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 Wavelet Methods for Curve Estimation
 A. ANTONIADIS, G. GREGOIRE and 1. W. MCKEAGUE*

 The theory of wavelets is a developing branch of mathematics with a wide range of potential applications. Compactly supported
 wavelets are particularly interesting because of their natural ability to represent data with intrinsically local properties. They are
 useful for the detection of edges and singularities in image and sound analysis and for data compression. But most of the wavelet-
 based procedures currently available do not explicitly account for the presence of noise in the data. A discussion of how this can be
 done in the setting of some simple nonparametric curve estimation problems is given. Wavelet analogies of some familiar kernel and
 orthogonal series estimators are introduced, and their finite sample and asymptotic properties are studied. We discover that there is
 a fundamental instability in the asymptotic variance of wavelet estimators caused by the lack of translation invariance of the wavelet
 transform. This is related to the properties of certain lacunary sequences. The practical consequences of this instability are assessed.

 KEY WORDS: Delta sequences; Hazard rate; Kernel smoothing; Multiresolution analysis; Nonparametric regression; Orthogonal
 series.

 1. INTRODUCTION

 Wavelet theory has the potential to provide statisticians

 with powerful new techniques for nonparametric inference.
 It combines recent advances in approximation theory with

 insights gained from applied signal analysis (for a recent sur-
 vey on the use of wavelets in signal processing, see Rioul
 and Vetterli 1991; for a recent discussion connecting wavelets
 with problems in nonparametric statistical inference, see

 Wegman 1991). The mathematical side of wavelet theory
 has been developed by Yves Meyer (1990) and his coworkers
 in a long series of papers (see, for example, Daubechies 1990,

 Mallat 1989, or, for a concise survey, Strang 1989).
 Consider the following standard nonparametric regression

 model involving an unknown regression function r:

 Yi = r(Xi) + ci, i = 1, .. ., n.

 Two versions of this model are distinguished in the literature:

 1. The fixed design model, in which the Xi's are nonran-
 dom design points (in this case the Xi's are denoted by ti

 and taken to be ordered 0 ? t1 ? * ? t, ? 1), with the
 observation errors ci iid with mean zero and variance u 2

 2. the random design model, in which the (Xi, Yi )'s are
 independent and distributed as (X, Y), with r( x) = E(Y I X
 =x) and ei = Yi- r(Xi).

 In each case the problem is to estimate the regression

 function r(t) for 0 < t < 1. We shall introduce wavelet ver-
 sions of the most frequently used kernel and orthogonal series

 estimators for these models, as well as for the problem of
 hazard rate estimation in survival analysis. Our estimators

 are delta sequence smoothers based on wavelet kernels Em( *,

 * ), as defined by Meyer (1990). These kernels represent in-
 tegral operators Em that project onto closed subspaces Vm of
 L2(RG4). The increasing sequence of subspaces Vm form a so-
 called multiresolution analysis of L2 (R1). The basic idea (to
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 be discussed at greater length in Sec. 2) is that the VIr provide
 successive approximations, with details being added as m

 increases. Thus m acts as a tuning parameter, much as the

 bandwidth does for standard kernel smoothers. A key aspect

 of wavelet estimators is that the tuning parameter ranges

 over a much more limited set of values than is common with

 other nonparametric regression techniques. In practice only

 a small number of values of m (say three or four) need to be
 considered. Despite this lack of control through a tuning
 parameter, which is in fact an advantage when it comes to
 cross-validation, we shall see that wavelet estimators can

 compete effectively.
 For the fixed design model, we propose the estimator

 nr
 r(t) = iYf Em(t, s) ds,

 where the Ai are intervals that partition [0, 1] with ti E Ai.
 This is a wavelet version of Gasser and Muller's (1979) (con-
 volution) kernel estimator or of Hardle's (1990, p. 51) or-

 thogonal series estimator. For the random design model, we
 propose

 n

 F(t) = n YiEm (t, Xi)/f(t),
 i=l

 where f is a wavelet estimator of the density of X given by

 n

 f(t) = n z Em(t,Xi).
 i=l1

 A standard kernel density estimator could be used in place

 off. The estimator F is a wavelet version of the (evaluation)
 kernel estimator proposed by Nadaraya (1990) and Watson
 (1964). It can also be viewed as a wavelet version of an or-

 thogonal series estimator studied by Hardle (1984). Anto-
 niadis and Carmona (1990) introduced density estimators
 of the form f. In all these estimators the tuning parameter

 m = m ( n) needs to be chosen appropriately. A recent study
 of the relative merits of the convolution and evaluation kernel

 approaches to nonparametric regression has been made by
 Chu and Marron (1991).
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 Like wavelet estimators, orthogonal series estimators use
 projections onto closed subspaces of L2(Roa) to represent suc-

 cessive approximations. But the projections used by orthog-
 onal series estimators are finite dimensional, whereas the

 projections used by the wavelet estimators are infinite di-

 mensional. Wavelet estimators cannot be seen as location-
 adaptive kernel estimators either (cf. Breiman, Meisel, and
 Purcell 1977). In fact, wavelet estimators are properly re-

 garded as delta sequence estimators (see Walter and Blum

 1979): r, is a special type of the delta sequence estimator

 studied recently by Isogai (1990); F is a special case of the

 estimator considered by Collomb (1981) and studied recently

 by Doukhan (1990). We shall obtain consistency of rP and r

 and rP by applying a result of Isogai.
 We are also able to establish rate of convergence results

 for rP and asymptotic normality results for suitably modified
 versions of rP and F. For r^, we do this by adapting some tech-
 niques that were originally developed for kernel estimators
 by Gasser and Muller (1979).

 Eubank and Speckman (1991) have studied rates of con-
 vergence for a least squares orthogonal series estimator for

 r. They used trigonometric series and their method of proof
 is heavily dependent on the special properties of these sys-
 tems. To avoid the need for periodic boundary conditions
 on the derivatives of r, they added appropriate polynomial
 terms to the orthogonal series. By using a least squares es-

 timator constructed from an orthonormal wavelet basis of
 L2( [0, 1]), we show that the rates obtained by Eubank and

 Speckman hold without the need for more than just linear
 correction to deal with the boundary behavior of r.

 Most delta sequence estimators in statistics have a wavelet
 version that can be studied using techniques similar to those

 developed in this article. We have focused our attention on
 the fixed-design wavelet estimator r^. The article is organized
 as follows. Some background on wavelet theory is reviewed

 in Section 2. Wavelet estimators are discussed for nonpara-
 metric regression in Section 3 and for hazard rates in Section

 4. A discussion of applications to real data and a comparison
 of kernel and wavelet estimators is presented in Section 5.
 Proofs are collected in Section 6.

 2. SOME BACKGROUND ON WAVELETS

 This section is devoted to a brief introduction to the theory
 of wavelets that will be used in the sequel. We limit ourselves
 to the basic definitions and the main properties of wavelets.
 (For more information, including proofs of the theorems in

 full generality and more extensive discussion and examples,
 see Chui 1992, Daubechies 1990, Mallat 1989, and Meyer
 1990.)

 Computing with wavelets requires a description of two
 basic functions: the scaling function <(x) and the primary
 wavelet {'(x). The function So(x) is a solution of a two-scale
 difference equation

 9(pX) = ck(p(2x -k) (1)
 kE7Z

 with normalization

 fsw(x) dx = 1.

 The function {~(x) is defined by

 {I(X) = 2: (- 1) kCk+ I ((2x + k). (2)
 kEZ

 The coefficients Ck are called the filter coefficients, and it is
 from careful choice of these that wavelet functions with de-

 sirable properties can be constructed. The condition

 z ck= 2
 k

 ensures the existence of a unique L1 (OR) solution to (1) (see
 Daubechies and Lagarias 1 988a, thm. 2.1, p. 8). A wavelet

 system is the infinite collection of translated and scaled ver-

 sions of So and i6 defined by

 (Pi,k(X) = 2 j2sp(2Jx - k), j, k E z

 and

 1PJ,k(X) = 2 j/2 (2jx - k), j, k E 7.

 An additional condition on the filter coefficients,

 z CkCk+21 = 2 if I = 0,
 k

 =0 iflEZ,l&0,

 together with some other regularity conditions, implies that

 { Pjk, j, k E Z} is an orthonormal basis of L2(R), and { Oj,k,
 k E Z} is an orthonormal system in L2(R1) for each j E 7
 (see Daubechies 1990, lem. 3.4, p. 958). A key observation
 of Daubechies ( 1990, sec. 4) is that it is possible to construct
 finite-length sequences of filter coefficients satisfying all of

 these conditions, resulting in compactly supported Sp and 1'.
 The simplest example of a wavelet system is the Haar

 system, defined by setting co = cl = 1 and all other Ck = 0.
 In this case both the scaling function and the primary wavelet

 are supported by the interval [0, 1 ], and the resulting system
 is an orthonormal basis of L2(llRl). But if instead of a general
 function in L2(Rf), one wants to analyze a function with
 much less or much more regularity, then the expansion given

 by the Haar system is inappropriate, the reason being that
 the coefficients either do not make any sense or their decay

 at infinity is bad. Replacing the scaling function in the Haar
 system by a more regular function produces a system with
 a much better behavior with respect to spaces of smooth
 functions. The regularity of the scaling function <, is defined
 in the following sense.

 Definition 2.1. A scaling function so is q-regular (q E N)
 if for any 1 < q, and for any integer k, one has

 dlx' < Ck(l + IxI) ,

 where Ck is a generic constant depending only on k.
 We assume throughout that S? is q regular for some q E N.

 Of course the primary wavelet inherits the regularity of the
 scaling function. Moreover, if 4A is regular enough, then the
 resulting wavelet orthonormal basis provides unconditional

 bases for most of the usual function spaces, (see Meyer 1990).

 To obtain such a result, Mallat ( 1989) introduced the notion
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 of a multiresolution analysis, the definition of which we recall
 here.

 Definition 2.2. A multiresolution analysis of L2(R1) con-

 sists of an increasing sequence of closed subspaces Vj, j E Z,
 of L 2(R) such that

 (a) nVj={o};
 (b) UVj = 2(R);
 (c) there exists a scaling function So E V0 such that

 { ( * - k), k E Z} is an orthonormal basis of V0;
 and for all h E L 2(R),

 (d) for all kE Z, h() E V0 h( -k) E Vo, and
 (e) h ( -)E Vj h(2 -) E Vj+ I.

 The intuitive meaning of (e) is that in passing from Vj to
 Vj?+, the resolution of the approximation is doubled. Mallat
 (1989) has shown that given any multiresolution analysis, it
 is possible to derive a function A' (the primary wavelet) such

 that the family { 4j',,,5 k E Z} is an orthonormal basis of the
 orthogonal complement Wj of Vj in Vj+l, so that{4'Jk,j, k
 E Z} is an orthonormal basis of L2(RG4). Conversely, the
 compactly supported wavelet systems mentioned earlier give
 rise to multiresolution analyses of L2(RG4) (see Daubechies
 1990, thm. 3.6). When the scaling function is q regular, the

 corresponding multiresolution analysis is said to be q regular.
 Let us now introduce the following projector and its as-

 sociated integral kernel:

 h -3 Ej(h) = f .Ej( *, y)h(y) dy = projection of h onto Vj.

 It is easy to see that Ej(x, y) = 2iEo(2ix, 2jy) and that
 Eo(x + k, y + k) = Eo(x, y) for k E 7. Obviously, Eo is not
 a convolution kernel, but the regularity of So and A' implies
 that it is bounded above by a convolution kernel; that is,

 I Eo(x, y) I c K(x - y), where Kis some positive, bounded,
 integrable function satisfying moment conditions (see Meyer
 1990, p. 33). This remark will be exploited in the following

 sections. In particular, the bound supx,y I Ej ( x, y) I = 0(2 j)
 is often needed. We also mention some other useful prop-
 erties. For any polynomial p of degree ? q, one has

 Ej(p) = p (3)

 (see Meyer 1990, p. 38). By (3) applied to p(x) 1 and part
 (c) of the definition of a multiresolution analysis, we see that

 z p(x -k) = 1. (4)
 kEZ

 If a function h belongs to the Sobolev space HV = HV(RI),

 then the sequence Ej(h) converges strongly to h in HV for
 IvI ?qand

 h- Ej(h) IIV = o(2Jv) (5)

 for 0 < v ? q, by Mallat (1989, thm. 3), where | * ILV denotes
 the norm associated with HV. The Sobolev space HV(IR d) v
 EG1R d> 1, is defined to be the space of tempered distributions

 whose Fourier transforms are square integrable with respect

 to the measure (1 + I xI 2)'dx on DRd (see Hormander 1989,
 p. 240).

 Compactly supported wavelets are partitioned by the
 wavelet number N into families whose scaling functions have
 supports of equal size. N is defined as (Kmax - Kmin + 1)/2,
 where Kmin is the greatest even integer and Kmin is the least
 odd integer, such that Ck =# 0 =* Kmin < k ? Kmax. Thus N is
 generically one-half the number of nonzero filter coefficients.

 The support of So is the interval [Kmin, Km.], and the support
 of A& is the interval [1 - N, N]; note that both support widths
 are 2N - 1 unit intervals long. The examples constructed
 by Daubechies have the property that their support widths
 increase linearly with their regularity. This is illustrated by
 Figure 1. Daubechies shows that there exists v > 0 such that

 N(p, N'P E CVN, where s? E C`+ if So E C' and So (n) is Holder
 continuous with exponent -y (O ? y < 1). More precisely,
 Daubechies and Lagarias (1988, p. 62) obtained

 2 PC5500 3 p C1.0878 . p C1.6179.

 An algorithm described by Daubechies and Lagarias ( 1988,
 p. 17), the cascade algorithm, allows us to construct the or-
 thogonal compactly supported wavelets as limits of step
 functions that are finer and finer scale approximations of
 Wo. The algorithm is easy to implement on a computer and
 converges very rapidly. Given a finite sequence of filter coef-
 ficients, co, . .., CN, define the linear operator A by

 (Aa)n = Cn-2kak, a = (ak)kEZ,
 kEZ

 where it is understood that Ck 0 if k < 0 or k > N. Define
 ai = A a0, where (a?)o = 1 and (a0)k = 0 for k =# 0. Set

 *pj( x)= a i X(2 jx - k) 1 (6)
 kEZ

 where x is the indicator function of the interval [- 2 [.
 Under certain conditions (see Daubechies 1990, p. 95 1), the
 sequence of functions pj converges pointwise to a limit func-
 tion So that satisfies the two-scale difference equation (1).

 3. NONPARAMETRIC REGRESSION

 In this section we establish consistency of rfusing a theorem
 of Isogai (1990). Also, under conditions on the regression
 function r that are weaker than the usual smoothness as-
 sumptions, we give asymptotic bounds for the bias and vari-
 ance of rf and establish asymptotic normality for a modified
 version of r^. This modified version of rf is an approximation
 that agrees with rP at dyadic points of the form k2 m; it is
 needed to stabilize the variance. At the nondyadic points,
 the variance of rF itself is unstable because of irregularity in
 the wavelet kernels. In practice, the "optimal" bandwidth
 can be selected by cross-validation (see Sec. 5.2 for further
 discussion). This usually amounts to a choice between at
 most three or four values of m. This small range of possibly
 optimal resolution is very desirable, because the computa-
 tional demands for rf can be large.

 The cascade algorithm described in Section 2 gives a simple
 method to calculate the estimator f and r. Note that the delta
 sequence Em used in rF and r can be written as

 Em(t, s) = 2'm z S(2mt -k)so(2ms -k).
 kEZ
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 When S? has compact support, this is a finite sum, each term

 of which can be evaluated by the cascade algorithm. To eval-

 uate the weights fA, Em(t, s) ds used in r^(t), we use an
 integrated version of (6):

 pv rv

 (x)dx= a{ fx(2jx-k)dx.
 'P kZ u ke71

 The sequence f , oj( x) dx converges to f1, <p(x) dx for each
 u < V.

 Some plots of Em(t, s) for the scaling function 6'p are
 given in Figure 2. Note that the wavelet kernels are dyadic

 translation invariant: Em(t + u, *) = Em( t, * -u) for all

 dyadic rationals u of the form k/2m but not for general real

 numbers u. Also note the substantial variation in the form

 of the wavelet kernel as one passes between the dyadic points.
 This is more than just a variation in the local bandwidth-

 compare the curves corresponding to t = .2 and t = .5 in

 Figure 2b. It appears that this feature of the wavelet kernel

 allows wavelet estimators to adapt automatically to local
 features of the regression function. An unfortunate side effect
 is that the asymptotic variance of wavelet estimators is un-

 stable.

 Another reasonable estimator of r is

 n

 r^C ( t YiJ Em(O, s -t)ds,

 a convolution kernel estimator based on the kernel K(t)

 = Eo(0, -t) and having bandwidth 2-m. A similar change
 can be made to r. Note that r and r^c agree at dyadic rationals
 of the form k/2 m. Asymptotic results for this estimator are
 special cases of those given by Gasser and Muller (1979),
 although by using this special kernel K we can relax the
 smoothness conditions on r. But a finite sample comparison

 between r^and 9^ that examines their integrated mean squared
 errors for various values of m shows that r^ is superior (see
 Sec. 5.1). This is explained by the global approximation
 property (5) of the projection operator Em used in r^. Such a

 property is not available for 9^. A general bandwidth might
 improve the performance of i^, which only uses bandwidth
 of the form 2 -m. But the heavy computational demands for
 such an estimator make any bandwidth cross-validation se-
 lection procedure impractical.

 Our first result gives consistency of r^.

 Theorem 3.1. If r is continuous at t, m - oo and maxi I t
 -ti_ I = o(2-m), then r^(t) is mean square consistent.

 Strong consistency of r^(t) can be obtained under a more
 refined condition on the rate of increase of m, using Isogai's

 theorem 3.2. To obtain deeper results, we need the regression

 function r and the density f (in the random design case) to
 satisfy the following conditions:

 1. r,f, rfE HV, for some v > 2
 2. r and fare Lipschitz of order y > 0.
 3. fdoes not vanish on ]0, 1[.

 Functions belonging to H" for It > 3are continuously dif-
 ferentiable (see Treves 1967, p. 331), so condition 2 is re-

 dundant when v > 2. We also need some additional as-
 sumptions on the scaling function so:

 CJl CM,

 1 1

 . .

 02-
 (a)

 C'.) ~~~~~~~A

 LO)

 LC)~~~~~~~~b

 Figure 2. The Wavelet Kernel Em(t, s) for the Scaling Function 6(p. (a)
 Perspective plot of E2 (t, s); (b) E4(t, *) for ten different values (. 1, .2, . . ..I

 1.0) of t. Note the translation invariance E,(t + u, *)-Em(t, * -u) for

 0~~~~~~

 dyadic rationals u of the form k12.

 4. so has compact s'upport.
 .5 S? is Lipschitz'
 6. O I (II)as 0.

 Here sodenotes the Fourier transform of Sp. The compactly
 supported scaling functions MP, N 2 3, satisfy all of these
 conditions; in particular, condition 6 holds by Daubechies
 (1990, p. 963). For our asymptotic normality results, we will
 need S? to be regular of order q 2 1. But to obtain good rates
 of convergence for the mean square error of r^, we need to
 adapt the regularity of S? to the smoothness of r:

 7. so is regular of order q 2 v.
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 A disadvantage of more regular wavelets is that their sup-
 port is larger and thus their boundary effects are more pro-
 nounced. But wavelet estimators based on more regular

 compactly supported wavelets are unbiased away from the

 boundary for higher-order polynomials; see (3).
 Following Gasser and Muller (1979) for the fixed design

 case, to study the mean squared error of r^, we assume that

 max I ti - ti- I O(n-l) (7)
 i

 We shall also assume that for some Lipschitz function K( *)

 K(Si) -1
 p(n) max si - si I i) = o(n ), (8)

 where Ai = [si -, si ). This is a standard assumption for the
 fixed design model but is somewhat weaker than the

 "asymptotic equidistance" assumption of Gasser and Miiller
 (1979) in which K(t) 1 and p(n) = O(n -) for some 6
 > 1.

 The next result gives an asymptotic bound for the bias
 of r^.

 Theorem 3.2.

 Er^(t) - r(t) = 0(n t) + 0(tim)5

 where

 tm=(/myr 1/2 if I <V<3

 = Vml2m if v -25

 = 1/2m ifv >2.

 To obtain an asymptotic expansion of the variance and

 an asymptotic normality result, we need to consider an ap-
 proximation to r^ based on its values at dyadic points of order
 m. That is, define

 r^d(t) = -^(tlm)5

 where t(m) = [2 mt] / 2 m Thus ^d is the piecewise-constant
 approximation to r^at resolution 2 -m. The piecewise-constant
 feature of ^d makes it an unattractive alternative to the un-
 modified estimator r^ (at least for small mi). In particular, the
 bias is increased by an additional term of order 0(2 -m).
 But if one tries to obtain a precise asymptotic expansion of
 the variance of r^(t), then a difficulty arises in that the variance
 is unstable as a function of t. This problem is avoided
 with rd

 Theorem 3.3.

 22m 2m

 var( ^d() =-K(t( o+1)+ 0(2 p(n)) rd O 2 ,
 n \fl

 where wo = Jk,Z p2(k). The variance of r^(t) has this form
 except that for general (nondyadic) t, the leading term is
 0(2mn).

 From the proof of this theorem, it can be seen that the

 leading term of the variance of r^(t) is 0J22mfl-lK(t) W2(tm),
 where tm = 2mt -[2mt] and w2 is the function defined by

 w2(u) = E(u, v) dv.

 Notice that for dyadic t and m sufficiently large, tm = 0, so

 the variance of r^(t) is asymptotically stable. But if t is non-

 dyadic, then the sequence tm wanders around the unit interval

 and fails to converge. For example, at t = 3, it oscillates

 between 3 (m even) and 2 (m odd), so the variance oscillates
 between W2( 3) and W2( 2). The sequence tm belongs to the
 class of exponential lacunary sequences studied in ergodic

 theory. It is known that except for at most countably many

 t, the sequence tm has infinitely many accumulation points

 (see Rauzy 1976, p. 67, cor. 2.2). It is also interesting to note

 that for irrational t's, the sequence is eventually confined to

 the interval [ 3, 2] (see Rauzy 1976, p. 69).

 Plots of w2 for the Daubechies scaling functions sp =AV,
 N = 3, 5, 8, are displayed in Figure 3. It can be seen that the

 variance of r^(t) at nondyadic t can vary approximately by

 a factor of 3 for N = 3 and by a factor of 3 for N = 5 and

 8. The variance of r^ is inflated over the variance of ^d by a

 factor of at most 1.75 for N = 5 and 1.19 for N = 8. Taking

 the larger bias of ^d into account, it appears that the un-
 modified estimator r^ is at least as efficient as 9d, and it is r^

 that we recommend in practice. Generally, higher regularity
 of the wavelet basis reduces instability in the asymptotic
 variance of r^(t), although this comes at the expense of larger

 bias (the support of the scaling function increases with the
 regularity).

 For N = 3, 5, 8, the constants w2 = w2(0) are 1.81, .72,
 and 1.05. This suggests that 5(P iS more suitable than 3( or
 8P when used in connection with ^d. When used in connec-

 tion with r^ there is little difference between 3O and 8P.

 3.1 Optimal Rates

 To give a rate of convergence for the mean squared error
 of their estimates, Gasser and Muller (1979) assumed that r
 is k-times continuously differentiable and use a kernel of

 order k ? 2. They found that the best rate of convergence
 for the mean squared error is n -2k/(2k+1). An analogous result
 holds in our case. Assume that r is k = q + 1 times contin-

 uously differentiable, where q is the regularity of the scaling

 U~~~~~~~~~~

 0.0 0.2 0.4 0.6 0.8 1.0

 Figure 3. The Function W2 for 39 (Solid Line), 59 (Dotted Line), and 8S0
 (Dashed Line).
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 function. Because polynomials of degree < q are invariant

 under Em(t, s) [see (3)], we get, using a Taylor expansion

 of r, that the best rate of convergence for the mean squared

 error of rF at dyadic points is the same as for the kernel es-

 timator and is attained by m = log2n / (2k + 1). It is worth

 stressing that the wavelet approach allows us to obtain rates
 under much weaker assumptions on r than second-order

 differentiability. For example, the triangular function having

 Fourier transform sin2(t/2)/(t/2)2 belongs to H1 and is

 Lipschitz of order 1, so it satisfies our conditions 1 and 2

 but is not differentiable. The mean squared error of ^d is of
 order 0(2tm/n) + 0(2 -m(2v-1)) + 0(2 -2mY{) . The best rate is
 n-2 v*/(2v*+1) , which is attained by m = log2n/(2,v* + 1), where

 v*' =min(-, v,y?+ 2)-eande=0forv= 3,e > 0 for v
 _ 3
 2-

 Our next result concerns asymptotic normality of 9d. It

 can be applied to the unmodified estimator r^at dyadic points.

 Theorem 3.4. If n2 -* oo and n2-2mv* -> 0, then
 n2(mrd( t) - r(t)) is asymptotically normal with mean

 zero and variance a2w2K(t).
 We now turn to the estimator r used in the random design

 model. Much of the above discussion carries over to this
 case. The following result gives consistency of F.

 Theorem 3.5. If m -e oo and n2-m - oo, thenf(t) is
 consistent and, if in addition E(y2 2 X = x) is bounded for
 x belonging to a neighborhood of t, then F(t) is consistent.

 A result of Doukhan (1990, thm. 1) dealing with general

 delta sequence estimates can be used to establish uniform
 strong consistency of r, but under more stringent conditions

 on the rate of increase of m. Conditions 1-6 of Doukhan's
 paper are easily checked along the lines that we check Isogai's
 conditions in the proof of Theorem 3.1 and using (1 1). As
 for the fixed design model, to obtain an asymptotic distri-
 bution result (at all t), we need to consider the piecewise

 constant approximation Fd(t) = F(t(m)) instead of F.

 Theorem 3.6. Suppose that for some e > 0, we have

 E( y I 2+e I X = x) bounded for x belonging to a neighborhood
 oft, n2 so and n2-2mv* 0. Then n2m(Fd(t)- r(t))
 is asymptotically normal with mean zero and variance

 var( Y I X = t)W21f( t) .

 3.2 Symmetrized Wavelet Estimators

 Inspecting Figure 3, it can be seen that there is a lack of
 symmetry in the wavelet kernels Em(t, s) about the point t,
 as inherited from the asymmetry in the scaling functions;
 see Figure 1. This is somewhat unnatural from a statistical
 point of view, because a time-reversal in the data produces
 a different estimate from the time-reversed r (denoted F,v).
 Unfortunately, except for the Haar basis, there exists no
 compactly supported wavelet basis in which the scaling
 function is symmetric around any axis (see Daubechies
 1990). Another difficulty is caused by the excessive weight
 placed at points far to the left of t, resulting in a pronounced

 edge effiect at the lower limit of the design interval (see the
 discussion concerning the voltage data example in Sec. 5.3).

 A simple way of correcting these flaws in r^ is to use a weighted

 average of r^and ^rev with weights depending on the evaluation
 point:

 rsym(t) = tr(t) + (1 - t)Frev(t).

 It is easily seen that this estimator inherits the properties of

 r proved earlier. A similar modification can be made to any
 of the wavelet estimators considered in this article.

 3.3 Confidence Intervals

 To use our asymptotic normality result to obtain confi-

 dence intervals for r(t) at a given t, one needs to consistently
 estimate the noise variance. In the fixed design case, the noise
 variance is o2. We suggest using the following estimate of
 Muller (1985):

 2 n-I - 2
 3(n - 2) V' Y (Ii-i + Yi+- )]

 obtained by fitting constants to successive triples of the data.
 Muller's lemma 1 shows that if the regression function is
 Holder continuous of order 1, then ^2 is almost surely con-
 sistent and

 1ff2 _ 21 = o(log n) 1/2+c)
 a2 - .2 1 = _ _ _ _

 a.s. as n -* oo for any e > 0. In practice, to obtain a good

 impression of the errors involved in the point estimates r^(t)
 of r(t), it would be enough to provide confidence intervals

 at the 2tm dyadic points of the design region. For m = 4, this
 would give 16 confidence intervals.

 3.4 Least Squares Wavelet Regression

 Orthogonal series used for least squares regression should

 form a basis of the L2 space on the design region; that is,

 L2( [0, 1]). The wavelets described up to now form an or-

 thonormal basis of L2(1R) and are not appropriate. Instead,
 we shall use a wavelet orthonormal basis { j,k j 2 1, k
 E Sj } of L2( [0, 1 ]) constructed by Jaffiard and Meyer ( 1989) .
 Here 5) is a subset of 74 defined as R1 by Jaffard and Meyer
 (1989, p. 95). For some integer]0 depending on q, the set S~
 is empty for] ?1Cjo. These wavelets belong to the space Cq2
 where q ? 2 and the subscript 0 indicates support within

 10, 1 [. They are defined through a multiresolution analysis

 of L2( [0, 1]) and form unconditional bases of Ho, 0 < v
 < 2q -2. Assume that r(0) = r(l) = 0 and r E Ho. This
 is a weaker assumption than condition (ii) of theorem 1 of

 Eubank and Speckman ( 1991) , but the boundary condition

 r(0) = r( 1) = 0 is still rather restrictive. It can be removed

 by adding a linear function to the regression analysis (cf.

 Eubank and Speckman ( 1991) .

 We shall obtain a rate of convergence for the mean squared

 error,

 n

 R(aan- ) = ny In E(r(X)i )-ce, ))
 i=l1

 of the least squares wavelet estimator rs given by
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 m

 ris(t) = i,41,k(t),
 j=l keS,

 where the dj,k's are obtained by least squares. The number
 Dm = 2: T I Sj I of functions 'J,k used in the regression is
 bounded above by 3 2 m. We assume that the observation

 errors have constant variance a2. Let G, denote the empirical
 distribution function of the design points Xi and assume that

 bn = SUPt I Gn(t)- G(t) I -* 0, where G is some distribution
 function that is absolutely continuous with density bounded

 away from zero and infinity. Typically bn is of order O( n -1)
 in the fixed design case and of order 0(n-1 121og log n) in
 the random design case (see Eubank and Speckman 1991

 for further discussion).

 Theorem 3.7. If r E H6 ,where v ? 1 is an integer, then

 R(PAS) ? (2-2mv) + 2Dm/f + 0(6n2-m(v-1)).

 This rate of convergence essentially agrees with the rate
 given in theorem 1 (iii) of Eubank and Speckman (1991).

 4. HAZARD RATE ESTIMATION

 In this section we study a wavelet version of Ramlau-

 Hansen's (1983) estimator of a hazard rate function. It turns

 out that most of the wavelet techniques we have used for
 nonparametric regression carry over to this setting. Since the

 work of Aalen (1978), it is well known that hazard rate es-

 timation can be viewed in the context of inference for a

 counting process multiplicative intensity model given by X(t)
 = a(t)Y(t), where Y(t) is a nonnegative observed process.
 In the usual survival analysis or reliability application, a por-

 tion T = min( T, C) of an individual's lifetime Tis observed,
 where C is a censoring time (assumed to be independent of

 T). Data are available on n individuals with corresponding

 (Ti, C ) being independent and distributed as (T, C). Sup-
 pose that T has hazard rate function a and that the distri-
 bution function H of T is such that H(1) < 1. Then the

 counting process Nn(t) = z i= I { Ti ? t, Ci 2 T, } has in-
 tensity a(t)Yn(t), where Yn(t) = XI<= I{ T, 2 t, Ci ? t} is
 the number of individuals at risk at time t -. This is a special
 case of Aalen's multiplicative intensity model. In what fol-
 lows, the notation is essentially the same as Ramlau-

 Hansen's.
 Our wavelet estimator for the hazard function a is defined

 by

 a^(t) = f Em(t, s) d/3(s), (9)

 where ,B is the Nelson-Aalen estimator,

 OM(t) = J(s) dN(s),
 Y(S)

 J(s) = I { Y(s) > O}, and J(s)/Y(s) is defined to be 0 when
 Y(s) = 0. To obtain asymptotic results, we index the pro-
 cesses N, J, and Y by n. We use the same assumptions on
 ae as were used for r in the regression case. We also assume
 that there exists a positive function T bounded away from

 zero and infinity such that tE[supo<s<iIln Jn(s)/ Y(s) - 1 /

 T(s) I ] -* 0 as n -* oo. This condition is easily checked in
 the survival analysis case described earlier.

 Define bn = sup0<<, E( 1- Jn(s)). Our first result implies
 that the wavelet estimate is asymptotically unbiased.

 Theorem 4.1.

 Ea&(t) - a(t) = 0(tim) + 2m/20( n/2)

 where flm is defined in the statement of Theorem 3.2.

 As in the regression case, it is convenient to approximate

 a^ by an estimator based on the values of a^ at dyadic points;

 ad(t) = a&(t(m)), where t(m) = [2mt]/2m. Observe that Theo-

 rem 4.1 holds for &0d(t), provided that we add 0(2-me) to
 the asymptotic expansion of the bias.

 Theorem 4.2.

 IE(adt - at)2= 2tm a(t) w + 2mo(nl1)
 n T(t)

 + 0(t1m) + 2m0(6n) + 0(22m).

 The mean squared error of a&(t) has the same form, except

 that for general (nondyadic) t, the leading term is 0(2 m/ n).
 Under n2-m -* oo, n2-2mv* - 0, and bn = o(n-1), we

 have L2 consistency of ad(t). The leading term in the

 asymptotic expansion of the mean squared error is then of
 order 0(2 m / n). If a^ is used instead of & d, then the Lipschitz
 condition on a is unnecessary.

 Theorem 4.3. If n2-m -> oo, n2-2mv* 0- 0 and 5n
 = o(n 1), then fln2(ad(t) - a(t)) is asymptotically nor-
 mal with zero mean and variance a(t)w /T(t).

 5. PRACTICAL APPLICATION AND DISCUSSION

 5.1 Finite Sample Comparisons

 So far we have only considered the asymptotic behavior
 of our estimators. However, as long as one deals with linear

 estimates and is interested in the mean squared error or the
 integrated mean squared error of these estimates for finite
 samples, numerical calculations are possible that approxi-

 mate these quantities to any desired degree of accuracy when
 the true regression function, the error variance and the
 weights are known (other properties of the error probability

 law being irrelevant). The method that we are going to de-
 scribe has been used by Gasser and Muller (1984) for a finite
 sample comparison between cubic smoothing splines and

 various types of kernel estimates.

 The method applies to linear estimates of the form r^(t)

 = L i= l w ( t) Y1. For such estimates the bias at t is I~= l w ( t)
 (r(ti) - r(t)) and the variance is a 2 z n l w2 (t). The inte-
 grated mean squared error is obtained by numerically inte-

 grating variance + bias2 over a fine grid of t's.

 We used the same underlying function as did Gasser and
 Muller; that is,

 r(t) = 2 -2t ? 3 exp(-(t -.5)21.01), t E [0, 1],

 and compared our wavelet estimator with a kernel estimate.
 The residual variance was taken as a-2 = .2 and the sample
 size n = 25. The results are presented in Table 1. The inte-
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 Table 1. The Performance of the Wavelet Estimator f for
 Various Scaling Functions (p when a2 = .2

 Optimal Optimal Integrated Integrated
 (p MSE m bias2 variance

 3S0 2.64 x 10-2 3 1.07 x 10-2 1.56 x 10-2
 5S0 3.09 x 10-2 4 3.54 x 10-4 3.05 x 10-2
 6(P 3.08 x 10-2 4 2.04 x 10-4 3.06 x 10-2
 8P 3.07 x 10-2 3 1.51 x 10-2 1.56 x 10-2

 NOTE: For comparison, the integrated mean square error of the convolution kernel (Epanech-
 nikov) estimate with optimal bandwidth .065, is 2.35 x 1 o-2.

 grated mean squared error was evaluated using a grid of 200

 equidistant points between .25 and .75. We restricted atten-
 tion to an interval smaller than [0, 1] to avoid possible
 boundary effects. The wavelet kernels corresponding to four

 different scaling functions (AV for N = 3, 5, 6, and 8) were
 used. They were compared with an Epanechnikov kernel
 having optimal bandwidth. Although the results are not re-

 ported here, we also examined the performance of the wavelet
 convolution estimator ?,. The integrated mean square error
 was significantly larger, due mainly to a larger variance.

 The convolution kernel estimate does slightly better than

 the wavelet estimate, but this is not unexpected, because the
 optimal bandwidth is chosen from a continuum of possible
 values, whereas the tuning parameter m is discrete.

 5.2 Cross-validation

 Any nonparametric regression method is highly dependent

 on the tuning parameter, so it is desirable to select such pa-
 rameters automatically. The problem of selecting m is rather
 easier than the bandwidth selection problem for kernel es-

 timators (see, e.g., Hardle and Marron 1985 in the regression
 case and Gregoire 1991 in the survival analysis case), because
 the bandwidth is essentially reduced to being of the form

 2-m, where m < I log2n. A commonly used selection rule
 adapted to our setting is to choose m as the minimizer of
 the cross-validation function

 n

 CV(m) = n- (Yi -r()(t ))2
 i=l

 where r()( t) is the leave-one-out estimator obtained by eval-
 uating r (as a function of m and t) with the ith data point
 removed. This gives reasonable results when applied to real

 and simulated data. In practice, for sample sizes between
 100 and 200, we have found that it suffices to examine only

 m = 3, 4, and 5.

 5.3 Examples

 To illustrate the techniques given so far, and to add to the

 earlier discussion, we now consider two real examples. The
 first example concerns the motorcycle impact data given by
 Hardle (1990) and presented in Figure 4. The observations
 consist of accelerometer readings taken through time in an
 experiment on the efficacy of crash helmets. This particular
 data set was also analyzed by Silverman (1980) by spline

 smoothing techniques. For several reasons, the time points
 are not regularly spaced. It is of interest both to discern the
 general shape of the underlying acceleration curve and to

 draw inferences about its minimum and maximum values.
 Obviously, the observations are correlated and their variance

 is not constant, but for illustrative purposes we shall assume

 that the fixed design model holds.

 We plotted the estimate r for various values of m, using

 the wavelet kernel based on 8S. This choice of scaling func-

 tion is reasonable according to the discussion following the

 statement of 3.3. We tried 3*0, which the finite sample com-
 parisons suggested as being even better than 8S, but obtained
 a very poor fit. This poor performance of 340 is probably due
 to the greater instability of the variance; see Figure 2. Cross-

 validation selected the curve m = 4 as giving the best fit: the

 function CV(m) was found to be 534 at m = 3, 432 at m

 = 4, and 497 at m = 5. Inspecting Figure 4, one notices that
 r is considerably biased for m = 3; for m = 5, it detects the

 sharp drop in acceleration around 15 milliseconds but has
 undesirable oscillations. The m = 4 estimate is clearly the

 best-it captures the general features of the underlying curve,

 except for a positive bias around 12 milliseconds.

 Another example is presented in Figure 5. The data set,

 discussed in example 3.4.5 of Eubank (1988, p. 82), repre-

 sents the voltage drop in the battery of a guided missile motor

 during flight. In this example the assumptions of the fixed

 design model are much more reasonable. We find that there
 is an undesirable boundary effect in r at time 0. The time
 reversed r has a similar problem at the right end of the design

 interval. But the symmetrized estimator rsym discussed in
 Section 3 produces an acceptable fit. In fact, considering that

 rsym uses a tuning parameter setting chosen from among only
 three different values (m = 3, 4, and 5), it gives an outstand-
 ing result compared with other nonparametric regression es-

 timates.

 6. PROOFS

 6.1 Proof of Theorem 3.1

 We apply Theorem 3.1 of Isogai (1990) with 2 m in the
 role of m and Em in place of bm. We need to check that

 following conditions hold for each x E [0, 1]:

 LCU

 10 20 30 40 50

 time

 Figure 4. Plot of the Motorcycle Impact Data Together with the Wavelet

 Regression Estimates f Based on the Scaling Function ey for m = 3 (Dotted
 Line), m = 4 (Solid Line), and m = 5 (Dashed Line). Cross-validation

 selected the curve m = 4 as giving the best fit.
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 Figure 5. Plot of the Voltage Drop Data Together With the Symmetrized

 Wavelet Regression Estimate fsym (Solid Line), f (Dotted Line) and frev

 (Dashed Line) for m = 4 and Scaling Function 6v. Note that symmetrization
 has improved the estimate at the boundaries.

 (a) supm?1 Sl I Em(X, Y) dy < oo;
 (b) flEm(x,y) dy * 1;
 (c) JO Em (x, y) IAI x -yI >c) dy -- 0 for all > ;

 and

 (d) supyE[O,l IEm(x, y)I 0(2 m).
 Using the assumption that So is 0 regular, we have

 fIEm(x, y) dy?C22m (1 +2mIX_yl-2dy, (10)

 so (a) holds. Condition (b) follows by setting f= 1 in equation
 (33) of Mallat (1989). Using the indicator to control the
 integrand in (10), we see that the expression in (c) is of order

 0(2-m) -* 0. Condition (d) is immediate from the properties
 of Em discussed in Section 2.

 6.2 Proof of Theorem 3.2

 Arguing along the lines of Gasser and Muller (1979, app.
 1), and using the Lipschitz condition (2) on r, it can be seen
 that

 Er^(t) = 1 Em(t, s)r(s) ds + 0(n-").

 To complete the proof, it suffices to show that

 f Em( t, s)r( s) ds = r( t) + Of77m). ( 11)

 This is demonstrated by applying an extension of a result of

 Schomburg (1990) to the function g(x, y) = Eo(x, y); see

 Theorem A. 1 in the Appendix. In Lemma A.2 we check that
 this function satisfies the conditions of Theorem A. 1. First,
 note that

 f Em(t, s)r(s) ds = (Emr)(t)

 for m sufficiently large, because t is in the interior of [0, 1]
 and S? has compact support. Next, denoting the delta distri-
 bution centered at t by at and the duality between HV and
 H` by K , * > (see Treves 1967, p. 331), one has

 Ir(t) - (Emr)(t)I = Kr, at) - Emr, &t)

 = IKr,&t-Em&t)I

 < - r||,||6t-Em( , t) 11-. (12)

 Here we have used the fact that Em can be defined H-v and
 is a projection operator (see Meyer 1990, p. 43). Applying
 Theorem A. 1 with 2 m in the role of n now gives the result.

 6.3 Proof of Theorem 3.3

 Following Gasser and Muller (1979, app. 2),

 var(r(t)) - m1 E2 (t) K(s) ds
 no

 = (3.2 | (f Em(t, s)ds) - Ij E2(t, S)K(s) ds

 n

 2 2 (S1 -S1_1 )2E2(t, Ui)
 i= 1

 (Si - Si-1)Em(t Vi)K(Vi)
 n

 (where ui and vi belong to Ai)

 I(In) n - s - K(Si))E2(t ui)

 --(E0(t, V1)K(V1) - E2(t ut)K(sU))i
 n

 From (8) the number of terms contributing to the above sum
 is of order 0(n2-m). Hence, using (7), the bound
 supt,sE 2 (t, s) < 2 2m X and the Lipschitz property of K (which
 implies K( vi) = K(si) + 0(1 /n)), the last displayed quantity
 is bounded by

 0 1 2m 2m~~~~~ 1 0(-)0(n2m)(p(n)22m + -22m- + - 22m
 n n n n

 X supJEo(2mt, 2mvi)-E0(2mt, 2m"ui).

 Using the compact support and Lipschitz properties of S?,
 one can show that Eo(t, * ) is Lipschitz (uniformly in t), so
 that

 supI Eo(2mt, 2mv) )-Eo(2mt, 2mui)I =On .
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 Simplifying, we obtain

 var(r(t)) - E f (t, S)K(s) ds
 no

 2 2m\

 =0(2mp(n)) + (2).

 The proof is completed by appealing to the following lemma.

 Lemma 6.1. a. If h: Rl --* R is continuous at t, then

 lim 2 -m J E2(t(m), s)h(s) ds = h(t)wo. m oo 11t O

 b. If h: Rl --* R is bounded in a neighborhood of t, then

 T E2(t, s)h(s) ds = 0(2m).

 Proof. Because 2mt(m) = [2mt] and EO(x + k, y + k)
 -Eo(x,y)forallkEZ,

 2 -m E E2 ( t(m), s)h(s) ds

 = 2m f E2(2mt(m), 2ms)h(s) ds

 = 2m f E2(O, 2ms - [2mt])h(s) ds

 = fEo, u)h(t(m) + u2-m) du -* h(t) f E(O, u) du

 as m -* oo. Here we have used the continuity of h at t and
 the compact support assumption for So, which implies that

 Eo (, *) has compact support. This assumption and the fact

 that {I s ( - k): k E Z} is an orthonormal system in L2( GR)
 give

 fE2(v, u)du = 2(V - k),

 so that fRE2(O, u) du = w2, completing the proof of part
 a. The proof of part b is similar.

 6.4 Proof of Theorem 3.4

 The Lipschitz condition on r gives

 r(t) = r(t(m)) + 0(2mY),

 so by Theorem 3.2 we have fn2=(Erd(t) - r(t)) -* 0.
 Write ^d(t) - E?d(t) in the form 7I wiei, where wi = Win

 - fA, Em(t(m), s) ds. We shall appeal to a central limit theo-
 rem for weighted sums of iid random variables (see Eicker
 1963) to obtain

 rd (t) - Erd(t) _ X=i w1-e1 D C>~~~(2:7 I W,2.)1/2()
 To complete the proof, we need to check the Lindeberg-type

 condition

 maxIlwi 12/var(f^d(t)) -* 0
 1 ?i?n

 and show that

 var(^d(t)) - 2m'a2w2K(t)/In.

 From Theorem 3.3 and p(n) = o(I In), we have

 n2-mvar( ^d(t)) = o2w2K(t) + o(1)

 + O(np(n)) + ?( n) 2 2w2K(t).

 Also using maxiin I Wi 12 = 0(22m/n2), we have

 maxI| w~I12/var(^d(t)) = (2rm/n)
 1 ?i?, n2-mvar(rf(t))

 so the Lindeberg condition holds.

 6.5 Proof of Theorem 3.5

 Var(f(t)) = var(Em(t, X))/n is bounded by

 1f| E2m(t, x)f(x) dx = 0(2m/n) -* 0,
 n Jo

 by Lemma 6.1b. The bias off(t) is (Emf )(t) -f(t), which
 tends to zero by the same argument that was applied to r at
 the end of the proof of Theorem 3.2. Thus f is pointwise
 consistent. Denote g = rf and g(t) = X 7= I Em (t, Xi) Yi / n,
 so that F = 4/f. It can be shown, along the lines in which
 var(f(t)) was handled, except using the conditional variance

 formula, that var(g(t)) = var(Em(t, X)Y)/n = 0(2m/n).
 Finally, the bias of g(t) is (Emg)(t) - g(t) -* 0, and we
 conclude that g(t) is pointwise consistent.

 6.6 Proof of Theorem 3.6

 Replacing t by t(m) in the proof of consistency off( t) and
 using continuity of f at t, we have that fd(t) consistently
 estimates f( t). Thus, by

 rd- r = (gd- rfd)/fd,

 we can reduce to considering fn2 m(4d - rfd)( t), which can
 be expressed as

 n

 / (Zni - EZni) + fn2-mEZn 1 (13)

 where Zni = Em(t(m), Xj)(Yj - r(t)). But

 EZnl = (Emg)(t(m)) - r(t)(Emf)(t(m))

 = (Emg)(t(m)) - g(t(m)) - [g(t) - g(t(m))]

 - r(t) { (Emf)(t(m))

 -f(t(M)) - VM t-f(t (m )] },

 so the last term in (13) is of order fn2 -m(O(i7m) + 0(2mY))
 where i7m is given in Theorem 3.2, and we have used the
 Lipschitz conditions on r and f (which imply that g is Lip-
 schitz of the same order) to bound the terms inside the square

 brackets. It follows that EZn1 -*0 by n2-2mv* -*0. To com-
 plete the proof, we apply the Lindeberg-Feller theorem to

 the first term in ( 13). First, note that
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 2 -mvar(E(Zn 1 I XI ))

 - 2-m E2(t(m), x)(r(x) - r(t))2f(x) dx - [EZI ]2

 which tends to zero by Lemma 6.1. Next,

 2 -mE (var (Z,1 I XI ))

 = 2-m E2(t(m), x)var(YI X = x)f(x) dx -

 var(Y IX = t)(two

 again by Lemma 6.1. Thus, by the conditional variance for-

 mula

 var(Z,1) = E(var(Z1l I XI)) + var(E(Znl I XI)),

 we see that the variance of the first term in (13) tends to

 var( Y I X = t)f( t) w2. It remains to check the Lindeberg
 condition, which amounts to showing that

 E (U2 I( Un I > 6 0 )) > O a 0,

 where Un = (Zn -EZn1)/ var(Znl). Suppose that E (Y4 I X
 = x) is bounded in a neighborhood of t; the general case of
 a bounded conditional moment of order 2 + e is similar.
 Then, by the Cauchy-Schwarz and Chebyshev inequalities,

 E( U2I(j Un I > bV1 )) < [E U4]1l/2 (n 62)-1 /2.

 Using the compact support property of So,

 EU4 = O(2-2m)EZ 4

 = 0(2 -2m) 0(2 4m) I(It - xI < C2-m)

 X [E(Y4lX= x) + C]f(x) dx = 0(2m),

 where C is a generic positive constant. Thus E( UnI( l U
 > bV)) = O(f2m/n) = 0, as required.

 6.7 Proof of Theorem 3.7

 The reader should have a copy of the paper of Eubank

 and Speckman (1991) on hand before attempting this proof.

 Using the inequality (Jaffard and Meyer 1989, p. 104)

 I a0,k(X) I < C12jl2 j/2exp(-C22j Ix - k2'- I),

 x&E R, kES,, and 1<2q-2,
 where Cl and C2 are generic constants independent of k, the

 conclusion of lemma 2 of Eubank and Speckman (1991)
 becomes

 || r' - (Tmgr)'|l < || r' - (Tmr)'||

 + (C1 / 2C2)2mC3 r-(Tmr) 11.

 The theorem now follows from Eubank and Speckman
 (1991) by applying the inequality

 Go

 , 22 <r, 4'Jj,k) < 00
 j=l keS3

 for r & Ho (theorem 2 of Jaffard and Meyer).

 6.8 Proof of Theorem 4.1

 From (9), we get the following expansion:

 a(t) = f Em(t, s)a(s)J,(s) ds

 + F1 Em(t, s) Yn(S) dMn(s). (14)

 Because the last integral is a mean zero martingale evaluated

 at 1, we have

 E&a(t) = E 1 Em(t, s)a(s)Jn(s) ds

 = E[f Em(t, s)a(s)(Jn(s) - 1) ds]

 + 1 Em(t, s)a(s) ds. (15)

 The last term in (15) is the same as ( 11), with r replaced by

 a. Using the Cauchy-Schwarz inequality and Lemma 6.1,

 the first term in (15) is seen to be of order 2mn20(3k12).

 6.9 Proof of Theorem 4.2

 First, note that a^d(t) - a(t) can be written as

 Em(t(m), s)a(s)(Jn(s) - 1) ds

 + [f Em(t(m), s)a(s) ds - a(t(m))] + (a(t(m))

 - a(t)) + Em(t(m), S) y (s) dMn(s). (16)

 Along the lines of the previous proof, we see that the first

 term in (16) is of order 2mO(6n) and the second term is of
 order 0(77m). The third term is of order 0(2-m ), because
 a is Lipschitz of order y. The second moment of the sto-

 chastic integral is n-' f Em(t(m), s)a(s)rn(s) ds, where
 Tn(S) = ntE[Jn(s)/Yn(s)]. It follows along the lines of the
 proof of Lemma 6.1 (a), using a-rn / n in place of h, and by
 our assumptions on (rn) and r, that

 E[ Em(t(m) s) YJ(S) dMn(s)]

 _2m a( t)2
 n r(t) W + 2m0(f)-

 The second part of the theorem is proved in a similar fashion,

 except using part (b) of Lemma 6.1.

 6.10 Proof of Theorem 4.3

 By our assumptions n2 l/ ( &d(t) - a(t)) is asymptoti-
 callyequivalentto n2-mf Em(t(m),s)Jn(s)/Yn(s)dMn(s),
 which is the value at 1 of a martingale having quadratic

 variation asymptotically equivalent to 2 fmJ^ Em( t(m),X
 s) a(s)!T( s) ds at 1. The previous proof gives that the latter

 quantity tends to ae(t) wo/r( t). The result follows using
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 Rebolledo's martingale central limit theorem (cf. Ramlau-

 Hansen 1983).

 APPENDIX: AN EXTENSION OF SCHOMBURG'S
 THEOREM AND ITS WAVELET APPLICATION

 Schomburg's (1 990) original result gives the rate of convergence

 of certain sequences of type 6 to the delta distribution centered at

 the origin in Rd, We need to extend this result to deal with ap-
 proximations for b6, the delta distribution centered at t E R d. Fol-

 lowing Schomburg, we allow d > 1, although we really only need
 d = 1. The sign of v is reversed from Condition 1. Let v < - d/2,

 g(., t) E HV(R d) for all t and define the sequence (gn(*, t)),,1
 C HV(R d) for each t by

 <gn(, t), 0> = g((, nt), 0()) for C eV(Rd),

 where & (R d) is the space of rapidly decreasing test functions (see

 Hormander 1989, p. 160). For a classical function g, one has gn(s,
 t) = ndg(ns, nt). The Fourier transform of a function h E Ll(R d)

 is defined by h(0) = fRd e7ix h(x) dx, t e Rd. In this Appendix
 h denotes the Fourier transform rather than an estimator of h.

 Theorem A. 1. Suppose that

 supj1 g(., t) jlj < oo (A. 1)

 and for some y > 0 there exists a neighborhood U of 0 in R d such
 that

 -'Y 14 (g( t) - e-it. t) (A.2)
 belongs to LI ( U) for each t E Rd. Then

 IIg(*, t) - 6tilI = 0(n P+(d/2)) if-v < 'y + d
 2'

 d
 =O(n-zogn) if - =y+-

 d

 2

 as n oo.

 Proof Clearly, one may take U as the unit ball in Rd. Noting
 that gn(t, t) = g( /n, nt), we have

 g~(., t) -6t12 = fd (1 + ItI2) {gn(t t) - e-tIt dt

 d (I + 1412)^lg(t/n, nt) - e-it j2 d

 nd (1 + n ITI ) (TS nt) - e-inT-12 d-.

 Now split the integration into

 nd f (1 + n2 l I 2 2^ g,,( nt) - e-in,-t 1 2 d-

 < 2n 2v+d I 1I 2v g(Tr, nt)I 2dr + 2n 2v+d I r 12v dr
 17121~~~~~~~~~~~~~~~~~~~ : Ir2

 0 (n 2v+d)

 by (A. l), and

 ndj (1+ ) nt)- einr12 d-

 ? Cnd f (1 + n2IrI2)^I rI2t dy

 by (A.2), with t = T and t set to nt. The remainder of the proof is
 routine integration (see Schomburg 1990 for details).

 Lemma A.2. The function g(x, y) = Eo(x, y) satisfies (A.1)
 and (A.2) of Theorem A. 1.

 Proof Noting that

 Eo(s, t) = p(s -k)(p(t -k),
 kez

 we have

 Eo(t, t) = f Eo(s, t)e-Is ds - (p(t - k) sp(s - k)e-s ds
 ke=Z

 ^Q t) , p(t t-k) e-ik = w( Q) 2: w(pt + k )eik.
 kEZ keZ

 Changing k to k - [t] and setting u = t - [t], we have

 ( p(t + k)e4k = e-teit ,: (p(u + k)eik
 keZ kEZ

 Because so has compact support, (A. 1) holds if S? E H" for ii < 0.
 But o E L2(R1) C HV for v < 0, as required. Next, by (4) and again

 because c, has compact support, we have

 E (p(u + k)eikt - 1 + E (p(u + k)(eikt - 1) = 1 + O(I2I)
 kEZ kez

 as t -- 0. Thus, by Condition 6,

 toQ, t)= (I + O(I tI))e-it'eitu( + O(I )) =e-itt(l + O( 1))
 so (A.2) holds.

 [Received May 1992]
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