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NONPARAMETRIC TESTING FOR MULTIPLE SURVIVAL
FUNCTIONS WITH NONINFERIORITY MARGINS

BY HSIN-WEN CHANG1 AND IAN W. MCKEAGUE2

Academia Sinica and Columbia University

New nonparametric tests for the ordering of multiple survival functions
are developed with the possibility of right censorship taken into account. The
motivation comes from noninferiority trials with multiple treatments. The
proposed tests are based on nonparametric likelihood ratio statistics, which
are known to provide more powerful tests than Wald-type procedures, but in
this setting have only been studied for pairs of survival functions or in the
absence of censoring. We introduce a novel type of pool adjacent violator
algorithm that leads to a complete solution of the problem. The limit distri-
butions can be expressed as weighted sums of squares involving projections
of certain Gaussian processes onto the given ordered alternative. A simula-
tion study shows that the new procedures have superior power to a competing
combined-pairwise Cox model approach. We illustrate the proposed methods
using data from a three-arm noninferiority trial.

1. Introduction. This article introduces new nonparametric tests for the or-
dering of multiple survival functions. The motivation comes from applications to
noninferiority trials with time-to-event outcomes and multiple competing treat-
ments. The aim of noninferiority testing is to demonstrate that the efficacy of
an experimental treatment is within a tolerable margin of a standard treatment.
Such trials have become increasingly popular in recent years because, as safer and
less costly therapies become available, there is a need to show that they are no
less effective than reference therapies [Wellek (2010), Rothmann, Wiens and Chan
(2011)].

Let S1, . . . , Sk be unknown survival functions corresponding to k ≥ 2 treat-
ments. In noninferiority trials, it is of interest to establish orderings such as

(1.1) H1 : S
M1
1 ≻ S

M2
2 ≻ · · · ≻ S

Mk
k ,

or

(1.2) H2 : S
M1
1 ≻ S

Mj

j for all j = 2, . . . , k,
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where M1, . . . ,Mk > 0 are the prespecified margins (which are informed by regu-
latory guidelines and previous clinical studies). Here, for functions f (t) and g(t)
of t over some given interval, we define f ≻ g to mean f (t) ≥ g(t) for all t with
a strict inequality for some t ; the time domain is restricted to a given follow-up
period [t1, t2], as is conventional with simultaneous inference in censored data set-
tings [see, e.g., Borgan and Liestøl (1990), Parzen, Wei and Ying (1997)]. The
ordering S

M1
1 ≻ S

M2
2 would result from M1h1 ≺ M2h2, where hj is the hazard

function of Sj . In this sense, M1/M2 represents a tolerable margin for the hazard
ratio between treatments 1 and 2; note that this ratio is the only relevant quantity
in the comparison between these two treatments, but to keep the notation balanced
we preserve both M1 and M2. If Mj ≡ 1, then (1.1) and (1.2) reduce to simple
linear and tree stochastic orderings, respectively [Chi (2002), El Barmi and Muk-
erjee (2005)]. When shorter survival is desirable (which is the case in our real
data example in Section 7), M1 ≥ M2 represents superiority of treatment 2 over 1,
otherwise noninferiority of 2 over 1.

The ordering in (1.1) is of special interest in the case of a three-arm noninfe-
riority clinical trial (k = 3), where S1 represents a placebo, S2 a standard therapy
and S3 an experimental therapy. In this case, (1.1) consists of two parts: (a) nonin-
feriority S

M2
2 ≻ S

M3
3 , where M2 < M3 indicates noninferiority of the experimental

to the standard therapy, and (b) assay sensitivity S
M1
1 ≻ S

M2
2 , where M1 ≥ M2 in-

dicates superiority of the standard therapy over the placebo. Here, (b) indicates
that the trial is capable of differentiating between effective and ineffective treat-
ments, which is required to ensure the quality of the whole study [Hauschke and
Pigeot (2005)]. In (1.2), S1 may refer to a standard therapy, and the remaining
Sj to experimental therapies [see, e.g., White et al. (2011), for uncensored out-
comes]. The ratio of the margins M1/Mj could be specified as 0.8, for example,
which would mean that the largest tolerable decrease in the hazard of any experi-
mental treatment (over the standard treatment) is 25%. There are variants of (1.2),
such as both S

M1
1 ≻ S

M3
3 and S

M2
2 ≻ S

M3
3 , which would be useful in comparing the

experimental treatment to the placebo and the standard therapy in a three-arm non-
inferiority clinical trial. In all of the above settings, a nonparametric approach has
not been developed, except for k = 2 using a comparison of Kaplan–Meier (KM)
estimates [Freitag, Lange and Munk (2006)].

In (1.1) and (1.2), we focus on the case of prespecified (i.e., absolute) margins
to formalize the noninferiority of the experimental treatment(s) to the reference
treatment. Absolute margins are usually given a priori in the study protocol [see,
e.g., Hida and Tango (2011), for normally distributed endpoints]. As an alterna-
tive to the absolute-margin method, the noninferiority margins can be specified in
terms of the relative effect of the standard therapy to the placebo. This is known
as the retention-of-effect method [see, e.g., Mütze et al. (2017), for a nonparamet-
ric approach for uncensored data], which for right-censored endpoints has been
developed by Kombrink, Munk and Friede (2013) using the Cox model with treat-
ment effects measured on the log-relative-risk scale. Our proposed approach can
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be adapted to provide a retention-of-effect analysis as well, namely in terms of
log-relative survival (see Sections 5.1 and 7). For some background on the use of
relative survival and its relation to the analysis of hazard differences in noninfe-
riority trials, see Dignam et al. (2009), Dickman et al. (2004), McDaniel, Yu and
Chappell (2016).

Our main contribution is to construct nonparametric likelihood ratio (NPLR)
tests for ordered alternative hypotheses of the form (1.1) and (1.2). Existing ap-
proaches to noninferiority testing without parametric assumptions are all based
on Wald-type procedures. We use the classic nonparametric likelihood for right-
censored data [Thomas and Grunkemeier (1975), Li (1995)] that inspired the broad
class of empirical likelihood methods [Owen (1988)], and is known to have greater
power than Wald-type procedures [see, e.g., Kitamura, Santos and Shaikh (2012)].
Empirical likelihood has been used for superiority testing (stochastic ordering) for
uncensored data [El Barmi and McKeague (2013)], but the right-censored case has
yet to be studied, except when k = 2 and Mj ≡ 1 [Chang and McKeague (2016)].

Numerical methods for computing the NPLR are readily available (e.g.,
Newton–Raphson-type algorithms). However, when k ≥ 3, it is difficult to find
the asymptotic distributions of the test statistics when the NPLR is expressed as
a limit of such an algorithm. The central difficulty for the asymptotic theory is
that evaluating the NPLR involves solving two constrained optimization problems
having no closed-form solutions—there are 2(k − 1) time-dependent Lagrange
multipliers having complex dependencies. To solve this problem, we introduce a
novel type of pool adjacent violator algorithm (PAVA) to characterize the NPLR,
leading to a tractable way of analyzing the Lagrange multipliers and hence obtain-
ing the asymptotic distribution of the test statistics.

Our approach to testing H1 specified in (1.1) is based on partitioning the param-
eter space for (S1, . . . , Sk) into H01 ∪ Hc

01, where H01 = H0 ∪ H1 and

(1.3) H0 : S
M1
1 = · · · = S

Mk
k .

We propose a two-step procedure: test the null Hc
01 versus H01, then H0 versus H1.

Rejection of both of these null hypotheses gives support for H1 versus the overall
null Hc

1 = Hc
01 ∪H0. The development of our NPLR method in the sequel is aimed

at the second test. The first test is more standard, in that it can be based on a simul-
taneous confidence tube for the k − 1 functions Mj logSj (t) − Mj+1 logSj+1(t);
an analogous method was introduced in Chang and McKeague (2016). We will
show in Section 3.2 that the family-wise error rate of the proposed two-step proce-
dure can be controlled at the same alpha-level as the individual tests. The case of
testing H2 in (1.2) is similar.

For a competing method to testing H1, we consider the combination of all k − 1
pairwise tests of the form

(1.4) H
j
0 : S

Mj

j ≼ S
Mj+1
j+1 versus H

j
1 : S

Mj

j ≻ S
Mj+1
j+1 ,
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with j = 1, . . . , k − 1. The combined procedure tests that at least one of the H
j
0

holds versus the alternative that all of the H
j
1 hold (i.e., H1). We can combine our

pairwise NPLR tests to formulate such a test of H1, using the intersection-union
principle which does not require multiplicity adjustment [see, e.g., Berger and Hsu
(1996)]. We will show via simulations that this competing procedure is less pow-
erful than our two-step test. On the other hand, multiplicity adjustment can be
employed if (in addition to testing H1) there is interest in testing the individual al-
ternatives H

j
1 . Such a procedure for k = 3 has been suggested by Kombrink, Munk

and Friede (2013) using Cox model-based Wald-type tests, although their individ-
ual alternatives are based on relative risk instead of relative survival as in our case.
We can also conduct a multiplicity-adjusted version of our pairwise NPLR tests
for each H

j
1 . Note that the aforementioned procedures do not take into account the

possibility of crossings between S
Mj

j and S
Mj+1
j+1 , whereas our proposed two-step

test mentioned above does not ignore this possibility.
The paper is organized as follows. In Section 2, we construct the NPLR and

characterize it using a new type of PAVA. In Section 3, we develop the proposed
two-step procedures and describe the competing combined-pairwise NPLR tests.
A by-product of our methodology is given in Section 3.4: a new NPLR approach
to the classical k-sample omnibus test. In Section 4, we outline the proofs of our
asymptotic results using the characterization of the NPLR in terms of PAVA. Sec-
tion 5 provides extensions of our approach to retention-of-effect analysis and strat-
ified testing. Section 6 presents simulation results showing that the proposed two-
step NPLR tests perform better than the competing methods based on the com-
bination of pairwise tests, in both accuracy and power. Section 7 provides an ap-
plication of the proposed methods to a three-arm noninferiority trial. Concluding
remarks are given in Section 8.

2. Nonparametric likelihood ratio construction.

2.1. Background. First, we recall the standard one-sample right-censored
framework. The survival times are i.i.d. from an unknown continuous survival
function S, and we assume independent censoring with survival function G. Sup-
pose S(t2)G(t2) > 0, where t2 is the end of follow-up as mentioned in the Intro-
duction. Only the minimum of the survival and censoring times is observed, along
with the censoring indicator, in a sample of size n. The nonparametric likelihood
[Thomas and Grunkemeier (1975)] is proportional to

(2.1) L(S) ≡
m∏

i=1

h
di
i (1 − hi)

ri−di

for hi ∈ [0,1], where ri is the number at risk just before Ti , di is the number of
deaths at Ti and hi is the hazard probability at Ti , 0 < T1 < · · · < Tm < ∞ are
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the ordered observed uncensored times (see Owen [2001, page 142], for more de-
tail). The NPMLE for S(t) is the KM estimator Ŝ(t) = ∏

i≤N(t)(1 − di/ri), where
N(t) is the number of observed uncensored times that are less than or equal to t .
It is known that

√
n{Ŝ(·) − S(·)} converges weakly in ℓ∞([t1, t2]) to a mean-zero

Gaussian process with covariance function S(s)S(t)σ 2(min(s, t)), where σ 2(t) =
− ∫ t

0 dS(u)/{S2(u)G(u−)} > 0 and ℓ∞([t1, t2]) is the space of all bounded func-
tions (on [t1, t2]) endowed with the supremum norm. A uniformly consistent esti-
mate of σ 2(t) is given by σ̂ 2(t) = n

∑
i≤N(t)[di/{ri(ri − di)}]. Application of the

functional delta method then gives Û (t) = √
n{log Ŝ(t)− logS(t)}/σ̂ (t)

d−→ U(t)

in ℓ∞([t1, t2]), where U(t) is a mean-zero Gaussian process with covariance
σ 2(min(s, t))/{σ (s)σ (t)}.

For our setting of k independent samples as in the Introduction, we use the same
notation except with a further subscript j indicating the j th sample. The Gaussian
processes Uj , j = 1, . . . , k, are independent by assumption. The proportion pj ≡
nj/n > 0 of data in the j th sample is assumed to be fixed, where n = n1 + · · · +
nk is the total sample size; this assumption can naturally be relaxed to nj/n →
pj > 0 as n → ∞. For future reference, we define the time-varying group-specific
weights wj(t) ∝ 1/θj (t), where θj (t) = M2

j σ 2
j (t)/pj can be estimated by θ̂j (t) ≡

nM2
j σ̂ 2

j (t)/nj . The weights wj(t) are normalized to sum to 1. That is, wj(t) =
∏

g∈Ej
θg(t)/φ(t) > 0, where Ej = {1, . . . , k} \ {j} and φ(t) = ∑k

l=1
∏

g∈El
θg(t).

In the uncensored case and Mj ≡ 1, the weights are just wj(t) ∝ pjSj (t)/(1 −
Sj (t)). These weights play an important role in the sequel because asymptotically
the PAVA solution is represented by a weighted least squares projection related to
the particular ordered alternative.

2.2. Nonparametric likelihood ratio for ordered survival functions. This sec-
tion develops the proposed test statistic of H0 versus H1, where H0 is given in
(1.3). The statistic for the alternative of tree ordering H2 is similar. We start by
constructing the local NPLR at a given time point t :

(2.2) R(t) = sup {L(S1, . . . , Sk) : S
M1
1 (t) = · · · = S

Mk
k (t)}

sup {L(S1, . . . , Sk) : S
M1
1 (t) ≥ · · · ≥ S

Mk
k (t)}

,

where L(S1, . . . Sk) is the product of the k marginal nonparametric likelihoods
as in (2.1), under the conventions sup∅ = 0 and 0/0 = 1. By the method
of Lagrange multipliers, the numerator of (2.2) is the constrained maximum
∏k

j=1
∏mj

i=1 h̄
dij

ij (1 − h̄
dij

ij ), where

(2.3) h̄ij = dij

rij + Mj(λ̄j − λ̄j−1)
,
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for i ≤ Nj(t), h̄ij = dij /rij for i > Nj(t), and the multipliers λ̄1, . . . , λ̄k−1 (λ̄0 ≡
λ̄k ≡ 0) satisfy the equality constraints

(2.4)
∏

i≤Nj+1(t)

(1 − h̄i,j+1)
Mj+1 =

∏

i≤Nj (t)

(1 − h̄ij )
Mj

for j = 1, . . . , k−1. On the other hand, the inequality constraints in the denomina-
tor of R(t) can be handled using the Karush–Kuhn–Tucker (KKT) method [Boyd
and Vandenberghe (2004)]. The denominator of (2.2) is then

∏k
j=1

∏mj

i=1 h̃
dij

ij (1 −
h̃

dij

ij ), where

(2.5) h̃ij = dij

rij + Mj(λ̃j − λ̃j−1)
,

for i ≤ Nj(t), h̃ij = dij /rij for i > Nj(t), and the multipliers λ̃1, . . . , λ̃k−1 (λ̃0 ≡
λ̃k ≡ 0) satisfy the conditions

∏

i≤Nj+1(t)

(1 − h̃i,j+1)
Mj+1 ≤

∏

i≤Nj (t)

(1 − h̃ij )
Mj ,(2.6a)

λ̃j ≥ 0,(2.6b)

λ̃j

{ ∏

i≤Nj+1(t)

(1 − h̃i,j+1)
Mj+1 −

∏

i≤Nj (t)

(1 − h̃ij )
Mj

}
= 0.(2.6c)

Intuitively, the denominators in (2.3) and (2.5) can be seen as adjustments to the
size of the risk set (rij ), in order to satisfy the equality and inequality constraints.
After canceling out h̄ij = dij /rij and h̃ij = dij /rij for i > Nj(t), the local NPLR
simplifies to

(2.7) R(t) =
k∏

j=1

∏

i≤Nj (t)

h̄
dij

ij (1 − h̄ij )
rij−dij

h̃
dij

ij (1 − h̃ij )
rij−dij

.

Throughout this section, we have suppressed the dependence of λ̄j , h̄ij , λ̃j and
h̃ij on t . In the special case of k = 2, there are only two multipliers in effect:
λ̄1 and λ̃1. It can be shown that λ̃1 = λ̄1 if λ̄1 ≥ 0, and λ̃1 = 0 otherwise, which
simplifies (2.7) to the one-sided form of the local NPLR in Chang and McKeague
(2016), equation (7) for M1 = M2 = 1. When k ≥ 3 the relationship among the
(now more than two) Lagrange multipliers becomes much more complicated, so
(2.7) no longer has a simple one-sided form.

Our approach of localizing the NPLR to a specific t will make the asymptotic
theory tractable; as far as we know, no asymptotic distribution theory is available
for an NPLR under the global ordering restriction S1 ≽ · · · ≽ Sk . An alternative
way of approaching the constrained optimization problem in (2.2) is to use Fenchel
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duality. This can be done by adapting the method of Dykstra and Feltz (1989)
to apply to constraints at a given t and allowing general Mj . However, it seems
difficult to obtain asymptotic results for the local NPLR based on Fenchel duality
and its associated algorithm, and for that reason we develop the pool adjacent
violator algorithm described in the next section.

2.3. Pool adjacent violator algorithm. At first sight, an asymptotic analysis of
the denominator of R(t) in (2.7) appears challenging because of the k −1 inequal-
ity constraints in (2.6). In order to get around this difficulty, we establish equality
between the solution of equations (2.5), (2.6) and that of a pool adjacent violator-
type algorithm (PAVA) (see Appendix A). Here, instead of just taking weighted
averages over adjacent blocks B1 and B2 of sample indices that violate the order
constraints, as in standard PAVA, the pooling for B ≡ B1 ∪B2 involves solving the
equality constrained optimization problem

ȟ ≡ arg max
h

∑

j∈B

mj∑

i=1

[
dij loghij + (rij − dij ) log(1 − hij )

]

subject to
∏

i≤Nj (t)

(1 − hij )
Mj =

∏

i≤Nl(t)

(1 − hil)
Ml , j, l ∈ B,

(2.8)

where h = (hij ), i = 1, . . . ,mj , j ∈ B . This solution takes the same form as (2.3)
except that j is restricted to belong to B . The order constraints are violated if

∏

i≤Nj (t)

(1 − ȟij )
Mj <

∏

i≤Nl(t)

(1 − ȟil)
Ml

for all j ∈ B1 and l ∈ B2 when B1 precedes B2. Our PAVA (see Algorithm 1) starts
by setting up k singleton blocks of sample indices, {1}, . . . , {k}. The algorithm
proceeds by sweeping through the blocks from the left until an adjacent pair of
violators is found, and then pooling this pair of blocks. This process is repeated
until no adjacent violators are found, which occurs after finitely many iterations.
The main challenge in connecting this PAVA solution with the denominator of the
local NPLR is to show that the Lagrange multipliers coming from PAVA are non-
negative [i.e., agreeing with (2.6b)], while it is relatively easy to show agreement
of the PAVA solution with (2.5) and the remaining parts of (2.6). Uniqueness of the
maximizer of the denominator of the local NPLR (as shown in Section 4.1) then
completes the proof.

3. Noninferiority testing.

3.1. Test statistics for simple linear ordering. To test H0 versus the alternative
of simple linear ordering H1, we propose the following maximally selected and
integrated local NPLR statistics:

(3.1) Kn = sup
t∈[t1,t2]

[−2 logR(t)
]
, In =

∫ t2

t1

[−2 logR(t)
]
dF̂0(t),
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Algorithm 1: PAVA for NPLR at t

Input : right-censored data from k groups
Output : R(t), B(t)

Initialize: q = 0;B(0) = {{1}, . . . , {k}}; ȟ(0)
ij = dij /rij for all i, j

1 while there exists a pair of adjacent violators in B(q) do
2 let B1,B2 ∈ B(q) be the first such pair
3 solve (2.8) with B = B1 ∪ B2

4 ȟ
(q)
ij = ȟij , i = 1, . . . ,mj , j ∈ B

5 ȟ
(q)
ij = ȟ

(q−1)
ij , i = 1, . . . ,mj , j /∈ B

6 B(q+1) = B(q) ∪ {B} \ {B1,B2}
7 q = q + 1
8 end
9 replace h̃ij by ȟ

(q)
ij in (2.7) to get the denominator of R(t)

10 solve (2.8) with B = {1, . . . , k} to get the numerator of R(t)

11 B(t) = B(q).

where F̂0(t) = 1 − Ŝ0(t), Ŝ0(t) is a consistent estimate of the survival function
S0(t) = ∑k

j=1 vj (t)S
Mj

j (t) under H0, and [t1, t2] is as discussed in the Introduc-
tion. We take vj (t) to be inversely proportional to the asymptotic standard devi-
ation of Ŝ

Mj

j (t) and normalized so that
∑k

j=1 vj (t) = 1. Our first result gives the
asymptotic null distributions of Kn and In (see Section 4.2 and Appendix B for the
proof), as expressed in terms of the time-varying weights w1(t), . . . ,wk(t) and the
independent Gaussian processes U1(t), . . . ,Uk(t) defined in Section 2.1.

THEOREM 1. Under H0, if 1 > S0(t1) > S0(t2) > 0, we have

Kn
d−→ sup

t∈[t1,t2]
SSB(t), In

d−→
∫ t2

t1

SSB(t) dF0(t),

where F0(t) = 1 − S0(t),

SSB(t) =
k∑

j=1

wj(t)
[
Ew

(
Uw(t)|I)

j − Ū (t)
]2

,

Uw(t) = [U1(t)/
√

w1(t), . . . ,Uk(t)/
√

wk(t)]T , Ū (t) = ∑k
l=1

√
wl(t)Ul(t), and

the k-vector Ew(Uw(t)|I) is the weighted least squares projection of Uw(t) onto
I = {z ∈ Rk : z1 ≥ · · · ≥ zk} with weights w1(t), . . . ,wk(t).

REMARK 1. The limiting distributions involve a similar weighted sum-of-
squares-between-blocks (SSB) structure as appears in the uncensored case [El
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Barmi and McKeague (2013)]. However, the weights w1, . . . ,wk are much more
complex, with time dependence and adjustment for censoring as well as the
noninferiority margins. Further, our limiting distributions cannot be put into a
distribution-free form because of this extra complexity (for further explanations,
see the Supplementary Material Section S.3 [Chang and McKeague (2019)]).

REMARK 2. Asymptotically the local NPLR statistic −2 logR(t) behaves
like a weighted SSB respecting the simple linear ordering constraint. This is in
close analogy with standard ANOVA-type testing.

REMARK 3. In practice, t1 and t2 will often be specified in a study protocol.
They could also be chosen in a data-driven fashion, as related to the condition 0 <
S0(t2) < S0(t1) < 1. For example, we could take t1 = inf{t : Ŝj (t) < 1 for all j}
and t2 = sup{t : Ŝj (t) > 0 for all j} [cf. Chang, El Barmi and McKeague (2016)];
this is what we use in our simulation studies and data analysis.

REMARK 4. For k = 2, the limiting distribution of Kn reduces to
supt∈[t1,t2]{ϒ2

+(t)}, where ϒ is a mean-zero Gaussian process with covariance
function (θ1 + θ2)(min(s, t))/

√
(θ1 + θ2)(s)(θ1 + θ2)(t). When M1 = M2 = 1,

this limiting distribution becomes the one in Theorem 1 of Chang and McKeague
(2016), after a transformation in the time scale.

As mentioned in Remark 1, the asymptotic null distributions are not distribution-
free, so we devise a bootstrap method to calibrate the tests. To obtain critical values
for Kn and In, we utilize a multiplier bootstrap approach commonly used in sur-
vival analysis [see, e.g., Parzen, Wei and Ying (1997)]. Specifically, the limiting
distribution of Kn and In can be bootstrapped by replacing each Uj(t) by its mul-
tiplier bootstrap

(3.2) U∗
j (t) = √

nj

nj∑

i=1

[{ nj∑

l=1

I (Xlj ≥ Xij )

}−1

δij I (Xij ≤ t)ξij

]/
σ̂j (t)

and replacing wj(t) by its estimate ŵj (t), where δij is the censoring indicator and
Xij the minimum of the survival time and censoring time for the ith subject in the
j th sample, and the ξij are i.i.d. N(0,1)-multipliers independent of the data. This
way, to calibrate the test we simulate K∗

n and I ∗
n by repeatedly generating samples

of Gaussian random multipliers {ξij }. We then compare the empirical quantiles of
these bootstrapped values K∗

n and I ∗
n with our test statistic Kn and In, respectively.

3.2. Testing Hc
01 versus H01. As mentioned in the Introduction, our main

procedure of testing H0 versus H1 needs to be preceded by a test of Hc
01 ver-

sus H01 = H0 ∪ H1. This initial test is used to exclude the possibility of cross-
ings or alternative orderings that constitute Hc

01. Such a test can be based on
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a confidence tube for ψj (t) ≡ Mj logSj (t) − Mj+1 logSj+1(t) simultaneously
over t ∈ [t1, t2] and j = 1, . . . , k − 1. We adapt the two-sample random multi-
plier bootstrap band of Parzen, Wei and Ying (1997) for this purpose. Specifi-

cally, using √
nj (log Ŝj (t) − logSj (t))/σ̂j (t)

d−→ Uj(t) jointly in ℓ∞([t1, t2]) for
j = 1, . . . , k, along with the definition of θj (t) and the continuous mapping theo-
rem, we have

sup
j,t∈[t1,t2]

√
n
∣∣ψ̂j (t) − ψj (t)

∣∣

d−→ sup
j,t∈[t1,t2]

∣∣Uj(t)
√

θj (t) − Uj+1(t)
√

θj+1(t)
∣∣,

(3.3)

where ψ̂j (t) = Mj log Ŝj (t) − Mj+1 log Ŝj+1(t) and j varies from 1 to k − 1.
This limiting distribution can be bootstrapped by replacing Uj(t) by the U∗

j (t) in
(3.2). Then an asymptotic 100(1 − α)% simultaneous confidence tube for ψj (t)

(j = 1, . . . , k − 1) can be constructed as follows: simulate

sup
j=1,...,k−1

sup
t∈[t1,t2]

∣∣U∗
j (t)

√
θ̂j (t) − U∗

j+1(t)
√

θ̂j+1(t)
∣∣

by repeatedly generating samples of Gaussian random multipliers {ξij }. Denote
the upper α-quantile of these bootstrapped values by c∗

α . The proposed tube is
U(t) = U1(t) × U2(t) × · · · × Uk−1(t) for t ∈ [t1, t2], where

Uj (t) = ψ̂j (t) ± n−1/2c∗
α = [

ℓj−(t), ℓj+(t)
]

for j = 1, . . . , k − 1.
We construct a rule to reject the null Hc

01 as follows. Note that evidence for
alternative H01 is provided by evidence for either H0 or H1. Support for H1 arises
on the intersection of the events E11 = {for all j , ℓj−(sj ) > 0 for some sj } and
E12 = {ℓj+(·) ≥ 0 for all j }, and support for H0 arises on the intersection of E01 =
{ℓj−(·) ≤ 0 for all j} and E12; note that here j varies from 1 to k − 1. Thus, we
take the rejection region to be the union of these events, which can be expressed
as E = E12 ∩ (E01 ∪ E11). Note that in the two-sample case, E01 ∪ E11 is the whole
parameter space [since we just need to consider U1(t)], so E = E12; the test then
coincides with the one-sided version of the test for no crossings given in Chang
and McKeague (2016).

Now we show that this test has asymptotic level α. Note that (3.3) implies that
U has coverage P(ψ ∈ U) → 1 −α, with maximal width W = Op(1/

√
n) over all

Uj , where ψ = [ψ1, . . . ,ψk−1]T . It can be shown that under Hc
01 at least one of

the following occurs:

Case 1: inft ψı (t) < 0 for some ı;
Case 2: supt ψı (t) > 0 for some ı, and ψl(·) ≤ 0 for some l.
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First, consider case 1 and let ϵı = − inft ψı(t) > 0. Since the acceptance region is
Ec = Ec

12 ∪ (Ec
01 ∩ Ec

11), and {ψ ∈ U} ∩ {W < εı} ⊂ Ec
12,

P
(
Hc

01 rejected
) ≤ P(E12) ≤ P(ψ /∈ U) + P(W ≥ εı ) → α.

A similar argument works for case 2, except that now the Ec
01 ∩ Ec

11 part of the
acceptance region comes into play.

The family-wise error rate of the proposed two-step procedure: testing Hc
01 fol-

lowed by testing H0, can be controlled at the same α-level as the individual tests.
This is due to the partitioning principle of Finner and Strassburger (2002), which
holds when the null hypotheses are disjoint (in our case Hc

01 and H0 are indeed
disjoint).

3.3. Combining pairwise tests for simple linear ordering. As mentioned in the
Introduction, a competing method for testing H1 would be to use a combination of
our pairwise NPLR tests. Consider the pairwise test (1.4) for a given j . By a slight
extension of results in Chang and McKeague (2016), the local NPLR is

(3.4) Rj (t) =
sup {L(Sj , Sj+1) : S

Mj

j (t) = S
Mj+1
j+1 (t)}

sup {L(Sj , Sj+1) : S
Mj

j (t) ≥ S
Mj+1
j+1 (t)}

.

Thus the approach developed in Sections 2.2–3.1 applies here, as we are deal-
ing with the special case of k = 2. Then, for testing

⋃k
l=1 Hl

0 versus H1, the
intersection-union principle can be used to construct an asymptotic level α test
with the rejection region being the intersection of the individual rejection regions
{Iln > cα,l} over l = 1, . . . , k − 1, where

Iln =
∫ t2

t1

[−2 logRl(t)
]
dF̂0(t),

cα,l is the upper α-quantile of the bootstrapped values based on replacing Ul(t) in
the limiting distribution of Theorem 1 (with only sample j and j + 1 involved) by
the U∗

l (t) in (3.2).

3.4. Testing the omnibus alternative to H0. Although our focus has been on
noninferiority testing, a by-product of our methodology (when Mj ≡ 1) is a new
NPLR approach to the classical k-sample problem of testing H0 versus its comple-
ment, that is, the omnibus alternative that at least two of the survival functions are
different [see, e.g., Andersen et al. (1993), Chapter 5]. When order restrictions are
removed, the denominator of R(t) is just the unconstrained maximum (attained by
the KM estimates), and thus unconstrained versions Ko

n and Io
n of our earlier test

statistics in (3.1) are readily constructed. Their asymptotic null distributions are
given as follows.
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THEOREM 2. Under H0 with Mj ≡ 1 and the assumptions of Theorem 1, we
have

Ko
n

d−→ sup
t∈[t1,t2]

SSBo(t), Io
n

d−→
∫ t2

t1

SSBo(t) dF0(t),

where

SSBo(t) =
k∑

j=1

wj(t)

[
Uj(t)√
wj(t)

− Ū (t)

]2
.

The limiting process SSBo(t) can again be interpreted as a weighted sum of
squares between blocks, but now each component of the sum only compares an in-
dividual group (rather than adjacent groups that have been pooled) with an overall
weighted average, in parallel with standard ANOVA. In other words, each block
only consists of an individual group because no order restrictions have been im-
posed. These tests can be calibrated by a similar multiplier bootstrap approach as
described in Section 3.1.

Interestingly, the nonparametric-likelihood-optimized ŵj that weight the infor-
mation from the k groups do not seem to have been proposed previously. These
weights take into account sampling variation, the sample proportions pj , the mar-
gins and the censoring patterns, which are not fully incorporated into, for example,
tests of Jonckheere–Terpstra-type [Gehan (1965), Liu and Tsai (1999)] or Bonfer-
roni correction of pairwise comparisons.

4. Approximating the local NPLR.

4.1. Solving the constrained optimization. In this section, we derive the ex-
pression (2.7) for the local NPLR, which is a first step toward analyzing the asymp-
totic behavior of our test statistics. First, consider the denominator of the local
NPLR (2.2) and apply the KKT method. After a log transformation, the optimiza-
tion problem is to minimize

(4.1) −
k∑

j=1

mj∑

i=1

{
dij (loghij ) + (rij − dij ) log(1 − hij )

}

over h ≡ (h11, . . . , hm11, . . . , h1k, . . . , hmkk) ∈ (0,1)m, where m = ∑k
j=1 mj , sub-

ject to the constraints

(4.2) Mj+1
∑

i≤Nj+1(t)

log(1 − hi,j+1) − Mj

∑

i≤Nj (t)

log(1 − hij ) ≤ 0

for j = 1, . . . , k − 1. Since the domain (0,1)m is convex, the objective and con-
straint functions are convex and differentiable, and Slater’s condition is satisfied,
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the KKT conditions are necessary and sufficient for optimality. Define the La-
grangian L : (0,1)m × Rk−1 → R by

L(h,λ) ≡ −
k∑

j=1

mj∑

i=1

{
dij (loghij ) + (rij − dij ) log(1 − hij )

}

+
k−1∑

j=1

λj

{
Mj+1

∑

i≤Nj+1(t)

log(1 − hi,j+1) − Mj

∑

i≤Nj (t)

log(1 − hij )

}
,

where λ ≡ (λ1, . . . ,λk−1). An optimal solution (at the end of this paragraph we
show it is unique), denoted as (h̃, λ̃), must satisfy the KKT conditions in (2.6)
and ∇hL(h̃, λ̃) = 0 (stationarity). The stationarity condition yields h̃ij = dij /rij
for i = Nj(t) + 1, . . . ,mj and (2.5) for i = 1, . . . ,Nj (t), j = 1, . . . , k. Define
µj = maxi=1,...,Nj (t)(dij − rij ). Since h̃ is in the domain (0,1)m, we have that
µj < Mj(λ̃j − λ̃j−1), where µj ≤ 0 for j = 1, . . . , k. This implies L(h, λ̃) is a
strictly convex function of h, and thus the optimal solution is unique [see, e.g.,
Boyd and Vandenberghe (2004), page 248].

The numerator of R(t) can be handled in a similar fashion. Denoting the optimal
solution in this case by (h̄, λ̄), it turns out h̄ij has the same form as h̃i,j but with λ̃j

replaced by λ̄j , and λ̄j only needs to satisfy µj < Mj(λ̄j − λ̄j−1) for j = 1, . . . , k
(recall from Section 2.2 that λ̄k = 0) and (2.4). By a similar argument as used
before, the optimal solution (h̄, λ̄) is unique. Note that the estimated hazards after
time t under no constraints, namely h̃ij and h̄ij for i = Nj(t) + 1, . . . ,mj , are the
same in the numerator and denominator, and so these terms cancel out. This leads
to (2.7).

4.2. Limiting behavior of the local NPLR statistic. To prove Theorem 1, we
first approximate the local NPLR statistic in terms of the margins Mj and the
Lagrange multipliers in the following lemma; see Supplementary Material, Sec-
tion S.1.1 for the proof [Chang and McKeague (2019)].

LEMMA 3. Under the conditions of Theorem 1,

−2 logR(t) =
k∑

j=1

(
-̄2

j (t) − -̃2
j (t)

) σ̂ 2
j (t)

nj
+ Op

(
n−1/2)

uniformly over t ∈ [t1, t2], where -̃j (t) = Mj(λ̃j (t) − λ̃j−1(t)), -̄j (t) =
Mj(λ̄j (t) − λ̄j−1(t)) for j = 1,2, . . . , k.

Similar decompositions just involving terms of the form -̄j (t) have previously
been found for Mj ≡ 1 and k ≤ 2 [see, e.g., Li (1995), McKeague and Zhao
(2002)], but the presence of the -̃j (t) term is new due to the order-restricted as-
pect of our problem. The special case k = 2 is studied in Chang and McKeague
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(2016), but the general decomposition involving -̃j (t) cannot be derived from that
case. This reduces the problem to studying the large sample properties of -̄j (t)

and -̃j (t), since the limiting behavior of σ̂ 2
j (t) is already known.

The processes -̄j (t) can be jointly approximated by a time-dependent random
linear transformation of the processes Ûj (t), j = 1, . . . , k, where Ûj (t) is defined
in Section 2.1. We then make use of standard asymptotic properties of Ŝj (t) and
the functional delta method to study the limiting behavior of -̄j (t). A similar
approach will be used for -̃j (t), but the problem is more challenging because
each PAVA block has to be treated separately. These considerations and the fact
that σ̂ 2

j (t) is a uniformly consistent estimate of σ 2
j (t) lead to the following lemma;

see Appendices B.1 and B.2, and the Supplementary Material, Sections S.1.2–
S.1.3 [Chang and McKeague (2019)] for the proof.

LEMMA 4. Under the conditions of Theorem 1, the leading term of the de-
composition in Lemma 3 is asymptotically equivalent to

∑

B∈B(t)

∑

l∈B

wl(t)
{
ÛB(t) − Ǔ (t)

}2 d−→ SSB(t)

as processes on [t1, t2], where B(t) is the set of blocks resulting from PAVA,

ÛB(t) =
∑

j∈B

√
wj(t)Ûj (t)

/ ∑

j∈B

wj (t), Ǔ (t) =
k∑

j=1

√
wj(t)Ûj (t).

Lemmas 3 and 4 together connect the asymptotic behavior of −2 logR(t) with
a weighted variation among ÛB(t) over the PAVA blocks B ∈ B(t), and show

that it converges in distribution to SSB(t). It is obvious that Ǔ (t)
d−→ Ū (t) in

ℓ∞[t1, t2], but it is more challenging to obtain the limiting distribution of ÛB(t)

for B ∈ B(t) because B(t) changes with n. The proof utilizes the sample version
Ew(Ûw(t)|I) of Ew(Uw(t)|I), where Ûw(t) is defined by replacing Uj(t) by
Ûj (t) in Uw(t). Specifically, by a similar PAVA argument as in Section 2.3 and
Appendix A, Ew(Ûw(t)|I) determines a (possibly different) set of blocks B′(t)
such that ÛB1(t) ≥ ÛB2(t) for B1 ∈ B′(t) preceding B2 ∈ B′(t); for the details, see
the proof of Lemma S.2 in the Supplementary Material, Section S.1.4 [Chang and
McKeague (2019)]. The key part of the proof is to show that

∑

B∈B(t)

∑

j∈B

wj (t)
{
ÛB(t) − Ǔ (t)

}2

=
k∑

j=1

wj(t)
{
Ew

(
Ûw(t)|I)

j − Ǔ (t)
}2 + op(1)

(4.3)
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uniformly over t ∈ [t1, t2]. Then, since Ew(·|I) is a continuous function on Rk ,
by the continuous mapping theorem we obtain that the first term on the RHS of
(4.3) converges weakly to SSB(t), which establishes Lemma 4. To show (4.3),
let B(j) ∈ B(t), and B ′(j) ∈ B′(t) denote the blocks containing j . Then (4.3) is
equivalent to

k∑

j=1

wj(t)
{
ÛB(j)(t) − Ǔ (t)

}2 −
k∑

j=1

wj(t)
{
ÛB ′(j)(t) − Ǔ (t)

}2

=
k∑

j=1

wj(t)
{
ÛB(j)(t) − ÛB ′(j)(t)

}{
ÛB(j)(t) + ÛB ′(j)(t)

} = op(1),

(4.4)

since
∑k

j=1 wj(t)Ǔ(t){ÛB(j)(t)−ÛB ′(j)(t)} = 0. Further,
∑k

j=1 wj(t){ÛB(j)(t)+
ÛB ′(j)(t)} is uniformly bounded in probability, so (4.4) is a consequence of the
following lemma.

LEMMA 5. Under the conditions of Theorem 1, for each j = 1, . . . , k, the
processes ÛB(j)(t) and ÛB ′(j)(t) are asymptotically equivalent uniformly over t ∈
[t1, t2].

The proof of Lemma 5 is based on understanding how the PAVA that solves
the NPLR (as described in Section 2.3) relates to the PAVA from Ew(Ûw(t)|I);
see the Supplementary Material, Sections S.1.3 and S.1.4 [Chang and McKeague
(2019)].

5. Extensions.

5.1. Retention-of-effect. As mentioned in the Introduction, an alternative way
of assessing noninferiority (of experimental to reference treatments) is in terms of
log-relative-survival versus placebo. Here, we briefly present an extension of our
method to deal with such retention-of-effect hypotheses in the three-arm setting
described in the Introduction. That is, we are interested in testing

(5.1) Hr
0 : S2/S1 ≼ (S3/S1)

M versus Hr
1 : S2/S1 ≻ (S3/S1)

M.

Here, the noninferiority margin M > 1 specifies how much the effect of the stan-
dard therapy relative to placebo is retained by the experimental treatment. Specif-
ically, S2/S1 ≻ (S3/S1)

M means the experimental treatment achieves more than
1/M × 100% of the effect of the standard therapy (relative to placebo).

We can again devise a test statistic based on the local NPLR using the La-
grange/KKT method; see the Supplementary Material, Section S.4 [Chang and
McKeague (2019)]. The k = 3 version of Theorem 1 extends to this setting, the
only differences being that the projection is onto I = {z ∈ R3 : z1 = z2 ≥ z3}, and
the weight functions w1, w2, w3 are more complicated because the survival func-
tions do not have equivalent roles (as they do in simple linear ordering).
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5.2. Stratified testing. In multicenter clinical trials, randomization of subjects
is often carried out separately by medical center or region. Our procedure involves
two steps with different test statistics, so developing a unified approach to strati-
fied testing raises some difficulties. If the interest is in testing whether H1 holds
in at least one stratum, then a straightforward approach would be to use our orig-
inal procedure in each stratum, along with a Bonferroni adjustment. On the other
hand, if the interest is in testing whether H1 holds in all the strata, then by the
intersection-union principle, the same alpha-level can be used for each stratum-
specific procedure.

6. Simulation study. In this section, we compare the performance of the pro-
posed procedures with the competing method based on the combination of pair-
wise tests (using the intersection-union principle). For the pairwise tests, we con-
sider two possibilities: one based on our NPLR method, and the other based on a
comparable Cox model absolute-margin analysis. As mentioned in the Introduc-
tion, these procedures do not need multiplicity adjustment, unless there is inter-
est in testing the individual pairwise alternatives. For this need, we also consider
multiplicity-adjustment in the pairwise tests and compare our NPLR approach with
the corresponding Cox model absolute-margin analysis. We restrict to the case of
noninferiority testing with simple linear ordering.

The simulation setup is a three-arm noninferiority trial (k = 3) in which shorter
survival is desirable (as in our real data example in Section 7): S1 represents a
placebo, S2 a standard therapy and S3 an experimental therapy. We consider three
Weibull scenarios: A (representing H0), B and C (representing H1), and in each
define the Sj by specifying S

Mj

j (see Figure 1) and Mj . In addition, there are
three sets of margins: (M1,M2,M3) = (1,1,10/8), (M1,M2,M3) = (1,1,10/7)
and (M1,M2,M3) = (1.1,1,10/8); this results in nine sets of (S1, S2, S3). All of
these margins represent superiority of the standard therapy over the placebo (i.e.,
M1 ≥ M2), and a noninferiority of the experimental to the standard therapy (i.e.,

FIG. 1. Simulation scenarios: A (left) representing H0, B (middle) and C (right) representing H1.

Each S
Mj

j is specified as Weibull: placebo (solid), standard therapy (dashed), experimental therapy
(two-dashed). Note in A all the three lines overlap.
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M2 < M3) with a margin of 0.8 or 0.7. We specify the censoring distributions (the
same in each arm) to be uniform with administrative censoring at t = 10, and a
censoring rate of either 10% or 25% in the placebo group. Also, we consider a per
group sample size of 130, which is close to the smallest group size in our real data
example. Additional settings including different Hc

1 setup, unequal group sample
sizes and higher censoring rate (up to 50%) are also considered and presented in
the Supplementary Material, Section S.5.1.

6.1. Accuracy. We generate data using the aforementioned three sets of
(M1,M2,M3) and Scenario A (in which H0 is satisfied; see the left panel of
Figure 1). Our two-step NPLR procedures based on Kn and In are compared
with the combined-pairwise NPLR test in Section 3.3, as well as a version of the
Wald-type Cox model approach [Kombrink, Munk and Friede (2013)]. Specifi-
cally, the latter approach involves fitting a single Cox model, with the placebo
as the reference group and indicator covariates for the standard and experimen-
tal groups. Denote the corresponding regression coefficients as β2 and β3, re-
spectively. The test rejects the overall alternative HS,R,N

1 = HS,R
1 ∩ HN

1 if both
HS,R

0 : exp(β2) ≤ M1/M2 and HN
0 : exp(β3) ≤ (M2/M3) exp(β2) are rejected

(i.e., an intersection-union test). Since ordering in hazard functions implies or-
dering in survival functions, HS,R

1 implies H 1
1 , HN

1 implies H 2
1 , and HS,R,N

1
implies H1. Note that their original HN

0 is formulated in terms of β2/β3 ex-
pressing a retention-of-effect; changing the comparison to a ratio of hazards [i.e.,
exp(β2 − β3)], HN

0 corresponds to M3h3 ≺ M2h2, thus providing an absolute-
margin analysis. We have also modified their original HS,R

0 to allow for incorpo-
ration of the margins M1 and M2; when M1 = M2 = 1 this coincides with their
original HS,R

0 .
The empirical levels of these tests are given in Table 1. Our proposed two-

step NPLR procedures based on Kn and In are both close to the nominal level,
whereas the competing methods based on combining pairwise tests are extremely

TABLE 1
Empirical significance levels at α = 0.05 based on 1000 replications, for nj = 130 and k = 3.

Calibrations for the NPLR tests are based on 1000 bootstrap samples. Cox denotes the combined
Cox model test described in Section 6.1, and PW denotes the combined-pairwise NPLR test

10% censoring 25% censoring

Scenario (M1,M2,M3) Kn In Cox PW Kn In Cox PW

A (1,1,10/8) 0.052 0.052 0 0 0.041 0.049 0 0
(1,1,10/7) 0.048 0.051 0 0 0.049 0.047 0 0

(1.1,1,10/8) 0.055 0.051 0 0 0.044 0.044 0 0
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TABLE 2
Empirical significance levels at α = 0.025 based on 1000 replications, for nj = 130 and k = 3.

Calibrations for the NPLR tests are based on 1000 bootstrap samples. Cox denotes a pairwise Cox
model test (Section 6.1), and PW denotes a pairwise NPLR test. The alternative hypotheses are

indicated on the top row

H
S,R
1 H 1

1 HN
1 H 2

1 H
S,R,N
1 H1

Cox PW Cox PW Cox PW

Scenario (M1,M2,M3) 10% 25% 10% 25% 10% 25% 10% 25% 10% 25% 10% 25%

A (1, 1, 10/8) 0.022 0.023 0.023 0.021 0.031 0.026 0.026 0.027 0 0 0 0
(1, 1, 10/7) 0.022 0.022 0.024 0.022 0.028 0.025 0.028 0.025 0 0 0 0

(1.1, 1, 10/8) 0.024 0.025 0.024 0.026 0.023 0.023 0.026 0.026 0 0 0 0

conservative. We have found that the individual pairwise tests have accurate em-
pirical levels (results not shown), so the use of the intersection-union principle in
the construction of the combined-pairwise tests appears to be the source of their
conservativeness. We conclude that the proposed two-step NPLR tests are more
accurate than the combined-pairwise NPLR test and Cox model test in moderate
samples.

Next, we consider testing the individual pairwise alternatives using a Bonferroni
adjustment. We compare our pairwise NPLR tests with the pairwise Cox model
tests described above. The empirical levels of these tests are given in Table 2. Both
the NPLR and Cox model tests for the individual alternatives have accurate levels,
but those for the overall alternatives are extremely conservative. Kombrink, Munk
and Friede [(2013), Section 5.1], noted that such overall levels can be controlled
in their retention-of-effect setting. However, the drawback of using pairwise tests
is that they are too conservative overall, even though they have the benefit of ad-
dressing the individual alternatives.

6.2. Power comparisons. In this section, we compare the empirical powers of
the proposed NPLR tests with the combined-pairwise NPLR test and Cox model
test described in Section 6.1. We generate data using the aforementioned three sets
of (M1,M2,M3) and Scenarios B and C in which H1 is satisfied; see the middle
and right panels of Figure 1, respectively. The S

Mj

j have proportional hazards in
Scenario B, but crossing hazards in Scenario C.

The empirical powers are reported in Table 3. Our proposed two-step NPLR
procedures based on Kn and In outperform the other two tests in all the cases con-
sidered, with an increase in power ranging from 10–80%, even under Scenario B.
The combined Cox model test performs better than the combined NPLR test un-
der proportional hazards in Scenario B, but much worse under crossing hazards in
Scenario C. We conclude that the proposed two-step NPLR tests are much more
powerful than any of the competing methods.
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TABLE 3
Empirical powers in the setting of Table 1 except under the alternatives Scenario B (proportional

hazards) and C (crossing hazards)

10% censoring 25% censoring

Scenario (M1,M2,M3) Kn In Cox PW Kn In Cox PW

B (1, 1, 10/8) 0.713 0.723 0.374 0.276 0.778 0.806 0.291 0.236
(1, 1, 10/7) 0.648 0.659 0.373 0.263 0.710 0.739 0.280 0.215

(1.1, 1, 10/8) 0.703 0.709 0.391 0.273 0.765 0.796 0.312 0.237

C (1, 1, 10/8) 0.933 0.933 0.135 0.665 0.938 0.938 0.154 0.608
(1, 1, 10/7) 0.936 0.936 0.099 0.636 0.948 0.949 0.138 0.588

(1.1, 1, 10/8) 0.926 0.926 0.113 0.652 0.940 0.940 0.134 0.592

The empirical powers of the multiplicity-adjusted pairwise NPLR tests and pair-
wise Cox model tests (see Section 6.1) are given in Table 4. Again the Cox ap-
proach performs better than the pairwise NPLR tests under proportional hazards
in Scenario B, but much worse under crossing hazards in Scenario C (comparing
the Cox and PW columns).

7. Application to a noninferiority trial. We analyze data from a three-arm
noninferiority clinical trial involving treatments for major depression [Mielke,
Munk and Schacht (2008)]. The data are obtained by digitizing the published KM
curves and reconstructing survival and censoring information using the algorithm
developed by Guyot et al. (2012). The endpoint is time (in days) to first remission,
where remission is defined as the attainment of a low score (of ≤7) on the 17-item
Hamilton Depression Rating Scale. A shorter time to first remission is desirable.

TABLE 4
Empirical powers in the setting of Table 2 except under the alternatives Scenario B (proportional

hazards) and C (crossing hazards)

H
S,R
1 H 1

1 HN
1 H 2

1 H
S,R,N
1 H1

Cox PW Cox PW Cox PW

(M1,M2,M3) 10% 25% 10% 25% 10% 25% 10% 25% 10% 25% 10% 25%

B (1, 1, 10/8) 0.482 0.417 0.396 0.361 0.625 0.563 0.548 0.492 0.227 0.156 0.147 0.107
(1, 1, 10/7) 0.479 0.412 0.388 0.364 0.612 0.526 0.539 0.455 0.211 0.139 0.137 0.092

(1.1, 1, 10/8) 0.482 0.409 0.392 0.346 0.627 0.581 0.540 0.514 0.222 0.164 0.139 0.108

C (1, 1, 10/8) 0.264 0.286 0.661 0.642 0.399 0.434 0.787 0.785 0.036 0.060 0.475 0.457
(1, 1, 10/7) 0.259 0.278 0.657 0.635 0.340 0.376 0.756 0.746 0.025 0.047 0.445 0.421

(1.1, 1, 10/8) 0.222 0.250 0.643 0.625 0.392 0.431 0.786 0.781 0.031 0.044 0.463 0.443
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FIG. 2. KM curves Ŝj (left) and Ŝ
Mj

j (right) from a noninferiority trial comparing treatments of
major depression: placebo (solid), standard treatment (dashed) and experimental treatment (two–
dashed).

A total of 664 patients were randomized to placebo (n1 = 135), standard treatment
(n2 = 267) or experimental treatment (n3 = 262); see Figure 2 for the KM and
Ŝ

Mj

j curves.
Using (M1,M2,M3) = (1,1,10/7), our two-step NPLR test based on Kn

(p < 0.01) indicates noninferiority of the experimental treatment over the stan-
dard treatment and assay sensitivity, whereas In fails to provide such evidence
(p = 0.09). Judging from the Ŝ

Mj

j curves (Figure 2, right), the reason appears to
be that the maximal difference (measured by Kn and appearing at around 50 days)
in the survival curves between placebo and standard treatment is large enough to
establish assay sensitivity, whereas the cumulative difference (measured by In)
is not large enough. The conclusion from In is supported by both the combined-
pairwise Cox (see Section 6.1) and NPLR procedures. For the individual pair-
wise alternatives at α = 0.025, the pairwise Cox model tests show noninferiority
(p < 0.01) but cannot establish assay sensitivity (p = 0.37). The pairwise NPLR
tests, on the other hand, cannot conclude assay sensitivity (p = 0.66) or noninfe-
riority (p = 0.037 for absolute-margin and p = 0.038 for retention-of-effect).

It is often of interest to carry out power calculations, determine sample sizes
and find optimal allocation ratios prior to a clinical trial. To do this, we suggest
a Monte Carlo simulation-based approach; we have provided an example of such
an analysis in the Supplementary Material, Section S.5.2 [Chang and McKeague
(2019)], as well as included the corresponding R code (see Supplementary Mate-
rial, Section S.6) for the power calculations.

8. Discussion. In this paper, we have developed nonparametric likelihood ra-
tio tests for a novel class of orderings of k ≥ 2 survival functions based on right-
censored data. The proposed test statistics are constructed as maximally-selected
and integrated local NPLR statistics. We show that the limiting distributions of
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these test statistics can be expressed in terms of weighted sums of squares involv-
ing projections of certain Gaussian processes onto the given ordered alternative.
The limiting distributions are complex, so we propose calibrating the tests via the
multiplier bootstrap approach. We carried out a simulation study for the case of
simple linear ordering, and found that the new tests have more accurate type I er-
ror and are more powerful than a competing combined pairwise approach based on
either NPLR or a comparable Cox model test for an absolute-margin analysis. In
addition, a multiplicity-adjusted version of our pairwise NPLR tests is shown to be
more powerful than the comparable Cox model approach under crossing hazards.
We applied the proposed tests to data from a three-arm noninferiority trial and ob-
tained a more significant result than the alternative Cox model procedure. While
our focus is on ordered alternative hypotheses, a by-product of our methodology
(when Mj ≡ 1) is a new nonparametric likelihood ratio approach to the classical
k-sample problem of testing equality of multiple survival functions.

All k-sample comparison problems naturally involve weights corresponding to
each group, often selected in an ad hoc fashion, but in our case we use a princi-
pled (likelihood ratio) approach that implicitly provides optimal weighting. These
weights emerge explicitly in the asymptotic distributions of the nonparametric like-
lihood ratio statistics. In finite samples, the weighting adjusts for sampling varia-
tion, the sample proportions pj , the margins and the censoring patterns, which are
not fully incorporated into, for example, previously proposed tests of Jonckheere–
Terpstra-type [Gehan (1965), Liu and Tsai (1999)] or Bonferroni correction of
pairwise comparisons.

We have provided a complete solution to the problem of testing for order-
restrictions among survival functions under right censorship via nonparametric
likelihood ratio statistics. Our solution hinges on introducing a novel type of PAVA
and establishing its asymptotic equivalence to the projection of Gaussian processes
mentioned in the previous paragraph. The proposed procedure is formulated for
simple linear orderings that are relevant to noninferiority testing, and naturally
extends to more general tests for partial orderings. The only change in the limit-
ing distribution in Theorem 1 (and the associated bootstrap calibration) is to use
the projection corresponding to the particular partial order. Possible applications
of this generalization include comparing multiple experimental treatments with
various standard therapies. Another extension is to provide equivalence testing,
which involves two-sided ordered alternatives for the survival functions [see, e.g.,
Romano (2005), for parametric settings]. This could be done within our framework
by testing H1, along with a reversed version of H1 with different margins, based
on the intersection-union principle.

APPENDIX A: CHARACTERIZATION OF NPLR VIA PAVA

Since the inequality constrained maximizer of the denominator of the local
NPLR characterized by (2.5) and (2.6) is unique (see Section 4.1), we only need to
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find one solution (e.g., the one obtained by PAVA). Let q index the sweeps in our
version of PAVA (as discussed in Section 2.3): q = 1, . . . ,Q, where the algorithm
terminates after sweep Q. Denote the set of blocks resulting from sweep q by B(q)

and recall that the algorithm is initialized by B(0) = {{1}, . . . , {k}}. Define, for a
given block B , S̄B(t) = ∏

i≤Nj (t)(1 − ȟij )
Mj , where ȟij is given in (2.8), and j

can be any given element of B because of the equality constraint for all j ∈ B;
note that S̄B(t) does not depend on q once we fix a B ∈ B(q). Since ȟij takes the
same form as (2.3), (2.5) is satisfied if we can show that the Lagrange multipliers
under the equality constraints (2.4) for j ∈ B and any B ∈ B(Q) satisfy (2.6a)–
(2.6c). Indeed, (2.6a) is satisfied since our PAVA terminates with S̄B(t) ≥ S̄B ′(t)

for B,B ′ ∈ B(Q) if B precedes B ′. As for (2.6b) and (2.6c), suppose the final sweep
results in more than one block and let B ∈ B(Q) (the proof is similar when it results
in only one block). Denote the maximal element of B as l. Then λ̃l = 0 (by defini-
tion when B is the last block), because there is no pooling between B and the next
block when B is not the last block. This means (2.6b) and (2.6c) are satisfied when
j = l. On the other hand, for j ′ ∈ B \ {l}, because we impose equality constraints
when pooling within a block, (2.6c) holds when j = j ′.

The challenging part of the argument is to show that (2.6b) holds when j = j ′

for j ′ ∈ B \ {l}. To this end, we use induction on the sweep index q . In contrast to
the previous argument that focuses on B(Q), we instead take B ∈ B(q) and show

(A.1) λ
(q)
j > 0 for all j ∈ B \ {l},

where λ
(q)
j is j th Lagrange multiplier after sweep q and l again denotes the maxi-

mal element of B . The induction proof assumes the result for sweep q −1 and then
proves (A.1). This is done by comparing the Lagrange multipliers before and after
pooling at sweep q in which a new block B = B1 ∪ B2 is produced from adjacent
violators B1,B2 ∈ B(q−1).

For the initial induction step q = 1, let the first two adjacent violators be
{ı}, {ı + 1} ∈ B(0) [i.e., S̄{ı}(t) < S̄{ı+1}(t)], which are being pooled as B =
{ı} ∪ {ı + 1} ∈ B(1). In connection with (2.3) and (2.4) in the characterization of
the local NPLR, define the function aj(x) = [∏i≤Nj (t){1 − dij /(rij + x)}]Mj for
x ∈ (µj ,∞) and j = 1, . . . , k, where we suppress the dependence of aj on t . Since
aı(Mıλ)/aı+1(−Mı+1λ) is strictly increasing and continuous in λ, tends to ∞, and
is less than 1 when λ = 0 [by S̄{ı}(t) < S̄{ı+1}(t)], it equals 1 at a unique λ

(1)
ı > 0.

So we have shown that (A.1) holds for q = 1 and B ∈ B(1) (l = ı + 1 here). For
the main inductive step, now suppose (A.1) holds at sweep q − 1 (q ≥ 2). Then for
sweep q , let the first two adjacent violators be B1,B2 ∈ B(q−1), which are pooled
as B = B1 ∪ B2 ∈ B(q). Suppose B1 precedes B2, so S̄B1(t) < S̄B2(t). The situ-
ation is more complex than q = 1, because instead of dealing with one function
aj(·) in each block, we have to deal with possibly many aj(·) satisfying a string of
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equalities coming from the earlier pooling steps that resulted in B1 and B2:

S̄B1(t) = aı
(
Mıλ

(q−1)
ı

) = aı+1
(
Mı+1

(
λ

(q−1)
ı+1 − λ(q−1)

ı

)) = · · ·

= aȷ
(−Mȷλ

(q−1)
ȷ−1

)(A.2)

and

(A.3) S̄B2(t) = aȷ+1
(
Mȷ+1λ

(q−1)
ȷ+1

) = · · · = al
(−Mlλ

(q−1)
l−1

)
,

where ı and ȷ denote the minimal element and maximal element of B1, respec-
tively. Using (A.2), (A.3) and the fact that S̄B1(t) < S̄B2(t), we next show that
S̄B(t) is strictly sandwiched between S̄B1(t) and S̄B2(t). The idea is to com-
pare (A.2) and (A.3) with S̄B(t). After pooling at sweep q , S̄B(t) satisfies a
similar string of equalities to (A.2) except with q − 1 replaced by q and the
last term being aȷ (Mȷ (λ

(q)
ȷ − λ

(q)
ȷ−1)). Also, S̄B(t) satisfies a similar string of

equalities to (A.3) except with q − 1 replaced by q and the first term being
aȷ+1(Mȷ+1(λ

(q)
ȷ+1 − λ

(q)
ȷ )). First, we show that S̄B1(t) < S̄B(t), arguing by con-

tradiction. Suppose S̄B1(t) ≥ S̄B(t). Then because aj(·) is strictly increasing, a
comparison of (A.2) and the string of equalities satisfied by S̄B(t) leads to

λ(q)
ı ≤ λ(q−1)

ı ,(A.4)

λ
(q)
j+1 − λ

(q)
j ≤ λ

(q−1)
j+1 − λ

(q−1)
j , j = ı, . . . , ȷ − 2,(A.5)

λ(q)
ȷ − λ

(q)
ȷ−1 ≤ −λ

(q−1)
ȷ−1 .(A.6)

By (A.4) and (A.5), λ
(q)
j ≤ λ

(q−1)
j for j = ı + 1, . . . , ȷ − 1. This and (A.6) imply

λ
(q)
ȷ ≤ 0. Also, S̄B1(t) ≥ S̄B(t) implies S̄B2(t) > S̄B(t), so that a comparison of

(A.3) and the string of equalities satisfied by S̄B(t) gives

λ
(q−1)
l−1 < λ

(q)
l−1,(A.7)

λ
(q)
j − λ

(q)
j−1 < λ

(q−1)
j − λ

(q−1)
j−1 , j = l − 1, . . . , ȷ + 2,(A.8)

λ
(q)
ȷ+1 − λ(q)

ȷ < λ
(q−1)
ȷ+1 .(A.9)

By (A.7) and (A.8), we have λ
(q−1)
j < λ

(q)
j for j = ȷ + 1, . . . , l − 1. The last in-

equality and (A.9) then gives 0 > −λ
(q)
ȷ , which contradicts λ

(q)
ȷ ≤ 0. Thus we

have S̄B1(t) < S̄B(t) instead, which implies λ
(q)
ȷ > 0 by (A.4)–(A.6) with ≤ re-

placed by >. Next, suppose S̄B(t) ≥ S̄B2(t). Then by (A.7)–(A.9) with > re-
placed by ≤, we can show 0 ≤ λ

(q)
ȷ , which contradicts with λ

(q)
ȷ > 0 obtained

from S̄B1(t) < S̄B(t). Thus we have S̄B(t) < S̄B2(t).
Since S̄B1(t) < S̄B(t), we have λ

(q)
j > λ

(q−1)
j for j = ı, . . . , ȷ − 1 and λ

(q)
ȷ > 0,

using a similar argument as before but replacing ≤ in (A.4)–(A.6) with >. Also,
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S̄B(t) < S̄B2(t) implies λ
(q)
j > λ

(q−1)
j for j = ȷ + 1, . . . , l − 1, as shown in the

previous paragraph. This and the fact that λ
(q−1)
j > 0 for j ∈ B \ {ȷ, l} by sweep

q − 1 lead to λ
(q)
j > 0 for j ∈ B \ {ȷ, l}. This and λ

(q)
ȷ > 0 complete the proof of

(A.1).

APPENDIX B: PROOF OF THEOREM 1

As mentioned in Section 4.2, we use Lemmas 3 and 4 to prove Theorem 1; the
proof of Lemma 3 is in the Supplementary Material, Section S.1.1 [Chang and
McKeague (2019)]. Then the first assertion in Theorem 1 regarding asymptotic
null distribution of Kn can be established using the continuous mapping theorem
[van der Vaart (2000), Theorem 18.11]. Furthermore, by the uniform consistency

F̂0
P−→ F0 in ℓ∞([t1, t2]) (see first paragraph in Section 3.1) we have weak con-

vergence of [−2 logR, F̂0]T to [SSB,F0]T in (ℓ∞([t1, t2]))2. Then by a remark
following Proposition II.8.6 of Andersen et al. (1993) and the continuous mapping
theorem, we obtain the second assertion in Theorem 1 regarding asymptotic null
distribution of In.

It remains to prove Lemma 4. As a first step toward this, we establish the joint
limiting behavior of -̄j (t). Here and in the sequel, all op and Op terms are under-
stood to hold uniformly over t ∈ [t1, t2].

B.1. Joint limiting behavior of #̄j (t). We first show that #̄(t) ≡ [-̄1(t), . . . ,

-̄k(t)]T is asymptotically equivalent to a time-dependent random linear transfor-
mation of the processes Ûj (t), j = 1, . . . , k. Then we use this result to character-
ize the limiting behavior of the -̄2

j (t)σ̂
2
j (t)/nj term in the asymptotic equivalence

claim in Lemma 4.
We start by examining the estimating equations in (2.4). Since -̄j (t) = Op(

√
n)

(by the Supplementary Material, Section S.2), a Taylor expansion gives
∑

i≤Nj (t)

log
{
1 − dij /

(
rij + -̄j (t)

)}

= log Ŝj (t) + -̄j (t)σ̂
2
j (t)/nj + Op(1/n).

(B.1)

This and (2.4) give

(B.2) ψ̂j (t) + Mj -̄j (t)
σ̂ 2

j (t)

nj
− Mj+1-̄j+1(t)

σ̂ 2
j+1(t)

nj+1
= Op(1/n),

where recall from Section 3.2 that ψ̂j (t) = Mj log Ŝj (t) − Mj+1 log Ŝj+1(t), j =
1, . . . , k − 1. An equivalent matrix formulation of the above is

(B.3) T (t)λ̄(t)/n = −ψ̂(t) + Op(1/n),
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where ψ̂(t) ≡ [ψ̂1(t), . . . , ψ̂k−1(t)]T , λ̄(t) ≡ [λ̄1(t), . . . , λ̄k−1(t)]T , and T (t) is
the (k − 1) × (k − 1) nonsingular tridiagonal matrix (with nonzero elements
only on the main diagonal, and the first diagonals below and above the main
diagonal) given in (S.8) in the Supplementary Material [Chang and McKeague
(2019)]. A recursive algorithm for inverting tridiagonal matrices is available
[Usmani (1994)], but in our case we can find an explicit expression for T −1(t)
(see Supplementary Material, Section S.1.2 for details). Multiplying both sides of
λ̄(t) = −nT −1(t){ψ̂(t)+Op(1/n)} by the k × (k − 1) matrix DM (which just de-
pends on the Mj ) in (S.13) in the Supplementary Material [Chang and McKeague
(2019)], we obtain

(B.4) #̄(t) = DM λ̄(t) = −nDMT −1(t)
{
DT

MA(t) + Op(1/n)
}
,

where A(t) = [log Ŝ1(t) − logS1(t), . . . , log Ŝk(t) − logSk(t)]T = [
√

θ̂1(t)Û1(t)/

M1, . . . ,

√
θ̂k(t)Ûk(t)/Mk]T /

√
n. Then, as we show in Supplementary Material,

Section S.1.2 [Chang and McKeague (2019)], by inserting the explicit expression
for T −1(t) we obtain

(B.5)
[
DMT −1(t)DT

M

]
ij (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M2
i

θ̂i (t)φ̂(t)

∑

l≠i

∏

g∈El

θ̂g(t), i = j,

− MiMj

θ̂i (t)φ̂(t)

∏

g∈Ej

θ̂g(t), i ≠ j,

where φ̂(t) = ∑k
l=1

∏
g∈El

θ̂g(t) is a consistent estimate of φ(t), which is defined
along with El in Section 2.1. Inserting (B.5) into the previous display, and recalling
that θ̂j (t) = nM2

j σ̂ 2
j (t)/nj , algebraic manipulation then leads to

(B.6) -̄2
j (t)

σ̂ 2
j (t)

nj
=

(

Ûj (t) − 1
φ(t)

k∑

l=1

∏

g∈El

θg(t)Ûl(t)

√
θl(t)√
θj (t)

)2

+ op(1)

for j = 1, . . . , k. This allows us to express the leading term above in terms of the
weights wj(t) and the Ûj (t) processes as

(B.7) wj(t)

(
Ûj (t)√
wj(t)

− Ǔ (t)

)2
.

Now we have handled the first part of the asymptotic equivalence claim in
Lemma 4. The second part is handled in the next section.

B.2. Joint limiting behavior of #̃j (t). The argument is analogous to the
equality constrained results in Appendix B.1, because our PAVA (see Appendix A)
shows that -̃j (t) for j ∈ B is the equality constrained solution within the block
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B ∈ B(t). The only difference is that we need to normalize the weight within each
block, as we now show.

The analogue of (B.6) can be shown to be

(B.8) -̃2
j (t)

σ̂ 2
j (t)

nj
=

(
Ûj (t) − 1

φB(t)

∑

l∈B

∏

g∈EB
l

θg(t)Ûl(t)

√
θl(t)√
θj (t)

)2
+ op(1),

where φB(t) = ∑
l∈B

∏
g∈EB

l
θg(t) and EB

l = B \ {l}. When B contains only one

element j , we have -̃j (t) = 0; in this case we define
∏

g∈EB
l

θg = ∏
g∈∅ θg ≡ 1

so that the leading term in (B.8) vanishes as it should. We can further organize the
leading term of (B.8) into a weighted form analogous to (B.7):

(B.9) wj(t)

(
Ûj (t)√
wj(t)

− ÛB(t)

)2
.

We have now shown the asymptotic equivalence claim in Lemma 4. The re-
maining claims are handled in the Supplementary Material, Section S.1.3 [Chang
and McKeague (2019)].
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric testing for multiple survival functions with
noninferiority margins” (DOI: 10.1214/18-AOS1686SUPP; .pdf). The supple-
mentary material provides remaining technical details for the proof of Theorem 1.
The R code used for the simulations and the application are also provided.
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