
CS-BIGS 8(1):1-13 http://www.csbigs.fr

A case study of non-inferiority testing
with survival outcomes

Hsin-wen Chang
Academia Sinica, Taiwan
Ian W. McKeague
Columbia University, USA
Yu-Ju Wang
Academia Sinica, Taiwan

This is a case study for a new class of nonparametric tests designed to assess evidence of non-
inferiority ordering among multiple survival functions. The tests are devised for tree-structured
orderings, as needed for the comparison of an experimental treatment to one or more alternative
treatments. Applications to data from two non-inferiority trials are developed: 1) a two-armed
trial for the treatment of liver cancer in which we find strong evidence of the non-inferiority of
an experimental treatment (lenvatinib) to a standard treatment (sorafenib), and 2) a three-armed
trial for the treatment of major depression in which we find strong evidence that an experimental
treatment is both superior to placebo and non-inferior to a standard treatment. We implement
the approach in R, and explain in detail how to carry out the analyses for 1) and 2).
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1. Introduction

Non-inferiority trials have the goal of show-
ing that an experimental treatment is no worse
than a standard treatment up to an acceptably
small margin. Assessing non-inferiority (or
NI), however, is more complex than assessing
superiority. For a recent discussion of the chal-
lenges in the design and interpretation of non-
inferiority trials, see Mauri and D’Agostino
(2017). Currently more than 600 NI trials are
listed in MEDLINE. Key aspects in the design
of NI trials are: 1) the need to have prior ran-
domized clinical trials (RCTs) evaluating su-

periority of standard treatment to placebo, 2)
the study must be able to distinguish between
effective and ineffective therapies (“assay sen-
sitivity"), 3) a NI margin must be defined dur-
ing the design phase (based on effect of the
standard treatment in previous studies), and
4) the NI trial should preserve the conditions
of the study in which the standard treatment
was shown to be effective (“constancy assump-
tion”). NI trials typically deal with new ther-
apies that are not anticipated to have efficacy
superior to standard treatment, because they
may have other benefits, such as being more
economical, less extensive, or less toxic (Wellek,
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2010; Rothmann et al., 2011).
In the present paper we provide a case study
for the analysis of data from NI trials involv-
ing survival endpoints that are possibly right-
censored. Our approach is based on the type of
nonparametric likelihood ratio (NPLR) statis-
tics used in empirical likelihood (Owen, 2001),
and extends procedures developed by Chang
and McKeague (2016, 2019) and El Barmi and
McKeague (2013).
The classical notion of stochastic ordering plays
a basic role in framing the notion of NI for sur-
vival outcomes. A survival function S1 is said
to be stochastically larger than another survival
function S2 if S1(t) ≥ S2(t) for all t ≥ 0, and
the inequality is strict for at least one t; then we
write S1 � S2. Superiority testing involves dis-
tinguishing between S1 = S2 versus S1 � S2,
after initially eliminating the possibility of cross-
ings of S1 and S2, see Chang and McKeague
(2016) for more details.
Chang and McKeague (2019) developed an em-
pirical likelihood (EL) approach for analyzing
NI trials with k ≥ 2 arms, for possibly right-
censored data, by establishing linear orderings
among the transformed survival curves SM1

1 �
SM2

2 � . . . � SMk
k , where M1, . . . , Mk > 0 are

pre-specified NI margins. Two test statistics
were introduced: a supremum-type statistic Kn
and an integral-type statistic In, obtained by
either maximizing or integrating the log-NPLR
statistic over the follow-up period, respectively.
These tests can detect either local or cumulative
differences among the transformed survival
curves.
The contribution of the present paper is to
study this approach for tree-structured order-

ings: S
Mj
j � SMk

k , j = 1, . . . , k − 1. These pro-
vide another way of establishing NI that is ap-
propriate, for example, when the experimental
treatment is compared separately to a standard
therapy and to a placebo. We again use the test
statistics Kn and In, except now the NPLR on
which they are based is defined in terms of the
tree-structured ordering.
We illustrate our new approach in a case study
of two NI trials (Kudo et al., 2018; Mielke et al.,

2008). The data are obtained from the pub-
lished articles by digitizing Kaplan–Meier (KM)
curves, and reconstructing survival and censor-
ing information using the algorithm developed
by Guyot et al. (2012).

The paper is organized as follows. In Section
2 we provide background concerning the two
NI trials, and explain how the data sets were
digitized from the KM curves provided in the
published papers. In each case, we discuss in
non-technical terms the motivation for the NI
testing that is needed, and illustrate our pro-
posed approach by comparing plots of (power-
transformed) KM curves for each treatment
group. Analytical methods for NI testing are
discussed in detail in Section 3, and the results
of applying the various procedures to the two
NI trials are presented in Section 4. Conclud-
ing remarks are provided in Section 5. The R
functions implementing our approach are de-
scribed in Appendix A, and we provide a short
proof regarding the gap between survival func-
tions under proportional hazards in Appendix
B.

2. Data sets

2.1. Two-armed trial comparing treatments for
liver cancer

Sorafenib has been the only first-line treatment
of hepatocellular carcinoma, the most common
type of liver cancer. However, only 2% of pa-
tients respond to sorafenib. To expand patients’
treatment options, medical researchers consid-
ered lenvatinib (an oral multikinase inhibitor
like sorafenib), which has been approved for
treating other types of cancers. After a phase
2 study showed efficacy and safety in patients
with advanced hepatocellular carcinoma, lenva-
tinib was compared with sorafenib as a first-
line treatment for unresectable hepatocellu-
lar carcinoma in a phase 3 randomized non-
inferiority study. This study was conducted at
154 sites in 20 countries throughout the Asia-
Pacific, North American, and European regions
(including France).

The data were analyzed by Kudo et al. (2018)
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to answer the following questions of interest:
whether lenvatinib is non-inferior to sorafenib,
and whether lenvatinib is superior to sorafenib.
The primary endpoint is overall survival, the
time from randomization until death from any
cause. Kudo et al. (2018) obtained a significant
non-inferiority result based on confidence in-
tervals for the hazard ratio (assuming a Cox
model), but superiority of lenvatinib over so-
rafenib was not established.
A total of 1492 patients were recruited for the
trial, of whom 954 eligible patients were ran-
domly assigned in a 1:1 ratio to receive either
lenvatinib (n1 = 478) or sorafenib (n2 = 476) be-
tween March 1, 2013 and July 30, 2015. The to-
tal numbers of uncensored events in the lenva-
tinib and sorafenib arms were 351 and 350,
respectively.

To reconstruct the survival and censoring infor-
mation, we need to provide two inputs to the
R code developed by Guyot et al. (2012). The
first input is obtained using the open source
software GetData Graph Digitizer to extract in-
formation from a copy of Figure 2 in Kudo et al.
(2018), showing KM estimates of overall sur-
vival by treatment group, and numbers at risk
every 3-months during follow-up (from 0 to 42
months). Figure 1 is a screenshot of GetData
Graph Digitizer giving an approximation of the
sorafenib survival curve (in red). The columns
on the right show the coordinates of points (in
yellow) selected by mouse clicks at each jump
in the KM curve, including the initial point
(0, 1). This list of coordinates constitutes the
first input.

Figure 1: Screenshot showing use of the open source software GetData Graph Digitizer to reconstruct the
survival data for the subjects treated with sorafenib.
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Table 1: Counts of mouse clicks on the KM curve and subjects at risk during follow-up (sorafenib).

Interval Time (months) Lower Upper Size of risk set
1 0 1 12 476
2 3 13 28 440
3 6 29 39 348
4 9 40 51 282
5 12 52 59 230
...

...
...

...
...
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Figure 2: KM curves Ŝj (left) and Ŝ
Mj

j (right) from a RCT comparing two treatments for liver cancer: lenvatinib
(cyan) and sorafenib (red).

The second input is contained in Table 1, where
the first column indexes the time-intervals
[0, 3), [3, 6), . . ., the second column shows the
time (in months) at the start of the interval, the
third column shows the cumulative number of
mouse clicks by the start of the interval, the
fourth column shows the number of mouse
clicks by the end of the interval, and the last
column is the size of the risk set just before the
start of the interval.

Based on the survival and censoring data re-
constructed in this manner, the left panel of
Figure 2 shows the KM curves for lenvatinib
(Ŝ1) and sorafenib (Ŝ2). The reconstructions can
have inaccuracies: comparing the left panel of
Figure 2 with the original curves in Figure 1,
there are some slight differences in the tail re-

gion. There is remarkably good agreement,
however, between the hazard ratio based on
the reconstructed data (0.93) and the original
data (0.92).
It appears that the sorafenib survival curve lies
below that of lenvatinib, possibly indicating
superiority of lenvatinib over sorafenib. It is
more challenging, however, to visually assess
non-inferiority in terms of the KM curves. To
this end, for reasons to be explained below, we
need to use a transformed version of the so-
rafenib survival curve, ŜM2

2 , in place of Ŝ2, as
displayed in the right panel of Figure 2.
The idea is to use the equivalence between
the notion “treatment A is non-inferior to treat-
ment B” and the notion “A is superior to a wors-
ened version of treatment B.” The right panel of
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Figure 2 shows that the transformed survival
curve for sorafenib (dashed line) has become
lower (i.e., worsened), so the non-inferiority
of lenvatinib can be assessed by whether its
survival curve (with M1 = 1 in order to keep
the transformed ŜM1

1 the same as the original)
lies above the transformed sorafenib survival
curve (using M2 = 1.08 in ŜM2

2 ). Here M2 =
1.08 is the pre-specified non-inferiority margin
used by Kudo et al. (2018) for the hazard ratio
between lenvatinib and sorafenib. Note the ac-
tual values of the Mj do not matter, only their
relative magnitudes M1 : M2 = 1 : 1.08.

The above transformation approach not only
provides visual insight, but also enables us
to translate the questions of interest into the
language of survival functions: both the superi-
ority and non-inferiority tests take the form of
a test of whether the lenvatinib survival curve
S1 falls above a transformed version of the so-
rafenib survival curve SM2

2 .

2.2. Three-armed trial comparing treatments for
major depression

In this example, we consider data from a three-
armed non-inferiority clinical trial involving
treatments for major depression (Mielke et al.,
2008). A similar digitization is conducted as in
Section 2.1. The endpoint is time (in days) to
first remission. We previously analyzed these
data in Chang and McKeague (2019) to assess
whether the experimental treatment group (n1
= 262) is non-inferior to the standard treatment
group (n2 = 267), and if the standard treat-
ment is superior to the placebo group (n3 =
135). A significant result was obtained using
the two-step NPLR test designed to detect local
differences (Kn, p < 0.01), but the test based
on the integral-type statistic In did not support
the superiority of the standard treatment to the
placebo.

Here we address another question that is of
interest in practice (Hauschke and Pigeot, 2005;
Kombrink et al., 2013): is the experimental
treatment superior to the placebo as well as

non-inferior to the standard therapy? While
the comparison of the standard treatment to
the placebo in Chang and McKeague (2019) is
important to ensure the quality of the whole
study, there are situations where it is known to
be difficult to distinguish between the placebo
and the standard therapy. The question in such
studies is whether we can identify promising
experimental treatments even if the standard
treatment cannot be established as superior to
placebo.

The left panel of Figure 3 shows the KM curves
Ŝj, j = 1, 2, 3, corresponding to the placebo,
standard and experimental treatments, respec-
tively. Because a shorter time to first remission
is desirable, a lower survival function indicates
a more effective treatment. It seems that the
survival curve of the experimental treatment
lies below that of the placebo, suggesting supe-
riority of the experimental treatment over the
placebo.

To address the question of non-inferiority, the
idea is again to use the transformation ap-
proach discussed in the previous section. The
right panel of Figure 3 suggests non-inferiority
of the experimental treatment to the standard
treatment because the survival curve of the ex-
perimental treatment (with M3 = 1, keeping
the transformed ŜM3

3 the same as the original
one) lies below the transformed survival curve
of the standard treatment (with M2 = 0.7).
Here M2 = 0.7 corresponds to a non-inferiority
margin of the hazard ratio between the experi-
mental and standard treatments, as explained
in more detail in Section 3.

As before, translating our question of inter-
est into the language of survival functions, we
want to test whether the survival curve of the
experimental treatment (S3) lies below both
the survival curve of the placebo (S1), and the
transformed survival curve SM2

2 of the stan-
dard treatment. In general, the approach is to
first set the pair(s) of groups involved in the
superiority hypothesis to have Mj = 1, and
then set the remaining Mj according to the
pre-specified non-inferiority margins.
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Figure 3: KM curves Ŝj (left) and Ŝ
Mj

j (right) from a non-inferiority trial comparing treatments of major
depression: placebo (solid), standard treatment (dashed) and experimental treatment (two-dashed).

3. Methods

Let S1, . . . , Sk be unknown survival functions
corresponding to k ≥ 2 treatments. A gen-
eral framework for the primary research ques-
tions raised in Section 2 is to establish a tree-
structured ordering of the form

H1 : S
Mj
j � SMk

k for all j = 1, . . . , k− 1, (1)

where M1, . . . , Mk > 0 represent the pre-
specified margins (which are informed by regu-
latory guidelines and previous clinical studies).
As in the notion of stochastic ordering men-
tioned in the Introduction, for functions f (t)
and g(t) of t over a given follow-up period
[t1, t2], we define f � g to mean f (t) ≥ g(t)
for all t with a strict inequality for some t. This
means that the transformed survival function f
lies above the transformed survival function g.
The pairwise orderings can be interpreted us-
ing hazard ratios, as in Chang and McKeague
(2019).
If the ordering SM1

1 � SM2
2 holds, when longer

survival is desirable, M1 ≥ M2 represents
superiority of treatment 1 over 2, whereas
M1 < M2 corresponds to non-inferiority of
1 over 2. This is the case in Section 2.1, in
which we want to show SM1

1 � SM2
2 , where

S1 represents the experimental therapy, and

S2 the standard therapy. Here M1 = 1, and
M2 = 1.08 is a tolerable margin for the hazard
ratio between the experimental and standard
treatments.
On the other hand, if the ordering S

Mj
j � SM3

3
holds for j = 1, 2, when shorter survival is
desirable, Mj ≥ M3 represents superiority of
treatment 3 over j, whereas Mj < M3 corre-
sponds to non-inferiority of 3 over j. This is the
case in Section 2.2, in which we want to show
SM1

1 � SM3
3 and SM2

2 � SM3
3 , where S1 repre-

sents the placebo, S2 the standard therapy, and
S3 the experimental therapy; M1 = M3 = 1,
and M2 = 0.7 is a tolerable margin for the haz-
ard ratio between the experimental and stan-
dard treatments.
Our method for establishing (1) will be based
on a similar two-step method described in
Chang and McKeague (2019), but with modi-
fications to accommodate the tree ordering in
H1. It is based on partitioning the parame-
ter space for (S1, . . . , Sk) into H01 ∪ Hc

01, where
H01 = H0 ∪ H1 and

H0 : SM1
1 = . . . = SMk

k . (2)

The two-step procedure tests the null Hc
01 ver-

sus H01, then H0 versus H1. Rejection of both
of these null hypotheses gives support for H1
versus the overall null Hc

1 = Hc
01 ∪ H0.



-7- Non-inferiority testing / H.-w. Chang & I.W. McKeague & Y.-J. Wang

The first test is needed to eliminate departures
from H0 ∪ H1 (e.g., crossings or alternative or-
derings), and is based on a simultaneous con-
fidence tube for the functions Mj log Sj(t) −
Mk log Sk(t), j = 1, . . . , k.
The second test is needed to distinguish be-
tween H0 and H1 given that the first test rejects.
Modifying the NPLR given in (2.2) of Chang
and McKeague (2019) so the denominator is
subject to the constraint Sj(t) ≤ Sk(t) for all
j = 1, . . . , k − 1, the only change in the limit-
ing distribution of the test statistics Kn and In
(and their bootstrap calibration) is to use the
projection corresponding to the tree-ordering
instead of the linear-ordering. As before, we
can show that the family-wise error rate of this
two-step procedure can be controlled at the
same alpha-level as the individual tests.
A competing method of testing H1 is to test all
the pairwise hypotheses of the form

H j
0 : S

Mj
j � SMk

k versus H j
1 : S

Mj
j � SMk

k , (3)

for j = 1, . . . , k− 1. The combined procedure is
to test whether at least one of the H j

0 holds ver-

sus the alternative that all of the H j
1 hold (i.e.,

H1). This can be done using the intersection-
union principle, which does not require a mul-
tiplicity adjustment (see, e.g., Berger and Hsu,
1996). Specifically, all of H j

0 need to be rejected
at the prescribed overall α-level in order to have
evidence in support of H1. Possible choices of
each pairwise test of H j

0 include our NPLR
tests, or a Wald-type Cox model test, cf., Kom-
brink et al. (2013).
To analyze the data in Section 2.1, the latter
approach involves fitting a single Cox model,
with sorafenib as the reference group and an
indicator covariate for treatment by lenvatinib.
Denote the corresponding Cox regression co-
efficient as β1. We then test the alternative
HNS

1 : exp(β1) < (M2/M1), where the super-
script NS indicates that the hypothesis is non-
inferiority or superiority. Since ordering in
hazard functions implies ordering in survival
functions, HNS

1 implies H1 for k = 2.
To analyze the data in Section 2.2, a single
Cox model is again used, with the placebo

as the reference group and indicator covari-
ates for the standard and experimental treat-
ments. Denote the corresponding regression
coefficients as β2 and β3, respectively. The
combined pairwise Cox model test accepts the
overall alternative HS,E,N

1 = HS,E
1 ∩ HN

1 if both
HS,E

0 : exp(β3) ≤ M1/M3 and HN
0 : exp(β3) ≤

(M2/M3) exp(β2) are rejected, where the su-
perscript N indicates that the hypothesis is
non-inferiority, and the superscripts S and E
indicate that the hypothesis involves the stan-
dard and experimental treatments. Since or-
dering in hazard functions implies ordering in
survival functions, HS,E

1 implies H1
1 , HN

1 im-
plies H2

1 , and HS,E,N
1 implies H1.

We also consider testing the individual pair-
wise alternatives H j

1, j = 1, . . . , k − 1, using a
Bonferroni adjustment. We compare our pair-
wise NPLR tests with the pairwise Cox model
tests described above. Recall the drawback of
using pairwise tests is that they are too con-
servative overall, even though they have the
benefit of addressing the individual alterna-
tives.

4. Results

4.1. Two-armed trial

In this section we apply the methods described
in Section 3 to the liver cancer survival data
discussed in Section 2.1.

Using (M1, M2) = (1, 1.08), our two-step
NPLR test based on the supremum-type statis-
tic Kn (p = 0.036) and the integral-type statis-
tic In (p = 0.008) both provide evidence of
non-inferiority of lenvatinib over sorafenib, the
evidence being particularly strong using In.

On the other hand, with (M1, M2) = (1, 1), Kn
(p = 0.128) and In (p = 0.082) both fail to pro-
vide evidence of superiority of lenvatinib over
sorafenib. Intuitively, these results mean that
in the right panel of Figure 2, both the maximal
difference (as related to Kn) and the cumula-
tive difference (as related to In) in the survival
curves between lenvatinib and sorafenib are
sufficiently large, with a particularly strong
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cumulative difference; but in the left panel of
Figure 2, both the maximal difference and cu-
mulative difference in the survival curves be-
tween lenvatinib and sorafenib are not large
enough.

Next we compare the result of the two-step
NPLR test based on In (given above) with the
Cox model approach, as both of them mea-
sure cumulative difference. The Cox model
tests show non-inferiority of lenvatinib over
sorafenib (p = 0.024, compared with p = 0.008
using the NPLR approach), but provide insuffi-
cient evidence of superiority of lenvatinib over
sorafenib (p = 0.169, compared with p = 0.082
using the NPLR approach). We can see that
in this data set, the NPLR approach gives
more significant results compared with the Cox
model approach. A possible explanation is that
the (transformed) survival curves do not sat-
isfy the proportional hazards assumption of
the Cox model. An exploratory analysis of
the right panel of Figure 2 (not a formal test)
shows that the transformed survival curves
cross, whereas there can be no crossings in sur-
vival curves that satisfy proportional hazards;
see Appendix B for further explanation.

Table 2: Part of the data set twoarm. The vari-
able names time, censor and group are, respectively,
the survival time (in months), the indicator of non-
censorship, and the treatment group label (1=lenva-
tinib, 2=sorafenib). In this display and the subse-
quent one, the survival time is rounded to three
decimal places.

Subject Time Censor Group
1 0.323 0 1
2 0.646 1 1
3 0.646 1 1
4 0.646 1 1
5 0.836 0 1
6 1.026 1 1
...

...
...

...
479 0.418 1 2
480 0.608 1 2
481 0.608 1 2
482 0.893 0 2
483 1.178 1 2
484 1.178 1 2

...
...

...
...

Using the R functions described in Appendix
A, the steps to obtain the above results are as
follows. Inspecting the data,

R> twoarm

gives output as in Table 2.
For the superiority test using the two-step
NPLR test, the margins are specified by set-
ting M_vec=(1,1). The NI test (not shown) is
carried out in the same way except with M_vec
=(1,1.08). First we run

R> nocrossings(twoarm ,M_vec=c
(1,1),group_k =2)

which gives

$decision
[1] 1

indicating that Hc
01 is rejected, so we conclude

there is no (significant) crossing or alternative
ordering of the two survival functions (see Sec-
tion 3). We can then proceed to the second part
of the two-step test. For the test based on Kn,
running

R> supELtest(twoarm ,M_vec=c(1,1)
,group_k =2)

gives the value of the test statistic

$teststat
[1] 5.650466

the critical value based on bootstrap calibration

$critval
[1] 7.341974

and the p-value

$pvalue
[1] 0.128

Similarly, for the test based on In, running

R> intELtest(twoarm ,M_vec=c(1,1)
,group_k =2)

gives

$teststat
[1] 1.301929
$critval
[1] 1.565695
$pvalue
[1] 0.082
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For the Cox model-based Wald-type superior-
ity test, run

R> M_vec=c(1,1)
R> dat=Surv(twoarm[,1],twoarm

[,2])
R> Cox_model=coxph(dat~as.

numeric(twoarm [ ,3]==1))
R> beta_S=Cox_model$coefficients

[1]-log(M_vec [2]/ M_vec [1])
R> sd_S=sqrt(diag(Cox_model$var)

)[1]
R> T_S=beta_S/sd_S
R> pnorm(T_S)

resulting in the p-value 0.168538.

4.2. Three-armed trial

In this section we apply the methods in Sec-
tion 3 to the major depression data in Section
2.2. Our two-step NPLR tests based on Kn
(p < 0.001) and In (p < 0.001) each estab-
lish that the experimental treatment is superior
to the placebo, and non-inferior to the stan-
dard treatment. In the right panel of Figure 3,
both the maximal and cumulative difference
in the (transformed) survival curves between
placebo and experimental treatment, and be-
tween standard and experimental treatment,
are therefore deemed sufficiently large to give
this conclusion. This example illustrates how
evidence for the beneficial effect of an exper-
imental treatment can arise, even when the
standard treatment cannot be established as
better than placebo (as seen in Section 2.2).

The above conclusion is supported by both
the combined-pairwise Cox model test and
the combined-pairwise NPLR test based on
In. However, looking at the individual pair-
wise alternatives at the Bonferroni-corrected
α = 0.025, the pairwise Cox model tests show
non-inferiority of the experimental treatment
over the standard treatment (p < 0.001) but
cannot establish superiority of the experimen-
tal treatment over the placebo (p = 0.029 > α).
The pairwise NPLR tests based on In give sim-
ilar results, with a slightly larger p-value of
0.036 for the superiority test. These results

reflect the fact that individual pairwise test-
ing with multiplicity adjustment is more con-
servative than the combined-pairwise and the
two-step NPLR approaches.

Turning now to the R code, inspecting the data

R> threearm

gives output as in Table 3.

Table 3: Part of the data set threearm with group
labels (1=placebo, 2=standard, 3=experimental).

Subject Time Censor Group
1 2.516 0 1
2 5.033 1 1
3 5.948 1 1
4 5.948 1 1
5 5.948 1 1
...

...
...

...
91 12.490 0 2
92 12.490 0 2
93 12.490 0 2
94 12.490 0 2
95 12.490 0 2

...
...

...
...

150 12.993 1 3
151 12.993 1 3
152 12.993 1 3
153 13.451 0 3
154 13.451 0 3

...
...

...
...

The NI margins are specified as M_vec
=(1,0.7,1). For the first step of the two-step
NPLR test,

R> nocrossings(threearm ,M_vec=c
(1,0.7 ,1),group_k =3)

gives

$decision
[1] 1

indicating that there is no evidence of a cross-
ing or an alternative ordering of the three sur-
vival functions. We then run the NPLR test
based on Kn:

R> supELtest(threearm ,M_vec=c
(1,0.7 ,1),group_k =3)

$teststat
[1] 28.31915
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$critval
[1] 8.160517
$pvalue
[1] < 0.001

The p-value is reported (as p < 0.001) up to
the precision allowed by the 1000 bootstrap
replications. For the NPLR test based on In:

R> intELtest(threearm ,M_vec=c
(1,0.7 ,1),group_k =3)

$teststat
[1] 6.505531
$critval
[1] 1.734457
$pvalue
[1] < 0.001

The pairwise NPLR tests based on In are run
as follows:

R> threearm13=threearm[threearm
[,3]!=2,]

R> threearm23=threearm[threearm
[,3]!=1,]

R> p_In_13 = intELtest(
threearm13 ,M_vec=c(1,1),
group_k =3) $pvalue_numeric

$teststat
[1] 1.41794
$critval
[1] 1.220444
$pvalue
[1] 0.036
R> p_In_23 = intELtest(

threearm23 , M_vec = c(0.7, 1)
, group_k = 3) $pvalue_numeric

$teststat
[1] 6.683489
$critval
[1] 1.013017
$pvalue
[1] < 0.001

The decision for the combined-pairwise NPLR
test is

R> (combined_pairwise_In_rej_H0
= p_In_13 < 0.05 & p_In_23 <
0.05)

[1] TRUE

The decisions for the individual pairwise
NPLR tests with Bonferroni adjustment are

R> (
individual_pairwise_In_rej_H0j
= c(p_In_13 < 0.025 , p_In_23
< 0.025))

[1] FALSE TRUE

for superiority and non-inferiority, respectively.
For the pairwise Cox model tests, run

R> M_vec=c(1,0.7 ,1)
R> dat=Surv(threearm [,1],

threearm [,2])
R> Cox_model=coxph(dat~as.

numeric(threearm [ ,3]==2)+as.
numeric(threearm [ ,3]==3))

R> Delta_Cox=M_vec [2]/ M_vec [3]
R> beta_SE=

Cox_model$coefficients [2]-log
(M_vec [1]/ M_vec [3])

R> sd_SE=sqrt(diag(Cox_model$var
))[2]

R> T_SE=beta_SE/sd_SE
R> beta_N=Cox_model$coefficients

[2]- Cox_model$coefficients
[1]-log(Delta_Cox)

R> sd_N=sqrt(diag(Cox_model$var)
[2] -2* Cox_model$var [1,2]+ diag
(Cox_model$var)[1])

R> T_N=beta_N/sd_N

resulting in the p-values

R> (p_SE_Cox = 1 - pnorm(T_SE))
[1] 0.02900614

and

R> (p_N_Cox = 1 - pnorm(T_N))
[1] 4.047831e-06

The decision for the combined-pairwise Cox
model test is

R> (combined_pairwise_Cox_rej_H0
= p_SE_Cox < 0.05 & p_N_Cox

< 0.05)
[1] TRUE

The decisions for the individual pairwise Cox
model tests with Bonferroni adjustment are
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R> (
individual_pairwise_Cox_rej_H0j
= c(p_SE_Cox < 0.025 ,

p_N_Cox < 0.025))
[1] FALSE TRUE

for superiority and non-inferiority, respectively.

5. Conclusion

Non-inferiority testing for survival outcomes
has previously been formulated in terms of
Cox models, but a more flexible and powerful
approach is to utilize nonparametric likelihood
ratio techniques. In this paper we have pro-
vided a case study contrasting these two com-
peting approaches using data from two clinical
trials, along with R code implementation.
In the two-armed trial, we are able to demon-
strate a much more significant non-inferiority
result than the Cox model approach. In the
three-armed trial, individual pairwise testing
(with Bonferroni adjustment) is conservative;
all the other tests show that the experimen-
tal treatment is both superior to placebo and
non-inferior to the standard treatment.
The novelty of the proposed approach arises
from framing the non-inferiority test in terms
of tree-structured (rather than linear) ordering;
this is of interest when comparing an experi-
mental treatment to standard treatment(s) and
separately to a placebo.
In future work it would be of interest to con-
struct NPLR-based confidence bands comparing
multiple treatment groups in NI trials, as often
desired for visualization purposes (Althunian
et al., 2017). Currently available confidence
bands for comparing multiple survival func-
tions are constructed based on pairwise con-
trasts, and are typically too wide to show NI
due to the same inefficiency we have demon-
strated for the individual pairwise tests. (To
our knowledge, there is no confidence band
corresponding to the combined-pairwise test.)
NPLR-based confidence bands for ratios of sur-
vival functions developed by McKeague and
Zhao (2002) apply to superiority trials, but
to our knowledge no NPLR-based confidence

bands have been developed for the study of
non-inferiority ordering.
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Appendix A: R functions

Here we describe the arguments used in the three R functions we have written to implement the
proposed tests. Only data and M_vec need to be modified depending on the application. The
other arguments can be left unchanged.

R> intELtest(data ,M_vec ,group_k=max(data [,3]),t1=0,t2=Inf ,nboot
=1000, alpha =0.05 , seed =1011)

R> supELtest(data ,M_vec ,group_k=max(data [,3]),t1=0,t2=Inf ,nboot
=1000, alpha =0.05 , seed =1011)

R> nocrossings(data ,M_vec ,group_k=max(data [,3]),t1=0,t2=Inf ,nboot
=1000, alpha =0.05 , seed =1011)

• data: a data frame/matrix with 3 columns: column 1 contains the observed survival/censor-
ing times, column 2 the indicators of non-censorship, and column 3 the group labels.

• M_vec: vector of pre-specified margins (M1, M2, . . . , Mk).

• group_k: the label of the group hypothesized to have the smallest survival rate under the
tree-structured hypothesis of the form H1. The default value is the largest group label.

• t1: the lower endpoint of the pre-specified time interval over which comparison between the
survival functions is carried out. The default value is 0.

• t2: the upper endpoint of the pre-specified time interval. The default value is ∞.

• nboot: the number of bootstrap replications. The default value is 1000.

• alpha: the pre-specified significance level of the tests. The default value is 0.05.

• seed: random number generator seed for the bootstrap replications. The default is 1011.

Appendix B: gaps between survival curves under proportional hazards

Let two survival curves S1 and S2 (that are possibly transformed from other survival curves)
satisfy proportional hazards, in the sense that S1(t) = Sc

2(t) for some c > 0. Without loss of
generality, suppose c < 1 (which means S1(t) ≥ S2(t)), and S1(t) < 1 for t > 0. Then the gap
between the two survival curves is

S1(t)− S2(t) = Sc
2(t)− S2(t) = Sc

2(t)
{

1− S1−c
2 (t)

}
.

The gap vanishes if and only if either S2(t) = 0 (implying S1(t) = 0) or S2(t) = 1 (implying
S1(t) = 1). The latter case arises only at t = 0. We conclude that there is a gap in the survival
curves when t > 0 and S2(t) > 0.
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