, LDL cholesterol, HbA1c, MPV, Platelet
count, RDW, BMI, BP-Diastolic, Apolipoprotein, Calcium, Direct bilirubin, MRV, MSCV,
Reticulocyte count, IGF 1, Neutrophil count and Cystatin C). Among 36 gold-standard genes,
there are 33 GeneScan3D significant genes, and among them, 32 are BIGKnock significant
(with retention rate 97%). Among 120 Backman effector genes, there are 116 GeneScan3D
significant genes, and among them, 106 are BIGKnock significant (with retention rate 91.4%).

Positive genes in Forgetta et al.31. The positive genes for 12 traits considered in Forgetta et
al.31 were selected based on Mendelian disease genes or positive control drug targets. There are
in total 494 positive genes across 12 diseases and traits, with 381 known to cause Mendelian
forms of the disease and 113 drug targets. We focus on 199 gene-trait associations for 7 traits
considered in our paper (Type 2 diabetes, BP-Systolic, BP-Diastolic, LDL-Cholesterol, Cal-
cium, Direct bilirubin and Red blood cell distribution width).
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Genome build
All genomic coordinates are given in GRCh37/hg19.

Data Availability
The manuscript used UK Biobank data available at https://biobank.ndph.ox.ac.uk/showcase/

(under UKBB project ID number 41849), summary statistics from SAIGE:
ftp://share.sph.umich.edu/UKBB SAIGE HRC/, Neale lab UKB GWAS round 2 results:
http://www.nealelab.is/uk-biobank/, gold-standard genes: https://github.com/opentargets/genetics-
gold-standards.

Code Availability
We have implemented BIGKnock in a computationally efficient R package that can be applied
generally to the analysis of other large biobank datasets. The package can be accessed at:
https://github.com/Iuliana-Ionita-Laza/BIGKnock. Results for additional UK Biobank traits
will be made available at the same location.
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Figure 1: Applications to UK Biobank binary traits. a-d, Manhattan plots for BIGKnock,
Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneScan3D), and Scat-
ter plot of the number of significant genes per locus between conventional GeneScan3D and
BIGKnock are shown for (a) Hypertension, (b) Coronary artery disease , (c) Asthma, and (d)
Type 2 diabetes. The dashed lines in the left and middle panels show the significance thresh-
olds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR; for W
statistic).

21



Figure 2: Enrichment of BIGKnock significant genes among genes closest to the lead
GWAS variant at BIGKnock significant loci. Enrichment of BIGKnock significant genes
for (a) the five combined binary traits and each binary trait separately: Hypertension, Coronary
artery disease (CAD), Asthma and Type 2 diabetes (T2D); and (b) the twenty combined quan-
titative traits and each quantitative trait separately: eGFR, BMI, BP-Diastolic, BP-Systolic,
Cystatin C, Platelet count, MPV, Apolipoprotein A, HDL cholesterol, Cholesterol, HbA1c,
MRV, MSCV, RDW, Neutrophil count, Reticulocyte count, Calcium, IGF-1, LDL direct and
Direct bilirubin.
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Figure 3: ALDH2-CAD and ASGR1-Cholesterol loci. (a) Scatter plot of W knockoff statis-
tics (BIGKnock) vs. −log10(p value) (GeneScan3D) for the ALDH2-CAD locus, (b) Scatter
plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneScan3D) for the ASGR1-
Cholesterol locus, (c) GTEx gene expression across tissues for ALDH2, and (d) GTEx gene
expression across tissues for ASGR1.
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Figure 4: Putative causal genes at selected loci for UK Biobank binary traits and quanti-
tative traits. Scatter plots of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneS-
can3D) for selected loci of (a) Asthma, (b-c) Type 2 diabetes (T2D), (d-e) BP-Diastolic, (f)
Cholesterol, (g) Neutrophil count, (h) Calcium and (i-j) LDL cholesterol. Loci are named ac-
cording to the most significant gene in BIGKnock. The dashed lines show the significance
thresholds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR;
for W statistic).
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Figure 5: Comparisons of different locus-to-gene prioritization methods. Precision vs.
Recall is shown for several representative methods including closest footprint, cS2G, L2G,
BIGKnock Effector genes (BK-Effector), BIGKnock Effector genes and genes at BIGKnock
significant loci with only one significant gene (BK-Effector+1), as well as combination of
BIGKnock and cS2G (BK-cS2G) and L2G (BK-L2G). (a) Gold standard and Backman effector
dataset including 138 positive genes at BIGKnock significant loci. The negative genes include
2,013 genes located within the 1Mb loci containing the 138 positive genes; (b) Forgetta et al.
gene set including 62 positive genes at BIGKnock significant loci. The negative genes include
973 genes located at 1Mb loci containing the 62 positive genes.
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Table 1: Selected loci for binary and quantitative traits. The number of significant genes per
locus for GeneScan3D, BIGKnock, and BIGKnock significant genes are shown. The putative
causal gene is shown in boldface font.

BIGKnock locus-trait position (hg19) # GeneScan3D # BIGKnock BIGKnock genes

BRAP-CAD 12:
111,986,818-
112,986,818

11 2 ALDH2,BRAP

UBE2Z-Asthma 17:
46,948,346-
47,948,346

11 2 NGFR,UBE2Z

AGPAT1-T2D 6:
31,618,085-
32,618,085

24 1 AGPAT1

MARCHF5-T2D 10:
93,966,910-
94,966,910

5 1 MARCHF5

ASGR1-Cholesterol 17:
6,569,412-
7,569,412

43 2 ASGR1,CD68

SLC39A8-BP-Diastolic 4:
102,688,709-
103,688,709

3 1 SLC39A8

DBH-BP-Diastolic 9:
136,001,756-
137,001,756

6 3 ADAMTS13,DBH,SARDH

ANGPTL4-Cholesterol 19:
7,951,937-
8,951,937

9 1 ANGPTL4

RAB11A-Neutrophil count 15:
65,544,465-
66,544,465

8 1 RAB11A

ZHX3-Calcium 20:
39,455,078-
40,455,078

6 1 ZHX3

PPARG-LDL cholesterol 3:
11,739,931-
12,739,931

6 1 PPARG

POLDIP2-LDL cholesterol 17:
26,194,861-
27,194,861

22 3 POLDIP2,SLC13A2,TMEM199
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Supplemental Material

Figure S1: Enrichment of BIGKnock significant genes among genes closest to the lead
GWAS variant at shared loci between BIGKnock and GeneScan3D. Enrichment of BIG-
Knock significant genes for (a) the combined five UK Biobank binary traits and each binary
trait separately: Hypertension, Coronary artery disease (CAD), Asthma, Cataract and Type 2
diabetes (T2D); and (b) the combined twenty UK Biobank quantitative traits and each quan-
titative trait separately: eGFR, BMI, BP-Diastolic, BP-Systolic, Cystatin C, Platelet count,
MPV, Apolipoprotein A, HDL cholesterol, Cholesterol, HbA1c, MRV, MSCV, RDW, Neu-
trophil count, Reticulocyte count, Calcium, IGF-1, LDL direct and Direct bilirubin.
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Figure S2: Mouse phenotype enrichment analyses for four binary traits in ToppFun. The
top 10 mouse phenotypes in terms of q-value are shown for each trait. The number of effector
BIGKnock genes used in these analyses is indicated for each trait.
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Figure S3: Applications to five UK Biobank quantitative traits. a-e, Manhattan plots for
BIGKnock, Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneS-
can3D), and Scatter plot of the number of significant genes per locus between conventional
GeneScan3D and BIGKnock are shown for (a) eGFR, (b) BMI, (c) BP-Diastolic, (d) BP-
Systolic, and (e) Cystatin C. The dashed lines in the left and middle panels show the sig-
nificance thresholds defined by Bonferroni correction (for p-values) and by false discovery rate
(FDR; for W statistic).
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Figure S4: Applications to five UK Biobank quantitative traits (2). a-e, Manhattan plots
for BIGKnock, Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneS-
can3D), and Scatter plot of the number of significant genes per locus between conventional
GeneScan3D and BIGKnock are shown for (a) Platelet count, (b) MPV, (c) Apolipoprotein
A, (d) HDL cholesterol, and (e) Cholesterol. The dashed lines in the left and middle panels
show the significance thresholds defined by Bonferroni correction (for p-values) and by false
discovery rate (FDR; for W statistic).
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Figure S5: Applications to five UK Biobank quantitative traits (3). a-e, Manhattan plots
for BIGKnock, Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneS-
can3D), and Scatter plot of the number of significant genes per locus between conventional
GeneScan3D and BIGKnock are shown for (a) HbA1c, (b) MRV, (c) MSCV, (d) RDW, and (e)
Neutrophil count. The dashed lines in the left and middle panels show the significance thresh-
olds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR; for W
statistic).
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Figure S6: Applications to five UK Biobank quantitative traits (4). a-e, Manhattan plots
for BIGKnock, Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneS-
can3D), and Scatter plot of the number of significant genes per locus between conventional
GeneScan3D and BIGKnock are shown for (a) Reticulocyte count, (b) Calcium, (c) IGF-1, (d)
LDL direct, and (e) Direct bilirubin. The dashed lines in the left and middle panels show the
significance thresholds defined by Bonferroni correction (for p-values) and by false discovery
rate (FDR; for W statistic).
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Figure S7: Visualization of gene-enhancer interactions of significant genes at the ASGR1-
Cholesterol locus. Gene-enhancer interactions for 43 GeneScan3D significant genes at the
ASGR1-Cholesterol locus, with the two BIGKnock significant genes (ASGR1 and CD68)
shown in red. The interaction between BIGKnock significant gene CD68 and ABC enhancer
chr17:7,490,605-7,491,625 is shown in red; other 35 gene-enhancer links are shown in blue
(See Supplementary Table 26).
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Figure S8: Selected loci that pinpoint effector genes identified by Backman et al.30 Scatter
plots of W knockoff statistics (BIGKnock) vs. −log10(p value) (GeneScan3D) for 4 selected
loci that pinpoint effector genes identified by Backman et al.30. The effector genes are labeled
in red. The dashed lines show the significance thresholds defined by Bonferroni correction (for
p-values) and by false discovery rate (FDR; for W statistic).
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Figure S9: pLI for effector BIGKnock genes, GeneScan3D significant genes and Non-
knockoff genes. Significant genes are aggregated across four binary traits and twenty quan-
titative traits. Non-knockoff genes are not significant under BIGKnock for any of the bi-
nary/quantitative traits considered. p-values are from a nonparametric Kolmogorov-Smirnov
test comparing pLI scores for effector BIGKnock genes vs. GeneScan3D significant genes,
and GeneScan3D significant genes vs. Non-knockoff genes.
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Figure S10: Mouse phenotype enrichment analyses for 10 quantitative traits in ToppFun.
The top 10 mouse phenotypes in terms of q-value are shown for each trait. The number of
effector BIGKnock genes used in these analyses are indicated for each trait.
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Figure S11: Mouse phenotype enrichment analyses for 10 quantitative traits in ToppFun.
The top 10 mouse phenotypes in terms of q-value are shown for each trait. The number of
effector BIGKnock genes used in these analyses are indicated for each trait.
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Figure S12: BIGKnock, cS2G and L2G results at three loci containing known causal
genes (ASGR1-Cholesterol, ANGPTL4-Cholesterol and ALDH2-CAD).W knockoff statis-
tics, cS2G scores, and L2G scores are shown for genes at the 1Mb loci containing known causal
genes. The putative causal gene at each locus is labeled.
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Figure S13: cS2G scores of putative causal genes at selected loci for UK Biobank binary
traits and quantitative traits. cS2G scores for genes at selected loci for (a) CAD, (b) Asthma,
(c-d) Type 2 diabetes (T2D), (e,h) Cholesterol, (f-g) BP-Diastolic and (i-j) LDL cholesterol.
Loci are named according to the most significant gene in BIGKnock. The dashed line corre-
sponds to the recommended threshold (0.5) for cS2G. Genes which do not have a cS2G score
are shown just below the 0.5 threshold. The labeled gene corresponds to the putative causal
gene at the locus as discussed in the Results section. Red dots correspond to genes that are
significant under BIGKnock.
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Figure S14: L2G scores of putative causal genes at selected loci for UK Biobank binary
traits and quantitative traits. L2G scores for genes at selected loci for (a) CAD, (b) Asthma,
(c-d) Type 2 diabetes (T2D), (e,h) Cholesterol, (f-g) BP-Diastolic, (i) Neutrophil count, (j)
Calcium and (k-l) LDL cholesterol. Loci are named according to the most significant gene in
BIGKnock. The dashed line corresponds to the recommended threshold (0) for L2G. Genes
which do not have a L2G score are shown just below the 0 threshold. The labeled gene cor-
responds to the putative causal gene at the locus as discussed in the Results section. Red dots
correspond to genes that are significant under BIGKnock.
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Figure S15: Characteristics of prioritized genes. (a) CDS length and (b) LOF mutation rates
for BIGKnock significant genes and genes that are not significant using the BIGKnock test
at all loci, effector BIGKnock loci (loci that have effector genes), non-effector loci, effector
BIGKnock genes vs. genes that are not significant using the BIGKnock test, and BIGKnock 1
loci (loci where BIGKnock prioritizes only one gene). The number of genes in each group are
shown, along with p-values from a Kolmogorov-Smirnov test.
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Table S1: Summary of selected UK Biobank binary and quantitative traits.

Binary traits n # cases/# controls (case:control ratio)

Hypertension 404,265 90,714/313,551 (1:3.5)

Coronary artery disease 404,186 35,400/368,786 (1:10.4)

Asthma 395,745 29,934/365,811 (1:12)

Type 2 diabetes 403,490 21,964/381,526 (1:17)

Quantitative traits n

estimated glomerular filtration rate (eGFR) 386,253

Body Mass Index (BMI) 403,979

Diastolic Blood Pressure

Automated Reading (BP-Diastolic)
378,531

Systolic Blood Pressure

Automated Reading (BP-Systolic)
378,522

Cystatin C 386,398

Platelet count 393,205

Mean platelet volume (MPV) 393,200

Apolipoprotein A 351,755

HDL cholesterol 353,744

Cholesterol 386,452

Glycated haemoglobin (HbA1c) 386,300

Mean reticulocyte volume (MRV) 386,844

Mean sphered cell volume (MSCV) 386,844

Red blood cell (erythrocyte)

distribution width (RDW)
393,189

Neutrophil count 392,512

Reticulocyte count 386,843

Calcium 353,787

IGF-1 384,356

LDL direct (LDL cholesterol) 385,728

Direct bilirubin 328,800
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Table S2: The number of significant loci/genes associated with each binary trait for GeneS-
can3D and BIGKnock, and the number of loci shared between them.

Binary traits GeneScan3D BIGKnock Shared loci FDR threshold

Hypertension 80 loci/ 513 genes 66 loci/ 352 genes 62 loci 0.01

Coronary artery disease 25 loci/ 187 genes 15 loci/ 108 genes 15 loci 0.01

Asthma 27 loci/ 337 genes 26 loci/ 253 genes 25 loci 0.01

Type 2 diabetes 35 loci/ 172 genes 29 loci/ 88 genes 25 loci 0.05
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Table S3: The number of significant loci/genes associated with each quantitative trait for
GeneScan3D and BIGKnock, and the number of loci shared between them.

Quantitative traits GeneScan3D BIGKnock Shared loci FDR threshold

eGFR 270 loci/ 1,483 genes 232 loci/ 1,010 genes 218 loci 0.001

BMI 428 loci/ 2,767 genes 270 loci/ 1,300 genes 265 loci 0.005

BP-Diastolic 166 loci/ 1,498 genes 103 loci/ 677 genes 102 loci 0.005

BP-Systolic 151 loci/ 1,208 genes 146 loci/ 865 genes 131 loci 0.005

Cystatin C 405 loci/ 2,550 genes 427 loci/ 2,092 genes 366 loci 0.005

Platelet count 717 loci/ 5,242 genes 627 loci/ 3,768 genes 621 loci 0.005

MPV 765 loci/ 5,293 genes 640 loci/ 3,496 genes 638 loci 0.005

Apolipoprotein A 300 loci/ 2,362 genes 291 loci/ 1,815 genes 271 loci 0.005

HDL cholesterol 337 loci/ 2,412 genes 340 loci/ 1,974 genes 304 loci 0.005

Cholesterol 216 loci/ 1,812 genes 153 loci/ 998 genes 153 loci 0.005

HbA1c 329 loci/ 3,438 genes 293 loci/ 2,392 genes 289 loci 0.005

MRV 474 loci/ 4,139 genes 389 loci/ 2,661 genes 389 loci 0.005

MSCV 483 loci/ 4,104 genes 373 loci/ 2,479 genes 371 loci 0.005

RDW 469 loci/ 4,176 genes 405 loci/ 2,896 genes 399 loci 0.005

Neutrophil count 401 loci/ 3,273 genes 309 loci/ 1,865 genes 309 loci 0.005

Reticulocyte count 417 loci/ 3,447 genes 354 loci/ 2,367 genes 350 loci 0.005

Calcium 266 loci/ 1,940 genes 215 loci/ 963 genes 214 loci 0.005

IGF-1 520 loci/ 3,644 genes 422 loci/ 2,324 genes 416 loci 0.005

LDL direct 174 loci/ 1,601 genes 122 loci/ 902 genes 122 loci 0.005

Direct bilirubin 78 loci/ 654 genes 84 loci/ 547 genes 73 loci 0.005
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Table S4: Selected loci that pinpoint effector genes identified by Backman et al.30.

BIGKnock locus-trait position (hg19) # GeneScan3D # BIGKnock BIGKnock genes Effector gene

APOB-Apolipoprotein A 2:
20,731,524-
21,731,524

4 2 APOB,TDRD15 APOB

SH2B3-Cholesterol 12:
110,868,171-
111,868,171

8 3 FAM109A,PPTC7,SH2B3 SH2B3

ASGR1-Cholesterol 17:
6,569,412-
7,569,412

43 2 ASGR1,CD68 ASGR1

ANGPTL4-Cholesterol 19:
7,951,937-
8,951,937

9 1 ANGPTL4 ANGPTL4
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