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 We consider the competing risks problem with the available data in the form of times and causes of failure. In many practical
 situations (e.g., in reliability testing) it is important to know whether two risks are equal or whether one is "more serious" than the

 other. We propose some distribution-free tests for comparing cumulative incidence functions and cause-specific hazard rates against
 ordered alternatives without making any assumptions on the nature of dependence between the risks. Both the censored and the

 uncensored cases are studied. The performance of the proposed tests is assessed in a simulation study. As an illustration, we compare
 the risks of two types of cancer mortality (thymic lymphoma and reticulum cell carcinoma) in a strain of laboratory mice.

 KEY WORDS: Competing risks; Counting processes; Distribution-free tests; Ordered alternatives; Right-censored data.

 1. INTRODUCTION

 In the competing risks model, a unit is exposed to several

 risks at the same time, but it is assumed that the eventual

 failure of the unit is due to only one of these risks, which is

 called a "cause of failure." Let a unit be exposed to two risks

 and let the notional (or latent) lifetimes of the unit under

 these two risks be denoted by X and Y. In general, X and Y

 are dependent. Also, being lifetimes, they are nonnegative.

 We only observe (T, (), where T = min(X, Y) is the time
 of failure and 6 = 2 - I(X ? Y) is the cause of failure. Here

 I(A) is the indicator function of the event A. We assume

 that P (X = Y) = 0.

 On the basis of the competing risks data, it is often useful

 to distinguish between the following alternatives: (a) the two

 risks are equal, and (b) one risk is greater than the other,

 within the environment in which the two risks are acting

 simultaneously. Such comparisons can be made in terms of

 the cumulative incidence function,

 Fj(t) = P[T? t, 6 =j],

 corresponding to each cause j.
 Such comparisons are useful in many practical situations

 in industrial engineering and reliability life testing. Suppose

 that either of two components in a series system can be re-
 placed to improve overall system reliability. A reasonable

 approach is to compare estimates of F1 and F2 and to replace

 the second component in preference to the first, say, if there
 is evidence to reject F1 = F2 in favor of F1 < F2. Similarly,
 to compare the quality of two types of components, they
 may be tested in pairs (cf. Froda 1987). The experiment is

 terminated as soon as either component fails. This experi-

 mental design identifies weak components early on, thus

 saving valuable time and accelerating the experiment. From

 the competing risks data, one would like to test whether the
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 two components are of the same quality (i.e., F, = F2) against
 the ordered alternative that the first component (say) is of

 better quality (i.e., F, < F2). In the biomedical setting, the
 comparison of cumulative incidence among different types
 of failure may be useful when selecting the appropriate treat-

 ment for a patient (see Gray 1988). Benichou and Gail (1990)
 stressed the importance of cumulative incidence estimation
 in this context.

 In this article we propose some tests for comparing cu-

 mulative incidence functions. Our tests are less subjective
 than inspection of estimates of the cumulative incidence
 functions alone. We first consider a test of the null hypothesis

 Ho: F, (t) = F2(t), t ? 0 against the ordered alternative

 HI: F1(t) ? F2(t), t > 0,

 with strict inequality for some t. Here HI says that risk Y is
 "more serious" than risk X. Note that there is often no reason
 to expect a priori that the cumulative incidence functions

 F1 and F2 are equal (except, say, when they represent two
 identical components in a series system), but this is the nat-

 ural choice of the null hypothesis for the ordered alterna-

 tive HI.
 In some applications it is of interest to base the comparison

 of risks on the cause-specific hazard rate (CSHR),

 gj(t) =Jf(t)/ST(t),

 where the F. are assumed to have subdensitiesJj(t) and ST(t)
 = P[T> t] = 1 - FI(t) - F2(t) is the survival function of
 T. CSHR's provide detailed information on the extent of

 each type of risk at each time t. In the case where X and Y
 are independent, g1 and g2 reduce to the hazard rates cor-
 responding to the marginal distributions of X and Y. Prentice

 et al. (1978) showed that in general only probabilities ex-
 pressible as functions of g1 and g2 may be estimated from
 the observable data (T, 3). Because the cumulative incidence

 functions can be expressed as Fj(t) = fo gj(u) ST(u) du, the
 null hypothesis Ho is equivalent to gl (t) = g2(t), t ? 0.

 We introduce a second test of Ho that is tailored to the
 ordered alternative

 H2: g1(t)<g2(t), t>0
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 with strict inequality for some t. H2 is more restrictive than

 H1, yet the common parametric models satisfy H2 whenever

 they satisfy HI. Such a test might be useful in reliability
 testing: In the foregoing example, suppose that the second

 component consists of another component of the same type

 as the first component and a third component in series. Then,

 because it is known a priori that g,(t) ' g2(t) for all t, H2

 is a more natural choice of ordered alternative than HI (which
 includes the possibility that g2(t) < g1 (t) for some t).

 Various authors have proposed tests of Ho in the case that
 X and Y are independent: Bagai, Deshpande, and Kochar
 (1989a,b) developed distribution-free rank tests against sto-

 chastic ordering and failure rate ordering alternatives; Neu-

 haus (1991) constructed asymptotically optimal rank tests

 against stochastic ordering; and Yip and Lam (1992) sug-

 gested a class of weighted logrank-type statistics. The case of
 dependent X, Y has been considered only recently: Aras and
 Deshpande (1992) derived locally most powerful rank tests

 for Ho against various parametric alternatives expressed in
 terms of F, and F2. But none of these tests allow for the
 possibility of censoring, and they are sensitive to only a rel-

 atively small range of departures from Ho. The tests intro-
 duced in this article are asymptotically distribution-free,
 consistent againstH,, H2, and applicable to right-censored

 data and dependent X, Y.
 This article is organized as follows. In Section 2 we intro-

 duce our test statistics and give formulas for their exact null
 distributions. We also derive the asymptotic null distribu-

 tions. In Section 3 we develop the extension of our approach
 to right-censored data and explain how to deal with multiple
 (rather than just two) competing risks. We also discuss com-

 parisons on finite time intervals. Finally, we present the re-
 sults of a simulation study and an example in Section 4.

 2. UNCENSORED DATA

 The tests of the null hypothesis Ho introduced in this
 section are based on the uncensored competing risk data

 {(Ti, bi), i = 1, ..., n} for n independent and identical
 units.

 First, consider a test of Ho vs. Hi. Note that HI is equiv-
 alent to 44(t) ? 0 for all t ? 0, with strict inequality for some
 t, where 4l(t) = F2(t) - FI(t). Thus a natural test statistic
 for detecting the alternative HI is given by

 Dln= sup iJn(t),
 0?t<xr

 where 4tn(t) = F2n(t) - F1n(t) and FJ,(t) = n' 7i I{3z
 = j, Ti ' t } is the empirical cumulative incidence function
 for cause j. Positive values of DIn provide evidence in favor
 of Hi. Note that

 Din = max- j-2 W = max Zl n 0' j'<n n 0=l < jcn

 where

 Wi= 1 if (3 corresponding to T(i ) (the ith ordered Ti ) is 1

 - 0 otherwise,

 Zk = nl + - - - + nk ZO = 0, and n7 = 1 - 2W1. Kochar
 and Proschan (1991) proved that T and 6 are independent

 under Ho. Consequently, under Ho, Zj is a symmetric simple
 random walk starting at 0, and by lemma 4.8.1 of Renyi
 (1970),

 P {nD1 k} = - k =0, ,...,n. In 2n([flk]'

 This gives the exact null distribution of Din. The asymptotic
 null distribution is obtained using the invariance principle
 for partial sums (see, for example, Cs6rgo and Revesz 1981,
 chap. 2): under Ho,

 P{ VDi, > x} P{ sup W(t) > x} = 2(1 - 41(x)),
 O<t<I

 X2 0,

 where { W(t), t ? 0} is a standard Brownian motion and 41
 is the standard normal distribution function.

 Next, consider testing Ho versus H2. The alternative H2
 is equivalent to ,t increasing (assume that the gj are contin-
 uous). This is a consequence of the identity iJ(t)
 = S(u)(g2(u) - gl(u)) du and provides a rationale for
 the test statistic

 D2n= sup {A'n(t)0-)n(S)
 o0s<t< 00

 Positive values of D2n provide evidence that g2(t) is larger
 than g, (t) for some t. The exact null distribution of D2, is
 given by

 P{nD2n < t= 2t + cos t- + sin, 2t + I= { 2 2t + I 2t(+

 for t = 1, .. ., n + 1. This follows from the identity

 nD2n = max (Z - mmn Z1 )' (2)
 l1cjcn l1?i?j

 and equations (1), (4), and (5) of Page (1955).
 The asymptotic null distribution can be obtained from

 (2) and the invariance principle for partial sums: under Ho, XDnsup IJW(x)J.
 Consequently, for c > 0,

 P{InDIn C} -*

 - - exp{-7r2(2k+ l)2/8c2}. (3)
 X k-0 2k + 1

 The exact formula (1) can easily be used to generate a table
 of critical values. Using (3), the asymptotic .90, .95, and .99
 quantiles of VD2n are found to be 1.96, 2.241, and 2.807.

 When an ordered alternative is unsuitable, it can be of

 interest to test H0 against the general alternative, F1 (t)
 7$ F2(t) for some t, which is equivalent to g1 (t) # g2(t) for
 some t. In that case it is natural to use the Kolmogorov-
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 Smirnov test statistic Dn = SUPt?O 1 4n(t) I . Under Ho,
 WDn hnconverges in distribution to sup0o,1 II W( x) I. This
 gives an omnibus test-consistent against arbitrary depar-
 tures from Ho (see the proof of Theorem 3.1 in the Ap-
 pendix).

 3. CENSORED DATA AND OTHER EXTENSIONS

 In this section we consider various extensions of our tests
 that will make them more widely applicable. We study the
 censored data case, additional causes of failure beyond those
 due to X and Y, and comparisons on subintervals.

 3.1 Censored Data

 Censoring arises when an item is removed from obser-
 vation before failure due to X or Y. Denote the censoring
 time by C and its survival function by Sc. Assume that Sc(t)
 > 0 for all t and that C is independent of X and Y. Under
 right censoring, we observe n iid copies, (Ti, (5k), i = 1, ....
 n, of T = min(T, C) and 3 = 6I(T ? C).

 Our approach is to seek a suitable generalization of the
 function 4 = F2- Fl. Consider the function

 = Sc( u-) 12 d(F2- - )(u),

 which coincides with 4' when there is no censoring. The in-
 tegrand Sc( U-) 112 turns out to be precisely what is needed
 to compensate for the censoring for our test statistics to re-
 main (asymptotically) distribution free. Ho is equivalent to
 0(t) = 0 for all t> 0, but under HI, 0(t) > 0 for some t (see
 Lemma 1 in the Appendix). Thus positive values of the test
 statistic

 D3n = sup (n(t),
 0?t<crc,

 where On is an estimator of X, give evidence of a departure
 from Ho in the direction of HI. Because

 = f ST(U-)SC(U-)112(g2(U) - g1(u)) du,

 H2 is equivalent to 0 increasing. Thus positive values of

 D4n = sup {k n ( t) - n (S)}
 0?S<t<c0

 give evidence of a departure from Ho in the direction of H2 .
 An obvious choice of On is

 rt

 =n(t) ft ST(U-)SC(U-) 1 d(Al - ;2)(U),

 where ST and Sc are the product-limit estimators of ST and
 Sc and Aj is the Aalen estimator of the cumulative CSHR
 function Aj(t) = fo gj(u) du:

 Aj(t= ) I(5i = j)/R,

 where Ri = #{k: Tk ? T1 } iS the size of the risk set at
 time T1-.

 The estimator A1 is a special case of an estimator discussed
 by Aalen and Johansen (1978) in connection with inference

 for the transition probabilities of a non-time-homogeneous
 Markov chain with finitely many states. Our approach could
 easily be generalized to deal with comparisons between such
 transition probabilities. The problem at hand concerns a
 three-state chain with two absorbing states corresponding to
 the two types of failure.

 The estimate O,(t) is similar in spirit to a weighted log
 rank statistic of the form

 Ln(t) = w(u) d(Al - ;MU),

 where w is a locally bounded, predictable weight function.
 The weight w( u) reflects the relative importance attached to
 the difference between the CSHR's at time u. Our choice of
 w, which essentially controls instability in the tails, is de-
 signed to give an asymptotically distribution-free test. Yip
 and Lam (1992) have suggested test statistics based on nor-
 malized L,(oo) for various other choices of w. They consid-
 ered only the case of uncensored data and independent X
 and Y, but their approach readily extends to the present
 setting.

 The following result, proved in the Appendix, shows that
 D3, and D4, are asymptotically distribution free with the
 same limiting distributions as in the uncensored case.

 Theorem 3.1. Under Ho, 1/ D3n sup W(x) and VnD4n sup I W(x)I.
 0?<x?l 0?x1

 Moreover, the tests are consistent against their respective
 alternatives.

 The omnibus test statistic Dn has a similar extension to
 the censored data setting.

 3.2 Additional Competing Risks

 Our approach further extends to the case of multiple
 (rather than just two) competing risks in which any two of
 the cause-specific risks are to be compared. No structure
 need be imposed on the dependency between the multiple
 risks, although the corresponding latent failure times must
 be independent of the censoring. Let T be the minimum of
 a finite collection of latent failure times that include X and
 Y(but not the censoring), and let 6 denote the corresponding
 cause of failure. The cumulative incidence functions of X
 and Y and the various hypotheses are defined as before. Ex-
 tensions of D3n and D4n that preserve the foregoig asymp-
 totic distributions are obtained by using On(t )/Vpn in place
 of n( t), where

 Pn J ST(U-) d(Al + A2)(U)

 is a consistent estimator of P[3 = 1 or 2]. Further details
 are given in the Appendix.

 3.3 Comparisons on Subintervals

 It is often useful to compare cumulative incidence func-
 tions (or CSHR's) in a given time interval, say [ t1, t2 ), rather
 than at all times. An example will be given in the next section.
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 It is straightforward to generalize our tests to deal with such

 comparisons. Defining FJ (t) = P[t1 < T < t, 6 = j], the
 null hypothesis is now F* (t) = F2 (t), tl ? t < t2, which is
 equivalent to gl (t) = g2(t), t1 ? t < t2.

 Extensions of our earlier test statistion are obtained by
 using

 n* (t) = (ST(tl) - ST(t2)) -n(t) n(tl))

 on the interval [tl, t2) instead of On(t) on [0, oo). Theorem
 3.1 readily extends to this case.

 4. SIMULATION STUDY AND AN EXAMPLE

 Our test procedures are consistent against their respective
 alternatives; however, we would like to know whether they
 are powerful enough for practical purposes. In this section
 we report the results of a simulation study designed to address
 this question and apply our methods to a set of real data.

 4.1 Simulation Results

 For the distribution of (X, Y), we used Block and Basu's
 (1974) absolutely continuous bivariate exponential (ACBVE)
 distribution with density

 f(x,y)= XIX(X2 + XO) e- lx-(X2+Xo)Y if x < y
 XI +X2

 X2X(X1 + XO) e-X2Y-(Xl+Xo)X if x > y,
 XI + X2

 where (X0, X1, X2) are parameters and X = Xo + X1 + X2-
 The CSHR's

 XI + X2

 Table 1. Observed Levels and Powers of Test for Equality
 of Cumulative Incidence Functions Based on D3,

 at an Asymptotic Level of 5%

 n =50 n = 100 n =500

 X2 Ao = X Ao = 1 Xo =O Xo = 1 Xo=O Xo = 1

 Uncensored

 1.0 4.90 4.90 4.44 4.44 4.63 4.63
 1.5 39.46 39.46 61.05 61.05 99.71 99.71
 2.0 74.95 74.95 95.11 95.11 100 100
 2.5 91.96 91.96 99.78 99.78 100 100

 Lightly censored (18-33%)

 1.0 3.64 3.87 4.16 4.06 4.71 4.64
 1.5 27.64 30.00 47.97 51.22 97.94 98.52
 2.0 60.52 63.64 87.64 89.76 100 100
 2.5 82.91 84.80 98.57 98.75 100 100

 Heavily censored (40-60%)

 1.0 2.29 2.82 2.61 3.64 3.74 4.27
 1.5 16.02 19.79 29.12 35.85 88.78 93.42
 2.0 39.76 46.75 68.79 76.49 99.98 100
 2.5 63.73 70.27 91.57 94.72 100 100

 NOTE: The underlying distribution of (X, Y) is Block and Basu's (1974) ACBVE with A, = 1. The
 data were created using the uniform random number generator of Marsaglia, Zaman and Tsang
 (1990) and an algorithm of Friday and Patil (1977, cor. 3.3). 10,000 samples were used to obtain
 each entry in the table.

 Table 2. Observed Levels and Powers of Test for Equality

 of Cumulative Incidence Functions Based on D4,
 at an Asymptotic Level of 5%

 n =50 n = 100 n =500

 X2 Ao = X Ao = 1 Xo = X Ao = 1 Xo = X Ao = 1

 Uncensored

 1.0 3.86 3.86 3.68 3.69 4.16 4.16
 1.5 32.37 32.38 54.41 54.43 99.48 99.48
 2.0 67.46 67.46 92.59 92.59 100 100
 2.5 87.66 87.66 99.4 99.40 100 100

 Lightly censored (18-33%)

 1.0 2.89 2.98 3.45 3.37 4.28 4.53
 1.5 21.95 24.19 41.32 44.86 96.73 97.79
 2.0 51.95 55.40 83.31 85.57 100 100
 2.5 76.35 78.49 97.47 97.97 100 100

 Heavily censored (40-60%)

 1.0 1.49 2.16 1.80 2.79 3.27 3.81
 1.5 11.09 14.76 22.88 29.24 84.18 90.61
 2.0 30.38 37.26 60.59 69.25 99.92 99.99
 2.5 53.11 60.73 86.49 91.01 100 100

 NOTE: The underlying distribution of (X, Y) is Block and Basu's (1974) ACBVE with X1 = 1. The
 data were created using the uniform random number generator of Marsaglia, Zaman and Tsang
 (1990) and an algorithm of Friday and Patil (1977, cor 3.3). 10,000 samples were used to obtain
 each entry in the table.

 are proportional, and the alternative hypotheses HI and
 H2 are equivalent to X1 < X2. The parameter Xo controls
 the degree of dependence between X and Y, with inde-
 pendence if and only if Xo = 0. We set XI = 1 and consid-
 ered various higher values of X2 corresponding to increas-
 ing departures from Ho. The censoring was taken to be
 exponential with parameter values 1 and 3, corresponding
 to "light" and "heavy" censoring (about 25% and 50%
 censored). For comparison, we included results for the
 uncensored case as well. We used asymptotic critical levels
 of 5%.

 Inspection of Tables 1 and 2 shows that use of the asymp-
 totic critical levels gives somewhat conservative tests, and
 that this effect increases as the censoring becomes more se-

 vere. But the test based on D3, appears to be less conservative
 (and more powerful) than the one based on D4n, and both
 tests become less conservative as the sample size increases.
 The levels of the tests are close to their nominal 5% values
 for sample size 500, except under heavy censoring. There is
 no apparent adverse effect on the levels or the power due to
 lack of independence of X and Y. (Pearson's correlation be-
 tween X and Y is about . 1 5 for the table entries corresponding
 to X0 = 1.)

 Because T and 6 are independent whenever the CSHR's
 are proportional, it follows that under the ACBVE distri-
 bution, the sign test (based on the proportion of failures from

 cause 1) is the locally most powerful rank test of Ho against
 proportional CSHR's in the absence of censoring (see Aras
 and Deshpande 1992). Our simulations indicated the power
 of the sign test to be 44%, 79%, and 94% for n = 50 and X2
 = 1.5, 2.0, and 2.5 (X0 = 0 and 1, uncensored data). Com-
 paring these figures with the second and third columns in
 Table 1 (uncensored), we find at most a 5% loss of power for
 our test compared to the sign test.
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 4.2 Application to Real Data

 We have analyzed a set of mortality data given in Hoel
 (1972). These data were obtained from a laboratory exper-

 iment on 99 RMF strain male mice that had received a ra-

 diation dose of 300 rads at 5-6 weeks of age and were kept
 in a conventional laboratory environment. Causes of death
 were classified into thymic lymphoma, reticulum cell sar-

 coma, and other causes. We shall treat "other causes" as

 censoring (39% were in this category), and take the two types
 of cancer mortality as the two causes of failure that we wish
 to compare; that is, F1 and F2 are the cumulative incidence
 functions for death from sarcoma and lymphoma in the ab-
 sence of risk from other causes of death. Our analysis depends
 on the assumption that the two diseases are lethal and in-

 dependent of other causes of death (which is biologically
 reasonable, according to Hoel). We do not need to assume

 that the two diseases are independent of one another. An
 alternative analysis of the data would be to treat other causes

 of death as a competing risk (cf. Sec. 3.2).
 Plots of estimates of the cumulative incidence functions

 (Fig. 1) suggest that up to about 500 days, there is moderate
 probability of (death from) lymphoma and small probability

 of sarcoma. After 500 days, the situation reverses, with neg-
 ligible probability of lymphoma but high probability of sar-

 coma. This is reflected in the plots of the smoothed CSHR
 estimates in Figure 2, which were obtained using an Epa-
 nechnikov kernel function and a bandwidth of 80 days ap-
 plied to the cumulative CSHR estimates (cf. Ramlau-Hansen
 1983).

 Our tests offer a less subjective comparison than can be
 made from visual inspection of such plots. We obtained

 the highly significant VnUD3, = 3.69 (resp. 5.56) when test-

 C)

 0

 zo .......D, ,S

 0 200 400 600 800

 days

 Figure 2. Cause Specific Hazard for Lymphoma (---) and Sarcoma

 ( ).

 E
 0

 0 200 400 600 800

 days

 Figure 3. Plot of Vn on (Solid Line) and Corresponding Asymptotic 5%
 Critical Levels (Dashed Lines) for the Omnibus Test Based on Dn.

 ing whether the cumulative incidence for lymphoma is larger
 (resp. smaller) than the cumulative incidence for sarcoma

 before (resp. after) 500 days. (Both P values were less than

 .0003.) The tests based on D4, gave similar results. But the
 omnibus test of F1 = F2 gave a considerably less significant
 result. We obtained WnDn = 2.77 (which is significant at the
 5% level, but not at the 1% level); see Figure 3. This illustrates
 an advantage of testing against an appropriate ordered al-
 ternative on a suitable subinterval, as opposed to using the
 omnibus test.

 APPENDIX: PROOFS

 Proof of Theorem 3.1

 Suppose we can show that W4)n On--W(F&()). (A. 1)
 Then the first part of the theorem is clear by the continuous mapping
 theorem. For the second part,

 n sup {4n(t)-On(S)} SUp { W(FT(t))- W(FT(s))}
 0os<t<oc o?s<t<00

 - sup {W(u)-W(v)}= sup V(v),
 0?u<v< 1O?1

 where V(v) = supo,u,v W(u) - W(v). The second part now follows
 from the well-known result of Levy (1948) that the processes V( * )
 and I W( * ) I are identically distributed. It remains to prove (A. 1),
 for which we use the counting process approach developed by Aalen

 (1978). Note that we can write AJ in the form

 ftdNj(u)
 Aj(t) = I

 Jo Y(U)
 where 1/0 0,

 Y= ,Yi, Nj= Nj,

 Y, (u) = I (1, u), Ni,(u) =I (1i < u, 6,=j),
 for j = 1, 2, and the summations are over i = 1, . . . , n. Let

 M,j(t) = N1j(t) - i (u) dAj(u).

 Then Mij, i = 1, . . ., n are orthogonal martingales under the natural
 filtration generated by the foregoing processes. Let MJ = z Mi,.
 The predictable variation process of Mj is fo Y( u) dAj(u). By
 P(X = Y) = 0, the counting processes NR and N2 almost surely
 have no simultaneous jumps, so Ml and M2 are orthogonal mar-
 tingales (this is a standard result from counting process theory).
 Thus the predictable variation process of P'2 - Ma is f- Y( u)
 dAo(u), where Ao = Al + A2. Under H0,

 STs( u)5 ( u)' -
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 Because ST( U-) and Sc( u-) are left continuous and adapted, they
 are predictable, so VX H, is a martingale with predictable variation
 process

 T U-)SU) dAO(u).
 0o Y( u)/n

 By the Glivenko-Cantelli theorem, Y(u)/n converges uniformly

 in u to P(T2 U) = ST(U-)SC(U-) almost surely. Hence, by the
 uniform consistency of the product-limit estimator on [0, t], the

 foregoing variation process converges in probability to f" ST(U-)
 dAO(u) = FT(t). Here we have used the fact that the cumulative
 hazard function of Tis A0 (see Prentice et al. 1978). The appropriate
 Lindeberg condition is easily checked. (A. 1) follows by Rebolledo's
 (1980) martingale convergence theorem.

 We now turn to the proof that our tests are consistent against

 their respective alternatives. In general,

 4/?>"(t) = (n(t) + 4/?>(t) + op(M) (A.2)
 uniformly in t, where (n - W( FT(*)) as before and

 rt

 =n(t) ST(U-)SC(U--)1 d(A2 - AI)(u).

 Now On converges in probability uniformly over bounded intervals
 to q. Under HI, ?(t) > 0 for some t, by the lemma that follows
 this proof, so VHD3n - oo from (A.2). Under H2, ?(t) - ?(s) > 0
 for some s < t, so VHD4n - oo from (A.2).

 Lemma 1. Under the alternative HI, ?(t) 2 0 for all t, with
 strict inequality for some t.

 Proof The nonnegativity of 0 follows from a result of Barlow
 and Proschan (1975, lemm. 7.1(b), p. 120), because SC/2 is non-

 increasing and F2 - F1 is nonnegative under HI. For the strict
 inequality, if the nonnegative 0 were to vanish everywhere, then so
 would F2 - F1 (we assumed that Sc never vanishes), but this pos-

 sibility is excluded under HI.
 We conclude by indicating how to extend the proof of Theorem

 3.1 to deal with more than two competing risks. In this setting the

 predictable variation process of VX On converges in probability to
 F1 + F2. Because Pn is consistent for P [ 6 = 1 or 2], it follows that

 - (J)n --) W(FIA())
 Pn

 where F12 is the conditional distribution function of min(X, Y)
 given that 6 = 1 or 2. This extends (A. 1). The remaining steps of
 the proof are identical.

 [Received July 1991. Revised May 1993.]
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