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1 Forward-stepwise screening

It is important in practice to carry out forward-stepwise screening in order to identify

further associations from the collection of 2 × 2 tables. When the risk factors are

almost uncorrelated, a straightforward approach is to apply the BST after the removal

of each previously selected risk factor. In general, however, some risk factors may

be highly correlated, so it is necessary to adjust for those previously selected when

screening the remaining ones. The way we propose to do this is to use the BST

procedure sequentially as follows. Given that the initial screening yields a significant

result, the selected risk factor k̂N is used to split the data on the remaining risk factors

into two collections of p − 1 tables: exposed or unexposed to k̂N . Mantel–Haenszel

odds-ratio estimates from the pairs of these 2(p−1) tables corresponding to the same

risk factor are then used in place of θ̂k, and similarly for the standard errors τ̂k, to

form a new test statistic TN . This statistic is calibrated in the same way as before,
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except that the new correlation matrix CX is estimated by the (p− 1)× (p− 1) sub-

matrix of the original estimate CX excluding the entries involving k̂N . The procedure

is iterated until no further risk factors are found to be significant.

2 Proof of Theorem 1

We first derive the limiting distribution of (X − EX)/
√
M1 using the Lindeberg–

Feller theorem, which applies here since under (C1) we have that X is the sum of the

independent random vectors

Ls =
(
I(ηs1 ≤ (1 + θ−11 λs1)

−1)δs1, . . . , I(ηsp ≤ (1 + θ−1p λsp)
−1)δsp

)T
, s = 1, . . . ,M1.

We need to check that Cov(X)/M1 converges to an invertible matrix. Note that the

Lindeberg condition holds in our case since the summands are uniformly bounded.

Using Theorem 3.3 of Kou and Ying (1996) that gives Var(Xk)τ
2
k → 1, by Remark

2 we have

Var(Xk)/M1 = Var(Xk)τ
2
k/(M1τ

2
k )→ (πσ2

k)
−1

for each k = 1, . . . , p, under the stability condition (C3). In terms of the conditional

correlation matrix of X, denoted CX,N , and using (C2), we then obtain the invertible

limit

Cov(X)/M1 = diag
(√

Var(X)/M1

)
CX,Ndiag

(√
Var(X)/M1

)
→ DXCXDX/π,
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where DX = diag
(
σ−11 , . . . , σ−1p

)
.

The multivariate Lindeberg–Feller theorem, as stated e.g. in van der Vaart (1998),

then gives

M
−1/2
1 (X − EX)

d→ N(0, DXCXDX/π). (S.1)

By Theorem 3.4 of Kou and Ying (1996),

log θ̂k − log θk = τ 2k (Xk − EXk) +OP (τ 2k ) (S.2)

as N → ∞, for each k = 1, . . . , p. Denote τ = (τ1, . . . , τp)
T, θ̂ = (θ̂1, . . . , θ̂p)

T, and

θ = (θ1, . . . , θp)
T. Then by (S.1), (S.2), and Slutsky’s lemma,

√
N(log θ̂ − log θ) =

√
M1/N(Nτ 2)� [M

−1/2
1 (X − EX)] +

√
NOP (τ 2) (S.3)

d→ (σ1Z1, . . . , σpZp)
T

where � denotes the elementwise (Hadamard) product. The result then follows im-

mediately from the following two lemmas. The first lemma gives the (regular) limiting

behavior of log θ̂N under the assumption that there is at least one active risk factor;

the proof is included for completeness. The second lemma gives the (non-regular)

limiting behavior of log θ̂N when no risk factor is associated with the outcome.

Lemma 1. If all conditions in Theorem 1 hold and θ(0) 6= 1, then k̂N
PN→ k0 and

√
N(log θ̂N − log θN)

d→ σk0Zk0 , where Zk0 is defined in Theorem 1.

Proof. By Lemma 3.1 of Kou and Ying (1996), we have τ̂k/τk → 1 in probability.
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Thus

k̂N = arg max
k
| log θ̂k/τ̂k|

= arg max
k

(
√
Nτ̂k)

−1∣∣ log θ
(0)
k +N−1/2bk + τ 2k (Xk − EXk) +OPN

(τ 2k )
∣∣

PN−→ arg max
k
σ−1k | log θ

(0)
k | = k0,

and kN = arg maxk | log θk/τk| = arg maxk(
√
Nτk)

−1
∣∣ log θ

(0)
k +N−1/2bk| → k0. Hence

√
N
(

log θ̂N − log θN
)

=
√
N
(

log θ̂N − log θ̂k0
)

+
√
N
(

log θ̂k0 − log θ0
)

+
√
N
(

log θk0 − log θN
)

=
√
N
(

log θ̂k0 − log θ0
)

+ oPN
(1)

d→ σk0Zk0 ,

where the second equality uses k̂N
PN−→ k0 and kN → k0 as N →∞.

Lemma 2. If all conditions in Theorem 1 hold and θ(0) = 1, then
√
N(log θ̂N −

log θN)
d→ σKZK + bK − bk̃.

Proof. When θ(0) = 1, log θ = N−1/2b, and we have kN ∈ arg maxk |bk(
√
Nτk)

−1| →

arg maxk |bkσ−1k | = k̃. Since (Z1, . . . , Zp) is multivariate normal with a non-singular

covariance matrix, it is easy to see that

(Zj + bj/σj)
2 6= (Zk + bk/σk)

2 for any j 6= k a.s., (S.4)
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which implies that K is unique a.s. Also note that using (S.3) we have

τ̂−1 � log θ̂ = τ̂−1 � τ � τ � Var(X)1/2 � Var(X)−1/2 � (X − EX)

+OPN
(τ ) + (

√
N τ̂ )−1 � b

d→ (Z1 + b1/σ1, . . . , Zp + bp/σp)
T.

Define h(t) = (1argmaxk tk=1, . . . , 1argmaxk tk=p)
T, where t = (t1, . . . , tp)

T ∈ Rp. Note

that h is continuous at t if arg maxk tk is unique. Thus, using (S.4) and since

√
N log θ̂N = (

√
N τ̂ � τ̂−1 � log θ̂)Th

(
|τ̂−1 � log θ̂|

)
, the result follows by apply-

ing Slutsky’s lemma and the continuous mapping theorem in conjunction with the

above display.

3 HC and SGoF tests

Below we specify the procedures used to implement the higher criticism (Donoho and

Jin, 2015) and exact binomial sequential goodness-of-fit metatest (Carvajal-Rodriguez

et al., 2009) approaches that are compared with BST in our simulation study.

Higher Criticism (HC)

1. Carry out the standard Chi-squared test for a marginal association between the

disease status D and each risk factor Wk, k = 1, . . . , p. This yields a list of

p-values π1, π2, . . . , πp.

2. Sort the p-values in ascending order: π(1) < π(2) < . . . < π(p).
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3. Calculate the Higher Criticism statistic

HC+ = max
{k : 1≤k≤p/2, π(k)>1/p}

HCk,

where HCk =
√
p(k/p− π(k))/

√
π(k)(1− π(k)).

4. At significance level α, calculate the (Gumbel distribution) critical value

hG(α) =
2 log log(p) + 1

2

[
log log log(p)− log(4π)

]
− log log[1/(1− α)]√

2 log log(p)
.

5. Reject the global null hypothesis (1) if HC+ is larger than hG(α).

Sequential goodness-of-fit metatest (SGoF)

1. Compile the same list of p-values π1, π2, . . . , πp as in step 1 of the HC test.

2. At significance level α (or the false discovery rate in the full version of SGoF),

calculate K, the number of p-values ≤ α.

3. Calculate the critical value Kα as the upper α-quantile of the binomial distri-

bution with number of trials p and probability of success α.

4. Reject the global null hypothesis (1) if K ≥ Kα.

It is important to note that the HC and SGoF tests are each calibrated under

the assumption of independent p-values, which is of limited relevance in our setting,

and which explains why they do not perform well in the highly-dependent p-value

situation of Table 3 (they only respect the nominal level α in the independent case

of Table 1, and in the weakly-dependent case of Table 2).

6



References

Carvajal-Rodriguez, A., de Una-Alvarez, J. and E. Rolan-Alvarez (2009). A new

multitest correction (SGoF) that increases its statistical power when increasing the

number of tests. BMC Bioinformatics, 10:209.

Donoho, D. and Jin, J. (2015). Higher criticism for large-scale inference, especially

for rare and weak effects. Statistical Science, 30, 1–25.

Kou, S. G. and Ying, Z. (1996). Asymptotics for a 2 × 2 table with fixed margins.

Statistica Sinica, 6, 809–829.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University Press.

7


	Forward-stepwise screening
	Proof of Theorem 1
	HC and SGoF tests
	R code for BST

