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Summary. The recovery of gradients of sparsely observed functional data is a challenging ill-posed inverse problem. Given
observations of smooth curves (e.g., growth curves) at isolated time points, the aim is to provide estimates of the underlying
gradients (or growth velocities). To address this problem, we develop a Bayesian inversion approach that models the gradient
in the gaps between the observation times by a tied-down Brownian motion, conditionally on its values at the observation
times. The posterior mean and covariance kernel of the growth velocities are then found to have explicit and computationally
tractable representations in terms of quadratic splines. The hyperparameters in the prior are specified via nonparametric
empirical Bayes, with the prior precision matrix at the observation times estimated by constrained ℓ1 minimization. The
infinitessimal variance of the Brownian motion prior is selected by cross-validation. The approach is illustrated using both
simulated and real data examples.
Key words: Functional data analysis; Growth trajectories; Ill-posed inverse problem; Nonparametric empirical Bayes;
Tied-down Brownian motion.

1. Introduction
The extensive development of functional data analysis over
the last decade has led to many useful techniques for study-
ing samples of trajectories (Ramsay and Silverman, 2005;
Ferraty and Vieu, 2006). Typically, a crucial first step is
needed before such analyses are possible: the trajectories need
to be reconstructed on a fine grid of equally spaced time
points (if they are not already in such a form). Methods for
reconstructing trajectories in this way have been studied us-
ing kernel smoothing (Ferraty and Vieu, 2006), smoothing
splines (Ramsay and Silverman, 2005), local linear smoothing
(Hall, Müller, and Wang, 2006), mixed effects models (James,
Hastie, and Sugar, 2000; Rice and Wu, 2000), and principal
components analysis through conditional expectations (Yao,
Müller, and Wang, 2005 a,b).

In this article we study the problem of reconstructing gra-
dients of trajectories on the basis of sparse (or widely sepa-
rated) observations. The proposed approach is specifically de-
signed for reconstructing growth velocities from longitudinal
observation of childhood developmental indices, e.g., height,
weight, BMI, head circumference, or measures of brain ma-
turity obtained via fMRI (Dosenbach et al., 2010). Growth
velocities based on such indices play a central role in life
course epidemiology, often providing fundamental indicators
of prenatal or childhood development that are related to adult
health outcomes (Barker et al., 2005).

Repeated measurements of childhood developmental in-
dices may be available on most subjects in a study, but usually
only sparse temporal sampling is feasible (McKeague et al.,

2011). It can thus be challenging to gain a detailed under-
standing of growth patterns. Moreover, the problem is exacer-
bated by the presence of large fluctuations in growth velocity
during early infancy, and high variability between subjects.
In addition, although the patterns of examination times vary
among children, they tend to cluster around “nominal” ages
(e.g., birthdays), so there can be large gaps without data. We
call this regular sparsity, in contrast to irregular sparsity in
which the observation times for each individual are widely
separated but become dense when merged over all subjects.

The problem of reconstructing gradients under irregular
sparsity (even with only one observation time per trajectory)
has recently been studied by Liu and Müller (2009). In their
approach, the best linear predictor of the gradient is estimated
(assuming Gaussian trajectories) in terms of estimated func-
tional principal component scores. The accuracy of the recon-
struction depends on how well each individual gradient can
be represented in terms of a small number of estimated prin-
cipal component functions. This in turn requires an accurate
estimate of the covariance kernel of the trajectories, which is
not possible in the case of regular sparsity.

Numerical analysis methods can be used to reconstruct gra-
dients using only individual level data in the case of regular
sparsity. For example, difference quotients between observa-
tion times provide simple approximate gradients, but these
estimates are piecewise constant and would not be suitable for
use in functional data analysis unless the observation times
are dense. Spline smoothing to approximate the gradient of
the trajectory over a fine grid is recommended by Ramsay and
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Silverman (2005). More generally, methods of numerical dif-
ferentiation, including spline smoothing, are an integral part
of the extensive literature on ill-posed inverse problems for
linear operator equations. In this literature, the observation
times are usually viewed as becoming dense (for the purpose
of showing convergence), see Kirsch (1996); in particular, the
assumption of asymptotically dense observation times plays a
key role in the study of penalized least squares estimation and
cross-validation (Nashed and Wahba, 1974; Wahba, 1977).

In this article we develop a flexible Bayesian approach to re-
constructing gradients, focusing on the regular sparsity case.
The prior gradient is specified by a general multivariate nor-
mal distribution at n fixed observation times, and a (condi-
tional) tied-down Brownian motion between the observation
times. This leads to a simple and explicit representation of
the posterior distribution of the gradient in terms of the prior
mean and the prior precision matrix at the observation times.
Based on a sample of subjects, the nonparametric empirical
Bayes method along with cross-validation is used to specify
the hyperparameters in the prior, with the prior precision ma-
trix estimated by constrained ℓ1 minimization (Cai, Liu, and
Luo, 2011). An important aspect of the proposed approach
is that the reconstructed gradients can be computed rapidly
over a fine grid, and then used directly as input into exist-
ing software, without the need for sophisticated smoothing
techniques. In addition, our approach furnishes ways of as-
sessing the errors in the reconstruction (using credible inter-
vals around the posterior mean) and of assessing uncertainties
in the conclusions of standard functional data analyses that
use the reconstructed gradients as predictors (e.g., using re-
peated draws from the posterior distribution in a sensitivity
analysis).

For background and an introduction to empirical Bayes
methods we refer the interested reader to Efron (2010). Previ-
ous work on the use of such methods in the setting of growth
curve modeling include reconstructing individual growth ve-
locity curves from parametric growth models (Shohoji et al.,
1991), and nonparametric testing for differences in growth
patterns between groups of individuals (Barry, 1995). A non-
parametric hierarchical-Bayesian growth curve model for re-
constructing individual growth curves has also been devel-
oped (Arjas, Liu, and Maglaperidze, 1997), but requires the
use of computationally intensive Markov chain Monte Carlo
methods (MCMC) and may not be suitable for exploratory
analyses.

As already mentioned, our motivation for developing the
proposed Bayesian reconstruction method comes from the
problem of carrying out functional data analysis for growth
velocities given measurements of some developmental index
at various ages. The first panel of Figure 1 shows cubic-
spline-interpolated growth curves for 10 children based on
their height (or length) measurements at birth, 4, 8, and 12
months, and 3, 4, and 7 years. There are no data to fill in
the gaps between these observation times. The corresponding
growth velocities, obtained by differentiating the cubic splines
(Ramsay and Silverman, 2005), are displayed in the second
panel. Unfortunately, however, such growth rate curves are
unsuitable surrogates for the actual growth rates because ar-
tifacts of the spline interpolation emerge as the dominant fea-
tures, and there is no justification for ignoring all random
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Figure 1. Growth curves based on natural cubic spline inter-
polation between the observation times (left panel), and the
corresponding growth velocities (right panel).

variation between observation times. Moreover, it is not easy
to see how to quantify the error involved in such reconstruc-
tions.

Our proposed reconstruction method, as developed in
Section 2. provides a way around this problem. Simulation
and real growth data examples are used to illustrate the per-
formance of the proposed method in Sections 3 and 4. In
Section 5 we compare our approach with the popular method
of analyzing growth trajectories via latent variable models.
Proofs of the main results are provided in the Appendix.
We have developed an R package growthrate implement-
ing the proposed reconstruction method (López-Pintado and
McKeague, 2011); this package is available on the CRAN
archive, and includes the real data set used in Section 4.

2. Gradients of Sparsely Observed Trajectories
In this section we develop the proposed Bayesian approach
to recovering gradients. Explicit formulae for the posterior
mean and covariance kernel of the gradients are provided. An
empirical Bayes approach to estimating the hyperparameters
in the prior is also developed.

2.1 Posterior Gradients
We first consider in detail how to reconstruct the gradient for
a single subject. In the growth velocity context, the observa-
tion times will typically vary slightly across the sample, but
will be clustered around certain nominal ages. Let the obser-
vation times for the specific individual be 0 = t1 < t2 < · · · <
tn = T , and assume that the endpoints of the time interval
over which the reconstruction is needed are included.

The statistical problem is to estimate the whole growth
velocity curve X = {X(t), 0 ≤ t ≤ T } from data on its integral
(i.e., growth) over the gaps between the observation times.
Equivalently, we observe

yi =
1

∆i

∫ t i +1

t i

X(s) ds, i = 1, . . . , n − 1, (1)

where the ∆i = ti+1 − ti are the lengths of the intervals be-
tween the observation times. Here yi is the one-sided differ-
ence quotient estimate of X(t) for t ∈ [ti , ti+1], as commonly
used in numerical differentiation. Reconstructing X based on
such data is an ill-posed inverse problem in the sense that
no unique solution exists, so some type of regularization is
needed to produce a unique solution. When the observation
times are equally spaced, the one-sided difference quotient can
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be derived as the X minimizing ∥X∥L 2 under the constraint
(1), see Kirsch (1996, p. 97).

A more sophisticated approach is to take into account the
proximity of ti to neighboring observation times ti−1 and ti+1,
and estimate X(ti ) by the second-order difference quotient

yi = wiyi−1 + (1 − wi )yi ,

where wi = ∆i /(∆i−1 + ∆i ), for i = 2, . . . , n − 1. As we shall
see, the building blocks needed to construct the proposed
Bayes estimator consist of the yi and the n-vector

y = (y1, y2, . . . , yn−1, yn−1)T .

The central problem is to specify a flexible class of prior
distributions for X in such a way that is tractable to find
its posterior distribution. An unusual feature of our problem,
however, is that a direct approach via Bayes formula does
not work: the conditional distribution of yi given X is de-
generate, so there is no common dominating measure for all
values of X (i.e., there is no full likelihood). Our way around
this difficulty is to first find the marginal posterior distribu-
tion of X restricted to the observation times, for which the
usual Bayes formula applies, and then show that this leads to
a full posterior distribution. This approach turns out to be
tractable when we specify the prior using the following hier-
archical model: X has a multivariate normal distribution at
the observation times, and is a tied-down Brownian motion in
the gaps between observation times (conditional on X at those
time points). This provides a fully coherent prior distribution
of X . In some cases the prior of X can be specified uncon-
ditionally (as with the shifted Brownian motion discussed in
Section 2.4), but in general the hierarchical specification we
use is simpler and provides greater flexibility.

More precisely, we specify the prior on X as follows:

1. At the observation times:

X ≡ (X(t1), . . . , X(tn ))T ∼ N (µ0,Σ0),

where Σ0 is nonsingular.
2. The conditional distribution of X given X is a tied-

down Brownian motion with given infinitessimal vari-
ance σ2 > 0.

In the growth velocity setting, the observation times are
typically chosen to concentrate data collection in periods of
high variability (e.g., the first year of life), so it is natural that
the prior should reflect such information. Moreover, allowing
an arbitrary (multivariate normal) prior at the observation
times provides flexibility that would not be possible using a
Brownian motion prior for the whole of X . In addition, the
availability of data at these time points makes is possible to
specify the hyperparameters in the multivariate normal (as
we see later), which is crucial for practical implementation of
our approach.

We now state our main result giving the posterior distri-
bution of X . In particular, the result shows that the pos-
terior mean takes the computationally tractable form of a
quadratic spline with knots at the observation times. The
posterior mean is the best linear predictor of X , providing
the optimal reconstruction of X in the sense of mean-squared
error (MSE).

Theorem 1. The posterior distribution of X is Gaussian
with mean

µ̂(t) = µ̂i + [µ̂i+1 − µ̂i ](t − ti )/∆i

+ 6(t − ti )(ti+1 − t) [yi − (µ̂i + µ̂i+1)/2] /∆2
i

for t ∈ [ti , ti+1], where

µ̂ = (µ̂i ) = (Σ−1
0 + Q)−1(Σ−1

0 µ0 + Dy)

is the posterior mean of X, and

Q =
3
σ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,

D =
6
σ2 diag

(
1

∆1
, . . . ,

1
∆i−1

+
1

∆i
, . . . ,

1
∆n−1

)
.

The posterior covariance kernel of X is K̂ = σ2K̃ + K∗, where

K̃(s, t) = (s ∧ t − ti ) − (s − ti )(t − ti )/∆i

− 3(s − ti )(t − ti )(ti+1 − s)(ti+1 − t)/∆3
i

for s, t ∈ [ti , ti+1), with K̃(s, t) = 0 if s and t are in disjoint
intervals;

K∗(s, t) = (ak (s), bk (s))
[

Σ̂k l Σ̂k ,l+1

Σ̂k+1, l Σ̂k+1, l+1

]
(al (t), bl (t))T

for s ∈ [tk , tk+1) and t ∈ [tl , tl+1), with k, l = 1, . . . , n − 1, where

ai (t) = 1 − (t − ti )/∆i − 3(t − ti )(ti+1 − t)/∆2
i ,

bi (t) = (t − ti )/∆i − 3(t − ti )(ti+1 − t)/∆2
i ,

for t ∈ [ti , ti+1), i = 1, . . . , n − 1, and

Σ̂ = (Σ̂ij ) = (Σ−1
0 + Q)−1

is the posterior covariance matrix of X.

Remarks:

1. The posterior mean of X provided by Theorem 1 has a
simple and explicit form that can be computed rapidly
once the hyperparameters in the prior (namely µ0, Σ0,
and σ2) are provided. We discuss various ways of spec-
ifying the hyperparameters in the next section.

2. The infinitessimal variance σ2 can be regarded as a
smoothing parameter, and plays the role of a time-scale,
cf. the adaptive Bayesian estimation procedure of van
der Vaart and van Zanten (2009) based on Gaussian
random field priors with an unknown time-scale. When
σ2 → ∞, the posterior distribution of X converges to its
prior distribution, and between observation times the
posterior variance of X tends to infinity.
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3. The matrix Q represents the posterior precision (at
the observation times) corresponding to a noninforma-
tive (improper) prior, and it is singular, reflecting the
fact that we are dealing with n parameters to be esti-
mated from n − 1 observations y1, . . . , yn−1. The prob-
lem is ill-posed, but an “informative” prior provides reg-
ularization: the posterior precision matrix Σ−1

0 + Q is
nonsingular.

4. In the special case that the prior distribution of X
is a Gaussian Markov random field, i.e., nonneighbor-
ing components are conditionally independent given the
rest (Rue and Held, 2005), its posterior distribution is
also a Gaussian Markov random field. That is, since
Q is tridiagonal, whenever the prior precision matrix
Σ−1

0 is tridiagonal, so is the posterior precision ma-
trix Σ−1

0 + Q. Tridiagonal matrices often arise in inverse
problems, and efficient algorithms for computation of
their inverses and eigenvalues are available.

5. In typical Bayesian settings, the information in the data
tends to swamp the prior information as the sample size
increases. It can often be shown in such settings that the
posterior contracts to the true parameter given that it
is in the support of the prior distribution (Ghosal and
van der Vaart, 2007; Knapik, van der Vaart, and van
Zanten, 2011), but such results rely on the existence of
a full likelihood and are not applicable in our setting.

2.2 Specifying the Hyperparameters
Suppose that we are given data on y for a sample of N
individuals, each having the same fixed set of observation
times t1, . . . , tn . How can we use such data to specify the
hyperparameters?

The hyperparameters are not identifiable in general, even
if the prior distribution is correctly specified. To see this, note
that the (Gaussian) marginal distribution of y is determined
by p = n − 1 + n(n − 1)/2 means and covariances, but there
are n + n(n + 1)/2 + 1 > p hyperparameters in the prior. Al-
though it is possible to identify these hyperparameters by
imposing extra structure on Σ0 and using a parametric em-
pirical Bayes approach (as we show in the next section), the
presence of prior misspecification would be a serious issue for
applications. Another possibility would be to define a flexi-
ble higher level prior for the hyperparameters, but this would
again require the use of computationally intensive methods
(MCMC).

Instead we adopt the following nonparametric empirical
Bayes approach. The prior mean µ0 is naturally specified by
the sample mean of y, and this does not require the prior to be
correctly specified. The corresponding sample covariance ma-
trix, Σ̂N , however, is singular [having rank min(N, n − 1) < n]
and hence unstable for estimating Σ0, and cannot specify the
posterior distribution which depends on the prior precision
matrix Ω0 = Σ−1

0 . We use the constrained ℓ1 minimization
method of sparse precision matrix estimation (CLIME) re-
cently developed by Cai et al. (2011): Ω0 is specified as the
(appropriately symmetrized) solution of

min ||Ω||1 subject to |Σ̂N Ω − I |∞ ≤ λN , Ω ∈ Rn×n ,

where the tuning parameter λN is selected by fivefold cross
validation using the likelihood loss function.

The infinitessimal variance σ2, or equivalently σ, is selected
by a form of cross validation introduced by Wahba (1977). The
prediction error based on leaving-out an interior observation
time (ti+1, for some fixed i = 1, . . . , n − 2) is given by

CV(σ) =
1
N

N∑

j=1

Eij

[
yij −

1
∆i

∫ t i +1

t i

X̂−(i+1)
j (s) ds

]2

,

where j indexes the subjects, the expectation Eij is over draws
X̂−(i+1)

j (·) from the posterior distribution of Xj (·) based on the
reduced data with ti+1 removed; here µ0 and Ω0 are specified
as above, except the (i + 1)th component is not used. This
expression can be written explicitly using the bias-variance
decomposition as

CV(σ) =
1
N

N∑

j=1

[
yij −

1
∆i

∫ t i +1

t i

µ̂−(i+1)
j (s) ds

]2

+
1

∆2
i

∫ t i +1

t i

∫ t i +1

t i

K̂−(i+1)(s, u) ds du,

in terms of the mean and covariance kernel of X̂−(i+1)
j (·) that

are available from Theorem 1; note that the covariance kernel
only depends on the observation times so it is not indexed
by j.

2.3 Variations in Observation Times among Subjects
In this section we discuss how our approach to specifying the
hyperparameters can be adapted to handle situations in which
the observation times vary among subjects. In the applica-
tions we have in mind, most observation times tend to be
close to “nominal” observation times {ti , i = 1, . . . , n}, so it
is reasonable to use these as a first approximation. That is,
in terms of the nominal observation times, and using the pro-
cedure described above, we find initial estimates µ̂j (·) for all
subjects, and a value of σ. Then, for the purpose of specifying
µ0 and Ω0 in a way that is tailored to the observation times
of the kth subject, we adjust the data on the other subjects
to become

y(k )
ij =

1
∆(k )

i

∫ t i +1, k

t i k

µ̂j (s) ds, i = 1, . . . , nk , j ̸= k,

where {tik , i = 1, . . . , nk } are the actual observation times for
the kth subject and ∆(k )

i = ti+1,k − tik . The final estimate
µ̂k (·) is then calculated by applying our formula for µ̂(·) to
the data on the kth subject, with the hyperparameters esti-
mated from the adjusted data (thus borrowing strength from
the whole sample). The adjustment has no effect when the
observation times agree with their nominal values, and small
perturbations around the nominal values would have little ef-
fect on the reconstructed gradients.

A computationally simpler approach, that is essentially
equivalent to what we just described, is to restrict the pos-
terior covariance kernel and mean based on the nominal
observation times to the actual observation times for each
given subject, thus directly obtaining suitable hyperparam-
eters across the whole sample that adjust for any changes
from the nominal observation times; this is the approach im-
plemented in the growthrate package.
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2.4 Example: Shifted Brownian Motion Prior
Shifted Brownian motion priors have been used in various
nonparametric Bayesian settings in recent years (van der
Vaart and van Zanten, 2008a, b) and provide a simple illus-
tration of Theorem 2.1. Suppose the prior distribution of X
at the observation times (i.e., the prior of X) is specified so
that

X(ti ) = µi + σ1Z + γB(ti ), i = 1, . . . , n, (2)

where Z ∼ N (0, 1), B is an independent standard Brownian
motion, σ1 > 0, γ > 0, and the prior mean µ0 = (µ1, . . . , µn )T

as before. In particular, when γ = σ the prior distribution for
the entire trajectory X takes the form of a shifted Brownian
motion.

Under (2), the prior covariance matrix at the observation
times has (i, j)th entry

(Σ0)ij = σ2
1 + γ2 min(ti , tj ). (3)

The prior precision matrix has a simple (tridiagonal) form
similar to Q, namely

Σ−1
0 =

1
γ2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ2

σ2
1

+
1

∆1
− 1

∆1
0 · · · 0

− 1
∆1

1
∆1

+
1

∆2
− 1

∆2

. . .
...

0 − 1
∆2

. . .
. . . 0

...
. . .

. . .
. . . − 1

∆n−1

0 · · · 0 − 1
∆n−1

1
∆n−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

cf. Rue and Held (2005, p. 99). In the special case that γ2 =
σ2/3 the posterior covariance matrix becomes diagonal:

Σ̂ =
(
Σ−1

0 + Q
)−1

=
σ2

6
diag (∆i−1wi , i = 1, . . . , n) ,

where w1 ≡ ∆1/(∆0 + ∆1), ∆0 = 6σ2
1/σ2, wn ≡ 1, and the

other wi are defined as in Section 2.1. The components of
the posterior mean at the observation times are then given by

µ̂i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − w1)y1 + w1(µ1 + µ2)/2, i = 1;

yi + [µi − (wiµi−1 i = 2, . . . , n − 1;

+ (1 − wi )µi+1)]/2,

yn−1 + (µn − µn−1)/2, i = n.

It can then be seen that µ̂ provides a uniformly consis-
tent estimator of X in the numerical analysis sense: if
µi = µ(ti ), where µ(·) is a fixed continuous function, and
maxi=1, . . . ,n−1 ∆i → 0, then µ̂(t) → X(t) uniformly in t for any
continuous X .

A parametric empirical Bayes approach to specifying the
hyperparameters can be developed in this setting. Condition-
ing on X(ti ) and X(ti+1) yields 2(n − 1) estimating equations
involving means and second moments:

Eyi = (µi + µi+1)/2,

Ey2
i = (µi + µi+1)2/4 + σ2∆i /12 + (σ2

i + σ2
i+1 + 2σi , i+1)/4,

i = 1, . . . , n − 1, where σi , i+1 is the prior covariance of X(ti )
and X(ti+1), and σ2

i is the prior variance of X(ti ). Under
the shifted Brownian motion model (2), the prior distribution
has only n + 3 parameters (µ1, . . . , µn , σ2

1 , γ2 and σ2), and the
second-moment estimating equation simplifies to

Ey2
i = (µi + µi+1)2/4 + σ2∆i /12 + σ2

1 + γ2(ti + ∆i /4).

Another (n − 1)(n − 2)/2 estimating equations are obtained
from the covariances of the yi :

Eyiyj = (µi + µi+1)(µj + µj+1)/4 + σ2
1 + γ2(ti + ∆i /2),

for i = 1, . . . , n − 2, j = i + 1, . . . , n − 1, provided n ≥ 3. The
marginal distribution of the data is Gaussian with mean and
covariance only depending on the prior means µi through
the sums µi + µi+1, i = 1, . . . , n − 1, so these means are not
identifiable unless one of them (say µ1) is known. Once µ1 is
given (or specified say using the sample mean of y1), all the
other parameters in the shifted Brownian motion prior are
identifiable.

In view of known convergence-rate results for the CLIME
estimator (Cai et al., 2011), it may be possible to extend
the consistency result shown above to the general setting,
to the effect that the empirical Bayes version of each µ̂(t)
converges uniformly to X(t) as maxi=1, . . . ,n−1 ∆i → 0 and N →
∞. However, µ̂(t) is is not analytically tractable in general
(only in the special case discussed in this section), so this
would be a challenging problem.

3. Simulation Study
In this section we report the results of a simulation study
designed to assess the performance of µ̂(t) as a method of es-
timating X . In order to calibrate µ̂(t), the prior mean and pre-
cision matrix are specified from the data as in Section 2.2. We
also examine the performance of the cross validation method
for choosing σ.

The simulation model for generating the underlying X is
defined in a parallel fashion to the prior:

1. At the observation times, X ≡ (X(t1), . . . , X(tn ))T is
a zero-mean stationary Gaussian Markov random field
with covariance matrix having (i, j)th entry e−α |t i −t j |,
where α > 0.

2. The conditional distribution of X given X is a tied-down
fractional Brownian motion (fBm) with Hurst exponent
0 < H < 1.

The tied-down fBm used here is represented (condition-
ally on X) as in (A.3), except that B0

i (t) = Bi (t) − tBi (1),
t ∈ [0, 1], where the Bi are independent standard fBms, and
σ = 1. The Hurst exponent H is a measure of the smoothness
of the sample paths between the observation times: H = 1/2
gives standard tied-down Brownian motion and agrees with
the prior (provided σ = 1); we also consider the cases H = 0.7
and 0.9 to give examples with much smoother sample path
behavior than Brownian motion. We considered two values
of the simulation model parameter: α = 3 and 6, represent-
ing “high” and “low” levels of correlation in X, respectively.
The sample size is fixed at N = 100, and we consider n = 5
and n = 10 equispaced observation times on the interval [0, 1]
(that is, T = 1).
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Figure 2. Simulation model with α = 3. Boxplots compar-
ing the MSE of the proposed estimator µ̂(·) and the spline
estimator of X at the observation times; n = 5 (first row),
n = 10 (second row), H = 0.5 (first column), H = 0.7 (sec-
ond column), H = 0.9 (third column).

Figure 2 shows boxplots comparing the MSE of our ap-
proach with the MSE of the spline interpolation approach
described in the Introduction. The boxplots are based on
50 independent samples, and setting α = 3 in the simulation
model. Web Figure 1 shows the corresponding boxplots for
α = 6, and the results are very similar. Here the MSE of µ̂(·) is
defined by

MSE =
1
N

N∑

j=1

1
n

n∑

i=1

(µ̂j (ti ) − Xj (ti ))2,

where µ̂j (·) is the calibrated posterior mean of Xj (·) with
σ = 1. In all cases, µ̂(·) has a smaller median MSE than the
spline estimator, and in some cases the reduction is more than
50% (namely for n = 10 and H = 0.9). Note that the improve-
ment of µ̂(·) over the spline method increases with H (and also
with n). This indicates that µ̂(·) is robust to departures from
the prior that involve smoother trajectories X . Similar results
(not shown) can be obtained in terms of the mean absolute
deviation.

We applied the cross validation method for choosing σ to
a single sample generated by the above simulation model for
α = 3, H = 1/2 and n = 10. Figure 3 shows plots of cross val-
idation error CV(σ) based on removing three of the interior
observation times, as well as averaging CV(σ) with each inte-
rior point successively removed. In all cases, the minimum is
located close to the true value of σ = 1, so we calibrated µ̂(·)
using σ = 1 in all the simulations reported above.

We have also done extensive simulations (not shown) based
on shifted Brownian motion priors, and found that the two
competing approaches have comparable MSE; this is not sur-
prising, because, as can be seen from the explicit form in
Section 2.4, µ̂(·) is very close to the spline estimator in
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Figure 3. Simulation model with α = 3, n = 10, H = 0.5.
The cross validation error CV(σ) over a fine grid of values of σ,
based on removing each of the first three interior observation
times (left panel), and based on averaging CV(σ) with all
interior points successively removed (right panel).

this case. In addition, we found that measurement error in
the observations y has little affect on the accuracy of the
reconstructions.

4. Growth Velocity Curves
In this section we illustrate our approach using data from
the Collaborative Perinatal Project (CPP). This was an
NIH study of prenatal and familial antecedents of childhood
growth and development conducted during 1959–1974 at 12
medical centers across the United States. There were approx-
imately 58,000 study pregnancies, mothers being examined
during pregnancy, labor and delivery. The children were given
neonatal examinations and follow-up examinations at 4, 8,
and 12 months, and 3, 4, and 7 years. We restrict attention to
the subsample of girls having birthweight 1500–4000 g, ges-
tational age 37–42 weeks, nonbreast-fed, maternal age 20–40
years, the mother did not smoke during pregnancy, and for
whom complete data on height (at these ages) and all the co-
variates are available. This gave a sample of size N = 532. The
data are included in the growthrate package, and additional
discussion can be found in McKeague et al. (2011).

Figure 4 shows the cross validation error based on remov-
ing each of the five interior observation times (1/3, 2/3, 1,
3, 4 years) in turn. Note that, due to the nonequispaced ob-
servation times, the various curves are ordered according to
which time point is removed. The curves suggest that a choice
of σ in the range 1–3 is reasonable, although, since cross val-
idation tends to overfit, the lower end of this range might be
preferable.

Figure 5 gives the reconstructed growth velocity curves for
two of these subjects, and for three choices of σ. The choice
σ = 1 produces very tight bands, which may be unrealistic
because the growth rate is unlikely to have sharp bends at
the observation times; the more conservative choices σ = 2
and 3 allow enough flexibility in this regard and appear to be
more reasonable. Notice that the σ = 2 and σ = 3 bands bulge
between observation times (and this is especially noticeable in
the last observation time interval), which is a desirable feature
since we would expect greater precision in the estimates close
to the observation times. Plots of the posterior mean growth
velocity curves for a random subset of 200 subjects based on
σ = 1, 2, 3 are provided in Web Figure 2.
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Figure 4. The cross validation error CV(σ) over a fine grid of
values of σ in the growth velocity example based on removing
each of the five interior observation times (1/3, 2/3, 1, 3, 4
years), CV2, . . . , CV6, respectively.

5. Discussion
The standard approach to the longitudinal data analysis of
growth trajectories is via mixed-effects or latent variable
models (Bollen and Curran, 2006; Wu and Zhang, 2006), and
in this section we compare it with the proposed approach.

The hierarchical prior we use for growth velocity can
be seen as a flexible nonparametric model for an infinite-
dimensional latent process. This contrasts with the standard

mixed model approach of representing a trajectory by a poly-
nomial, allowing additive uncorrelated random disturbances
at the observation times, and treating some or all of the coeffi-
cients as random, i.e., a finite-dimensional latent structure. In
contrast, our approach does not model within-subject (within-
curve) and between-subject (between-curves) variations sepa-
rately, as in mixed-effects models. Rather, the between-curve
variation is represented by the prior—a random effect spec-
ified in terms of a tied-down Brownian motion process; this
prior also suffices to provide the within-subject variation that
in mixed models is typically provided by the uncorrelated
disturbance terms, or white noise. At the infinitessimal scale,
Brownian motion is white noise, so in a sense the two ap-
proaches are parallel in their handling of within-subject vari-
ation, but the advantage of using a single prior is that the
full power of the Bayesian approach comes into play. In par-
ticular, this allows a closed-form calculation of the estimated
growth velocity curves, without the need for sophisticated nu-
merical methods that play a role in fitting complex mixed
models. In summary, although mixed models provide an ar-
ray of effective techniques for understanding trajectories, and
longitudinal data more generally, in the context of growth ve-
locity reconstruction we believe that the proposed approach
can offer some advantages: greater flexibility and computa-
tional efficiency.

A referee raised the question of whether the proposed ap-
proach is sensitive to outliers. The sample mean of y could
indeed be a poor estimate of the prior mean µ0 if there are
outliers. The same issue could be raised about the CLIME
estimator we use for Σ−1

0 (as with any method based on a
sample mean or sample covariance). One recourse would be
to use robust estimators for µ0 and Σ−1

0 , but, as our recon-
struction is linear in the data y, it would still be sensitive
to outliers. A better recourse would be to carefully prescreen
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Figure 5. Reconstructed growth velocity curves for two subjects; posterior mean (solid line), pointwise 95% credible intervals
(dashed lines) based on σ = 1, 2, 3 for the first, second, and third plots in each row, respectively; for one subject in the first
row, and a second subject in the second row.
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the data for outliers before using the method. In the real data
examples (of childhood growth curves) that we have studied,
it has not been necessary to remove outliers.

6. Supplementary Materials
Web Figures referenced in Sections 3 and 4 and R code im-
plementing the simulation study in Section 3 are available
with this paper at the Biometrics website on Wiley Online
Library.

Acknowledgements

The work of Ian McKeague was supported by NIH Grant
R01GM095722-01. The authors thank Russell Millar for his
helpful suggestions.

References

Arjas, E., Liu, L., and Maglaperidze, N. (1997). Prediction of growth: A
hierarchical Bayesian approach. Biometrical Journal 39, 741–759.

Barker, D. J. P., Osmond, C., Forsén, T. J., Kajantie, E., and Eriksson,
J. G. (2005). Trajectories of growth among children who have
coronary events as adults. The New England Journal of Medicine
353, 1802–1809.

Barry, D. (1995). A Bayesian model for growth curve analysis. Biomet-
rics 51, 639–655.

Bollen, K. A. and Curran, P. J. (2006). Latent Curve Models: A Struc-
tural Equation Perspective. Wiley Series in Probability and Statis-
tics. Hoboken: Wiley Interscience.

Cai, T., Liu, W., and Luo, X. (2011). A constrained l1 minimization
approach to sparse precision matrix estimation. Journal of the
American Statistical Association 106, 594–607.

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power,
J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C.,
Lessov-Schlaggar, C. N., Barnes, K. A., Dubis, J. W., Feczko, E.,
Coalson, R. S., Pruett, J. R., Barch, D. M., Petersen, S. E., and
Schlaggar, B. L. (2010). Prediction of individual brain maturity
using fMRI. Science 329, 1358–1361.

Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for
Estimation, Testing, and Prediction. Institute of Mathematical
Statistics Monographs. Cambridge: Cambridge University Press.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Anal-
ysis. New York: Springer.

Ghosal, S. and van der Vaart, A. W. (2007). Convergence rates of poste-
rior distributions for non-i.i.d. observations. The Annals of Statis-
tics 35, 192–223.

Hall, P., Müller, H. G., and Wang, J. L. (2006). Properties of prin-
cipal components methods for functional and longitudinal data
analysis. The Annals of Statistics 34, 1493–1517.

James, G., Hastie, T. J., and Sugar, C. A. (2000). Principal component
models for sparse functional data. Biometrika 87, 587–602.

Kirsch, A. (1996). An Introduction to the Mathematical Theory of In-
verse Problems. New York: Springer.

Knapik, B. T., van der Vaart, A. W., and van Zanten, J. H. (2011).
Bayesian inverse problems with Gaussian priors. The Annals of
Statistics 39, 2626–2657.

Liu, B. and Müller, H. G. (2009). Estimating derivatives for samples
of sparsely observed functions, with application to online auction
dynamics. Journal of the American Statistical Association 104,
704–717.
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Analyzing growth trajectories. Journal of Developmental Origins
of Health and Disease 2, 322–329.

Nashed, M. Z. and Wahba, G. (1974). Convergence rates of approximate
least squares solutions of linear integral and operator equations
of the first kind. Mathematics of Computation 28, 69–80.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis.
New York: Springer.

Rice, J. and Wu, C. (2000). Nonparametric mixed effects models for
unequally sampled noisy curves. Biometrics 57, 253–259.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields. Boca
Raton: Chapman & Hall/CRC.

Shohoji, T., Kanefuji, K., Sumiya, T., and Qin, T. (1991). A prediction
of individual growth of height according to an empirical Bayesian
approach. Annals of the Institute of Statistical Mathematics 43,
607–619.

van der Vaart, A. W. and van Zanten, J. H. (2008a). Rates of contrac-
tion of posterior distributions based on Gaussian process priors.
The Annals of Statistics 36, 1435–1463.

van der Vaart, A. W. and van Zanten, J. H. (2008b). Reproducing
kernel Hilbert spaces of Gaussian priors. Pushing the Limits of
Contemporary Statistics: Contributions in Honor of Jayanta K.
Ghosh, vol. 3, 200–222. Beachwood, OH: Institute of Mathemat-
ical Statistics.

van der Vaart, A. W. and van Zanten, J. H. (2009). Adaptive
Bayesian estimation using a Gaussian random field with in-
verse gamma bandwidth. The Annals of Statistics 37, 2655–
2675.

Wahba, G. (1977). Practical approximate solutions to linear operator
equations when the data are noisy. SIAM Journal on Numerical
Analysis 14, 651–667.

Wu, H. and Zhang, J. T. (2006). Nonparametric Regression Methods
for Longitudinal Data Analysis. Wiley Series in Probability and
Statistics. Hoboken: Wiley Interscience.

Yao, F., Müller, H. G., and Wang, J. L. (2005a). Functional data anal-
ysis for sparse longitudinal data. Journal of the American Statis-
tical Association 100, 577–590.

Yao, F., Müller, H. G., and Wang, J. L. (2005b). Functional linear
regression analysis for longitudinal data. The Annals of Statistics
33, 2873–2903.

Received August 2011. Revised October 2012.
Accepted October 2012.

Appendix

Proof of Theorem 1. The first part of the proof is to de-
termine the posterior distribution of X. In terms of its prior
density p(x), the posterior density of X is given by Bayes
formula as

p(x|y1, . . . , yn−1) ∝ p(y1, . . . , yn−1|x)p(x)

∝

[
n−1∏

i=1

p(yi |xi , xi+1)

]
p(x),

(A.1)

where x = (x1, . . . , xn )T , the observation in the ith time in-
terval is yi , and we have used the independent increments
property of Brownian motion to separate the terms. Also, us-
ing standard properties of Brownian motion, it can be shown
that p(yi |xi , xi+1) is normal with mean (xi + xi+1)/2 and vari-
ance σ2∆i /12. Apart from the addition of a constant, the log-
likelihood term above is given (as a function of x for fixed
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y1, . . . , yn−1) by

log[p(y1, . . . , yn−1|x)]

= − 6
σ2

n−1∑

i=1

[(
x2

i + x2
i+1 + 2xixi+1

)/
4 − yi (xi + xi+1)

] /
∆i

= −1
2

3
σ2

[
x2

1

∆1
+

n−1∑

i=2

(
1

∆i−1
+

1
∆i

)
x2

i +
x2

n

∆n−1

+ 2
n−1∑

i=1

xixi+1

∆i

]

+
6
σ2

[
y1

∆1
x1 +

n−1∑

i=2

(
yi−1

∆i−1
+

yi

∆i

)
xi +

yn−1

∆n−1
xn

]

= −1
2
xT Qx + bT x,

(A.2)

where Q is defined in the statement of the theorem and

b =
6
σ2

(
y1

∆1
, . . . ,

yi−1

∆i−1
+

yi

∆i
, . . . ,

yn−1

∆n−1

)T

.

Writing the prior density of X in the form

p(x) ∝ exp
(
−1

2
xT Q0x + b0

T x
)

,

where Q0 = Σ−1
0 and b0 = Σ−1

0 µ0 (see Rue and Held, 2005, p.
27) and using (A.1) and (A.2), we obtain

p(x|y1, . . . , yn−1) ∝ exp
(
−1

2
xT Q̂x + b̂T x

)
,

where Q̂ = Σ−1
0 + Q and b̂ = Σ−1

0 µ0 + b. This implies that
the posterior distribution of X is Gaussian with covariance
matrix Σ̂ = (Σ−1

0 + Q)−1 and mean

µ̂ = Q̂−1b̂ = Σ̂(Σ−1
0 µ0 + b) = Σ̂(Σ−1

0 µ0 + Dy).

The next part of the proof is to determine the conditional
distribution of X given X and the data. From the structure
of the prior distribution of X between observation times, the
conditional distribution of X given X and the data coincides
with the distribution of the process

X(t) = σ∆1/2
i B0

i ((t − ti )/∆i ) + X(ti )

+[X(ti+1) − X(ti )](t − ti )/∆i (A.3)

for t ∈ [ti , ti+1), where B0
i , i = 1, . . . , n − 1 are independent

standard Brownian bridges subject to the constraint (1) im-
posed on X by the data, i.e.,

σ

∫ 1

0
B0

i (s) ds + (X(ti ) + X(ti+1))/2 = yi .

From Lemma 1 that follows the proof, providing the con-
ditional distribution of B0

i given
∫ 1

0 B0
i (s) ds, it is then seen

that the conditional distribution of X given X and the data

is Gaussian with mean

E(X(t)|X, y1, . . . , yn−1) = X(ti ) + [X(ti+1) − X(ti )](t − ti )/∆i

+ 6(t − ti )(ti+1 − t) [yi − (X(ti )

+ X(ti+1))/2] /∆2
i

for t ∈ [ti , ti+1), and covariance kernel σ2K̃ , where K̃ is defined
in the statement of the theorem. Setting zi = X(ti ) − µ̂i and
rearranging terms in the above display then gives

E(X(t)|X, y1, . . . , yn−1) = µ̂(t) + Z(t),

where

Z(t) = zi + (zi+1 − zi )(t − ti )/∆i

− 3(t − ti )(ti+1 − t)(zi + zi+1)/∆2
i

= ai (t)zi + bi (t)zi+1

for t ∈ [ti , ti+1), i = 1, . . . , n − 1. Here ai (t) and bi (t) are de-
fined in the statement of the theorem.

The final step of the proof is to remove the conditioning on
X. From the first part of the proof, we have that the posterior
distribution of (z1, . . . , zn )T = X − µ̂ is Gaussian with mean
zero and covariance matrix Σ̂. It follows immediately that
the the posterior distribution of the process Z is Gaussian
with mean zero and covariance kernel K∗, as defined in terms
of Σ̂ in the statement of the theorem. As we showed above,
the conditional distribution of X given Z (or X) and the
data are Gaussian with mean function µ̂ + Z and covariance
kernel σ2K̃ . Since µ̂ and K̃ do not depend on Z , it follows
using the convolution formula that the posterior distribution
of X is Gaussian with mean function µ̂ and covariance kernel
K̂ = σ2K̃ + K∗.

Lemma 1: Let B0 be a standard Brownian bridge. The
conditional distribution of B0 given

∫ 1
0 B0(s) ds is Gaussian

with mean µ0(t) = 6t(1 − t)
∫ 1

0 B0(s) ds and covariance kernel
K0(s, t) = s ∧ t − st − 3ts(1 − t)(1 − s), for s, t ∈ [0, 1].

Proof. Note that W = (B0(s), B0(t),
∫ 1

0 B0(u) du)T is a
zero-mean Gaussian random vector. Partition its covariance
matrix as

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
,

where Σ11 and Σ22 are the covariance matrices of W (1) =
(B0(s), B0(t))T , and W (2) =

∫ 1
0 B0(u) du, respectively. Then,

from the covariance of B0,

Σ11 =
[

s(1 − s) s ∧ t − st
s ∧ t − st t(1 − t)

]
,

Σ12 = ΣT
21 = (s(1 − s)/2, t(1 − t)/2)T ,

and Σ22 = 1/12. The conditional distribution of W (1) given
W (2) is Gaussian with mean µ(1) + Σ12Σ−1

22 (W (2) − µ(2)),
where µ(1) and µ(2) are their respective means, and covari-
ance Σ11 − Σ12Σ−1

22 Σ21. The result now follows since the finite-
dimensional distributions of a Gaussian process are deter-
mined by its mean and covariance kernel.


