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Abstract: This paper develops a hybrid likelihood (HL) method based on a compromise between

parametric and nonparametric likelihoods. Consider the setting of a parametric model for the

distribution of an observation Y with parameter θ. Suppose there is also an estimating function

m(·, µ) identifying another parameter µ via Em(Y, µ) = 0, at the outset defined independently of

the parametric model. To borrow strength from the parametric model while obtaining a degree of

robustness from the empirical likelihood method, we formulate inference about θ in terms of the

hybrid likelihood function Hn(θ) = Ln(θ)1−aRn(µ(θ))a. Here a ∈ [0, 1) represents the extent of the

compromise, Ln is the ordinary parametric likelihood for θ, Rn is the empirical likelihood function,

and µ is considered through the lens of the parametric model. We establish asymptotic normality

of the corresponding HL estimator and a version of the Wilks theorem. We also examine extensions

of these results under misspecification of the parametric model, and propose methods for selecting

the balance parameter a.

Key words and phrases: Agnostic parametric inference, Focus parameter, Semiparametric estima-
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Some personal reflections on Peter

We are all grateful to Peter for his deeply influential contributions to the field of statistics, in particular to

the areas of nonparametric smoothing, bootstrap, empirical likelihood (what this paper is about), functional

data, high-dimensional data, measurement errors, etc., many of which were major breakthroughs in the area.

His services to the profession were also exemplary and exceptional. It seems that he could simply not say

‘no’ to the many requests for recommendation letters, thesis reports, editorial duties, departmental reviews,

and various other requests for help, and as many of us have experienced, he handled all this with an amazing

speed, thoroughness and efficiency. We will also remember Peter as a very warm, gentle and humble person,

who was particularly supportive to young people.

Nils Lid Hjort: I have many and uniformly warm remembrances of Peter. We had met and talked a few

times at conferences, and then Peter invited me for a two-month stay in Canberra in 2000. This was both
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enjoyable, friendly and fruitful. I remember fondly not only technical discussions and the free-flowing of ideas

on blackboards (and since Peter could think twice as fast as anyone else, that somehow improved my own

arguing and thinking speed, or so I’d like to think), but also the positive, widely international, upbeat, but

unstressed working atmosphere. Among the pluses for my Down Under adventures was not merely meeting

kangaroos in the wild while jogging and singing Schnittke, but teaming up with fellow visitors for several

good projects, in particular with Gerda Claeskens; another sign of Peter’s deep role in building partnerships

and teams around him, by his sheer presence.

Then Peter and Jeannie visited us in Oslo for a six-week period in the autumn of 2003. For their first day

there, at least Jeannie was delighted that I had put on my Peter Hall t-shirt and that I gave him a Hall of

Fame wristwatch. For these Oslo weeks he was therefore elaboratedly introduced at seminars and meetings

as Peter Hall of Fame; everyone understood that all other Peter Halls were considerably less famous. A

couple of project ideas we developed together, in the middle of Peter’s dozens and dozens of other ongoing

real-time projects, are still in my drawers and files, patiently awaiting completion. Very few people can be

as quietly and undramatically supremely efficient and productive as Peter. Luckily most of us others don’t

really have to, as long as we are doing decently well a decent proportion of the time. But once in a while, in

my working life, when deadlines are approaching and I’ve lagged far behind, I put on my Peter Hall t-shirt,

and think of him. It tends to work.

Ingrid Van Keilegom: I first met Peter in 1995 during one of Peter’s many visits to Louvain-la-Neuve

(LLN). At that time I was still a graduate student at Hasselt University. Two years later, in 1997, Peter

obtained an honorary doctorate from the Institute of Statistics in LLN (at the occasion of the fifth anniversary

of the Institute), during which I discovered that Peter was not only a giant in his field but also a very human,

modest and kind person. Figure 1(a) shows Peter at his acceptance speech. Later, in 2002, soon after I

started working as a young faculty member in LLN, Peter invited me to Canberra for six weeks, a visit of

which I have extremely positive memories. I am very grateful to Peter for having given me the opportunity

to work with him there. During this visit Peter and I started working on two papers, and although Peter



HYBRID EMPIRICAL LIKELIHOOD 3

(a) (b)

Figure 1: (a) Peter at the occasion of his honorary doctorate at the Institute of Statistics in Louvain-la-Neuve
in 1997; (b) Peter and Ingrid Van Keilegom in Tidbinbilla Nature Reserve near Canberra in 2002 (picture
taking by Jeannie Hall).

was very busy with many other things, it was difficult to stay on top of all new ideas and material that he

was suggesting and adding to the papers, day after day. At some point during this visit Peter left Canberra

for a 10-day visit to London, and I (naively) thought I could spend more time on broadening my knowledge

on the two topics Peter had introduced to me. However, the next morning I received a fax of 20 pages of

hand-written notes, containing a difficult proof that Peter had found during the flight to London. It took

me the full next 10 days to unraffle all the details of the proof! Although Peter was very focused and busy

with his work, he often took his visitors on a trip during the weekends. I enjoyed very much the trip to the

Tidbinbilla Nature Reserve near Canberra, together with him and his wife Jeannie. A picture taken in this

park by Jeannie is seen in Figure 1(b).

After the visit to Canberra, Peter and I continued working on other projects, and in around 2004 Peter

visited LLN for several weeks. I picked him up in the morning from the airport in Brussels. He came straight

from Canberra and had been more or less 30 hours underway. I supposed without asking that he would like

to go to the hotel to take a rest. But when we were approaching the hotel, Peter insisted that I would drive

immediately to the Institute in order to start working straight away. He spent the whole day at the Institute

discussing with people and working in his office, before going finally to his hotel! I always wondered where
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he found the energy, the motivation and the strength to do this. He will be remembered by many of us as

an extremely hard working person, and as an example to all of us.
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1 Introduction

For modelling data there are usually many options, ranging from purely parametric, semiparametric, to fully

nonparametric. There are also numerous ways in which to combine parametrics with nonparametrics, say

estimating a model density by a combination of a parametric fit with a nonparametric estimator, or by taking

a weighted average of parametric and nonparametric quantile estimators. This article concerns a proposal

for a bridge between a given parametric model and a nonparametric likelihood-ratio method. We construct

a hybrid likelihood function, based on (i) the usual likelihood function for the parametric model, say Ln(θ),

with n referring to sample size, as usual; and (ii) the empirical likelihood function for a given set of control

parameters, say Rn(µ), where the µ parameters in question are “pushed through” the parametric model,

leading to Rn(µ(θ)), say. Our hybrid likelihood Hn(θ), defined in (2) below, will be used for estimating

the parameter vector of the working model; we term the θ̂hl in question the maximum hybrid likelihood

estimator. This in turn leads to estimates of other quantities of interest. If ψ is such a focus parameter,

expressed via the working model as ψ = ψ(θ), then it will be estimated using ψ̂hl = ψ(θ̂hl).

If the working parametric model is correct, these hybrid estimators will lose a certain amount in terms of

efficiency, when compared to the usual maximum likelihood estimator. We shall demonstrate, however, that

the efficiency loss under ideal model conditions is typically a small one, and that the hybrid estimators often

will outperform the maximum likelihood when the working model is not correct. Thus the hybrid likelihood

will be seen to offer parametric robustness, or protection against model misspecification, by borrowing

strength from the empirical likelihood, via the selected control parameters.

Though our construction and methods can be lifted to e.g. regression models, see Section S.5 in the

supplementary material, it is practical to start with the simpler i.i.d. framework, both for conveying the

basic ideas and for developing theory. Thus let Y1, ..., Yn be i.i.d. observations, stemming from some unknown

density f . We wish to fit the data to some parametric family, say fθ(y) = f(y, θ), with θ = (θ1, . . . , θp)
t ∈ Θ,

where Θ is an open subset of Rp . The purpose of fitting the data to the model is typically to make inference

about certain quantities ψ = ψ(f), termed focus parameters, but without necessarily trusting the model
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fully. Our machinery for constructing robust estimators for these focus parameters involves certain extra

parameters, which we term control parameters, say µj = µj(f) for j = 1, . . . , q. These are context-driven

parameters, selected to safeguard against certain types of model misspecification, and may or may not include

the focus parameters. Suppose in general terms that µ = (µ1, . . . , µq) is identified via estimating equations,

Ef mj(Y, µ) = 0 for j = 1, . . . , q. Now consider

Rn(µ) = max
{ n∏
i=1

(nwi) :

n∑
i=1

wi = 1,

n∑
i=1

wim(Yi, µ) = 0, each wi > 0
}
. (1)

This is the empirical likelihood function for µ, see Owen (2001), with further discussions in e.g. Hjort

et al. (2009), Schweder and Hjort (2016, Ch. 11). One might e.g. choose m(Y, µ) = g(Y ) − µ for suitable

g = (g1, . . . , gq), in which case the empirical likelihood machinery gives confidence regions for the parameters

µj = Ef gj(Y ). We can now introduce the hybrid likelihood (HL) function

Hn(θ) = Ln(θ)1−aRn(µ(θ))a, (2)

where Ln(θ) =
∏n
i=1 f(Yi, θ) is the ordinary likelihood, Rn(µ) is the empirical likelihood for µ, but here

computed at the value µ(θ), which is µ evaluated at fθ, and with a being a balance parameter in [0, 1). The

associated maximum HL estimator is θ̂hl, the maximiser of Hn(θ). If ψ = ψ(f) is a parameter of interest,

it is estimated as ψ̂hl = ψ(f(·, θ̂hl)). This means first expressing ψ in terms of the model parameters, say

ψ = ψ(f(·, θ)) = ψ(θ), and then plugging in the maximum HL estimator. Note that the general approach

(2) works for multidimensional vectors Yi, so the gj functions could e.g. be set up to reflect covariances. For

one-dimensional cases, options include mj(Y, µj) = I{Y ≤ µj}− j/q (j = 1, . . . , q−1) for quantile inference.

The hybrid method (2) provides a bridge from the purely parametric to the nonparametric empirical

likelihood. The a parameter dictates the degree of balance. One may view (2) as a way for the empirical

likelihood to borrow strength from a parametric family, and, alternatively, as a means of robustifying ordinary

parametric model fitting by incorporating precision control for one or more µj parameters. There might be

practical circumstances to assist one in selecting good µj parameters, or good estimating equations, or these

may be singled out at the outset of the study as being quantities of primary interest.
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Example 1. Let fθ be the normal density with parameters (ξ, σ2), and use mj(y, µj) = I{y ≤ µj}− j/4 for

j = 1, 2, 3. Then (1.1), with the ensuing µj(ξ, σ) = ξ + σΦ−1(j/4) for j = 1, 2, 3, may be seen as estimating

the normal parameters in a way which modifies the parametric ML method by taking into account the wish

to have good model fit for the three quartiles. Alternatively, it may be viewed as a way of making inference

for the three quartiles, borrowing strength from the normal family in order to hopefully do better than

simply using the three empirical quartiles.

Example 2. Let fθ be the Beta family with parameters (b, c), where ML estimates match moments for

log Y and log(1− Y ). Add to these the functions mj(y, µj) = yj −µj for j = 1, 2. Again, this is Beta fitting

with modification for getting the mean and variance about right, or moment estimation borrowing strength

from the Beta family.

Example 3. Take your favourite parametric family f(y, θ), and for an appropriate data set specify an

interval or region A that actually matters. Then use m(y, p) = I{y ∈ A}−p as ‘control equation’ above, with

p = P{Y ∈ A} =
∫
A
f(y, θ) dy. The effect will be to push the parametric ML estimates, softly or not softly

depending on the size of a, so as to make sure that the empirical binomial estimate p̂ = n−1
∑n
i=1 I{Yi ∈ A}

is not far off from the estimated p(A, θ̂) =
∫
A
f(y, θ̂) dy. This can also be extended to using a partition of

the sample space, say A1, . . . , Ak, with control equations mj(y, p) = I{y ∈ Aj} − pj for j = 1, . . . , k − 1

(there is redundancy if trying to include also mk). It will be seen via our theory, developed below, that the

hybrid likelihood estimation strategy in this case is large-sample equivalent to maximising

(1− a)`n(θ)− 1
2an r(Qn(θ)) = (1− a)

n∑
i=1

log f(Yi, θ)− 1
2an

Qn(θ)

1 +Qn(θ)
,

where r(w) = w/(1 + w) and Qn(θ) =
∑k
j=1{p̂j − pj(θ)}2/p̂j . Here p̂j is the direct empirical binomial

estimate of P{Y ∈ Aj} and pj(θ̂) the model-based estimate.

In Section 2 we explore the basic properties of HL estimators and the ensuing ψ̂hl = ψ(θ̂hl), under

model conditions. Results here entail that the efficiency loss is typically small, and of size O(a2) in terms

of the balance parameter a. In Section 3 we study the behaviour of HL in O(1/
√
n) neighbourhoods of the

parametric model. It turns out that the HL estimator enjoys certain robustness properties, as compared to
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the ML estimator. Section 4 examines aspects related to fine-tuning the balance parameter a of (2), and

we provide a recipe for its selection. An illustration of our HL methodology is given in Section 5, involving

fitting a Gamma model to data of Roman era Egyptian life-lengths, a century BC.

Finally, coming back to the work of Peter Hall, a nice overview of all papers of Peter on EL can be found

in Chang et al. (2017). We like to mention in particular the paper by DiCiccio et al. (1989), in which the

features and behaviour of parametric and empirical likelihood functions are compared. Let us also mention

that Peter also made very influential contributions to the somewhat related area of likelihood tilting, see

e.g. Choi et al. (2000).

2 Behaviour of HL under the parametric model

The aim of this section is to explore asymptotic properties of the HL estimator under the parametric model

f(·) = f(·, θ0) for an appropriate true θ0. We establish the local asymptotic normality of HL, the asymptotic

normality of the estimator θ̂hl, and a version of the Wilks theorem. The HL estimator θ̂hl maximises

hn(θ) = logHn(θ) = (1− a)`n(θ) + a logRn(µ(θ)) (3)

over θ (assumed here to be unique), where `n(θ) = logLn(θ). We need to analyse the local behaviour of the

two parts of hn(·).

Consider the localised empirical likelihood Rn(µ(θ0+s/
√
n)), where s belongs to some arbitrary compact

S ⊂ Rp. For simplicity of notation we write mi,n(s) = m(Yi, µ(θ0 + s/
√
n)). Also, consider the functions

Gn(λ, s) =
∑n
i=1 2 log{1+λtmi,n(s)/

√
n} and G∗n(λ, s) = 2λtVn(s)−λtWn(s)λ of the q-dimensional λ, where

Vn(s) = n−1/2
∑n
i=1mi,n(s) and Wn(s) = n−1

∑n
i=1mi,n(s)mi,n(s)t. Note that G∗n is the two-term Taylor

expansion of Gn.

We now re-express the EL statistic in terms of Lagrange multipliers λ̂n, which is pure analysis, not

yet having anything to do with random variables, per se: −2 logRn(µ(θ0 + s/
√
n)) = maxλGn(λ, s) =

Gn(λ̂n(s), s), with λ̂n(s) the solution to
∑n
i=1mi,n(s)/{1+λtmi,n(s)/

√
n} = 0 for all s. This basic translation

from the EL definition via Lagrange multipliers is contained in Owen (2001, Ch. 11); for a detailed proof,



HYBRID EMPIRICAL LIKELIHOOD 9

along with further discussion, see Hjort et al. (2009, Remark 2.7). The following lemma is crucial for

understanding the basic properties of HL. The proof is in Section S.1 in the supplementary material. For

any matrix A = (aj,k), ‖A‖ = (
∑
j,k a

2
j,k)1/2 denotes the Euclidean norm.

Lemma 1. For a compact S ⊂ Rp, suppose that (i) sups∈S ‖Vn(s)‖ = Opr(1); (ii) sups∈S ‖Wn(s)−W‖ →pr

0, where W = Varm(Y, µ(θ0)) is of full rank; (iii) n−1/2 sups∈S maxi≤n ‖mi,n(s)‖ →pr 0. Then, the max-

imisers λ̂n(s) = argmaxλGn(λ, s) and λ∗n(s) = argmaxλG
∗
n(λ, s) = W−1n (s)Vn(s) are both Opr(1) uniformly

in s ∈ S, and sups∈S |maxλGn(λ, s)−maxλG
∗
n(λ, s)| = sups∈S |Gn(λ̂n(s), s)−G∗n(λ∗n(s), s)| →pr 0.

Note that we have an explicit expression for the maximiser of G∗n(·, s), hence also its maximum,

maxλG
∗
n(λ, s) = Vn(s)tW−1n (s)Vn(s). It follows that in situations covered by Lemma 1, −2 logRn(µ(θ0 +

s/
√
n)) = Vn(s)tW−1n (s)Vn(s) + opr(1), uniformly in s ∈ S. Also note that, by the law of large numbers,

condition (ii) of Lemma 1 is valid if sups ‖Wn(s) −Wn(0)‖ →pr 0. If m and µ are smooth, then the latter

holds using the mean value theorem. For the quantile example (see Example 1) we can use results on the

oscillation behaviour of empirical distributions (see Stute (1982)).

For our Theorem 1 below we need assumptions on the m(y, µ) function involved in (1), and also on how

µ = µ(fθ) = µ(θ) is behaved close to θ0. In addition to Em(Y, µ(θ0)) = 0, we assume that

sup
s∈S
‖Vn(s)− Vn(0)− ξns‖ = opr(1), (4)

with ξn of dimension q×p tending in probability to ξ0. Suppose for illustration thatm(y, µ(θ)) has a derivative

at θ0, and write m(y, µ(θ0 + ε)) = m(y, µ(θ0)) + ξ(y)ε+ r(y, ε), for the appropriate ξ(y) = ∂m(y, µ(θ0))/∂θ,

a q × p matrix, and with a remainder term r(y, ε). This fits with (4), with ξn = n−1
∑n
i=1 ξ(Yi) →pr ξ0 =

E ξ(Y ), as long as n−1/2
∑n
i=1 r(Yi, s/

√
n) →pr 0 uniformly in s. In smooth cases we would typically have

r(y, ε) = O(‖ε‖2), making the mentioned term of size Opr(1/
√
n). On the other hand, when m(y, µ(θ)) =

I{y ≤ µ(θ)} − α, we have Vn(s)− Vn(0) = f(µ(θ0), θ0)s+Opr(n
−1/4) uniformly in s (see Stute (1982)).

We rewrite the log-HL in terms of a local 1/
√
n-scale perturbation around θ0:

An(s) = hn(θ0 + s/
√
n)− hn(θ0)

= (1− a){`n(θ0 + s/
√
n)− `n(θ0)}+ a{logRn(µ(θ0 + s/

√
n))− logRn(µ(θ0))}.

(5)
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Below we show that An(s) converges weakly to a quadratic limit A(s), uniformly in s over compacta,

which will then lead to our most important insights concerning HL based estimation and inference. By the

multivariate central limit theorem,Un,0
Vn,0

 =

 n−1/2
∑n
i=1 u(Yi, θ0)

n−1/2
∑n
i=1m(Yi, µ(θ0))

→d

U0

V0

 ∼ Np+q(0,Σ), where Σ =

 J C

Ct W

 . (6)

Here, u(y, θ) = ∂ log f(y, θ)/∂θ is the score function, J = Varu(Y, θ0) is the Fisher information matrix of

dimension p× p, C = Eu(Y, θ0)m(Y, µ(θ0))t is of dimension p× q, and W = Varm(Y, µ(θ0)) as before. The

(p+ q)× (p+ q) variance matrix Σ is assumed to be positive definite. This ensures that the parametric and

empirical likelihoods do not “tread on one another’s toes”, i.e. that the mj(y, µ(θ)) functions are not in the

span of the score functions, and vice versa.

Theorem 1. Suppose that smootheness conditions on log f(y, θ) hold, spelled out in Section S.2; the condi-

tions of Lemma 1 are in force, along with condition (4) with the appropriate ξ0, for each compact S ⊂ Rp;

and that Σ has full rank. Then, for each compact S, An(s) converges weakly to A(s) = stU∗− 1
2s

tJ∗s, in the

function space `∞(S), and with the uniform topology (cf. van der Vaart and Wellner (1996, Ch. 1)), where

U∗ = (1 − a)U0 − aξt0W−1V0 and J∗ = (1 − a)J + aξt0W
−1ξ0. Here U∗ ∼ Np(0,K

∗), with variance matrix

K∗ = (1− a)2J + a2ξt0W
−1ξ0 − a(1− a)(CW−1ξ0 + ξt0W

−1Ct).

The theorem, proved in Section S.2 of the supplementary material, is valid for each fixed balance param-

eter a in (2), with J∗ and K∗ also depending on a. We discuss ways of fine-tuning a in Section 4.

The p× q-dimensional block component C of the variance matrix Σ of (6) can be worked with and repre-

sented in different ways. Suppose that µ is differentiable at θ = θ0, and denote the vector of partial derivatives

by ∂µ
∂θ , with derivatives at θ0, and with this matrix arranged as a p × q matrix, with columns ∂µj(θ0)/∂θ

for j = 1, . . . , q. Note that from
∫
m(y, µ(θ))f(y, θ) dy = 0 for all θ follows the q × p-dimensional equation∫

m∗(y, µ(θ0))f(y, θ0) dy (∂µ∂θ )t +
∫
m(y, µ(θ0))f(y, θ0)u(y, θ0)t dy = 0, where m∗(y, µ) = ∂m(y, µ)/∂µ, in

case m is differentiable with respect to µ. This means C = −∂µ∂θ Eθm
∗(Y, µ(θ0)). If m(y, µ) = g(y)− µ, for

example, corresponding to parameters µ = E g(Y ), we have C = ∂µ
∂θ . Also, using (4) we have ξ0 = −(∂µ∂θ )t,

of dimension q × p. Applying Theorem 1 yields U∗ = (1− a)U0 + a∂µ∂θW
−1V0, along with
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J∗ = (1− a)J + a
∂µ

∂θ
W−1

(∂µ
∂θ

)t
and K∗ = (1− a)2J + {1− (1− a)2}∂µ

∂θ
W−1

(∂µ
∂θ

)t
. (7)

For the following corollary of Theorem 1, we need to introduce the random function Γn(θ) = n−1{hn(θ)−

hn(θ0)} along with its population version

Γ(θ) = −(1− a) KL(fθ0 , fθ)− aE log
(
1 + ξ(θ)tm(Y, µ(θ))

)
; (8)

note that θ̂hl is the argmax of Γn(·). Here KL(f, fθ) =
∫
f log(f/fθ) dy is the Kullback–Leibler divergence,

in this case from fθ0 to fθ, and with ξ(θ) the solution of Em(Y, µ(θ))/{1 + ξtm(Y, µ(θ)} = 0 (that this

solution exists and is unique is a consequence of the proof of Corollary 1 below).

Corollary 1. Under the conditions of Theorem 1 and under conditions (A1)–(A3) given in Section S.3 of

the supplementary material, (i) there is consistency of θ̂hl towards θ0; (ii)
√
n(θ̂hl − θ0) →d (J∗)−1U∗ ∼

Np

(
0, (J∗)−1K∗(J∗)−1

)
; and (iii) 2{hn(θ̂hl)− hn(θ0)} →d (U∗)t(J∗)−1U∗.

These results allow us to construct confidence regions for θ0 and confidence intervals for its components.

Of course we are not merely interested in the individual parameters of a model, but in certain functions of

these, namely focus parameters. Assume ψ = ψ(θ) = ψ(θ1, . . . , θp) is such a parameter, with ψ differentiable

at θ0 and denote c = ∂ψ(θ0)/∂θ. The HL estimator for this ψ is the plug-in ψ̂hl = ψ(θ̂hl). With ψ0 = ψ(θ0)

as the true parameter value, we then have via the delta method that

√
n(ψ̂hl − ψ0)→d c

t(J∗)−1U∗ ∼ N(0, κ2), where κ2 = ct(J∗)−1K∗(J∗)−1c. (9)

The focus parameter ψ could, for example, be one of the components of µ = µ(θ) used in the EL part of the

HL, say µj , for which
√
n(µ̂j,hl−µ0,j) has a normal limit with variance (

∂µj

∂θ )t(J∗)−1K∗(J∗)−1
∂µj

∂θ , in terms

of
∂µj

∂θ = ∂µj(θ0)/∂θ. Armed with results reached in Corollary 1, we can set up Wald and likelihood-ratio

type confidence regions and tests for θ, and confidence intervals for ψ. Consistent estimators Ĵ∗ and K̂∗ of

J∗ and K∗ would then be required, but these are readily obtained via plug-in. Also, an estimate of J∗ is

typically obtained via the Hessian of the optimisation algorithm used to find the HL estimator in the first

place.
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In order to investigate how much is lost in efficiency when using the HL estimator under model conditions,

consider the case of small a. We have J∗ = J+aA1 and K∗ = J+aA2 +O(a2), with A1 = ξt0W
−1ξ0−J and

A2 = −2J−CW−1ξ0−ξt0W−1Ct. For the class of functions of the form m(y, µ) = g(y)−T (µ), corresponding

to µ = T−1(E g(Y )), we have A2 = 2A1. It is assumed that T (·) has a continuous inverse at µ(θ) for θ in a

neighbourhood of θ0. Writing (J∗)−1K∗(J∗)−1 as (J−1−aJ−1A1J
−1)(J+aA2)(J−1−aJ−1A1J

−1)+O(a2),

therefore, one finds that this is J−1 +O(a2), which in particular means that the efficiency loss is a very small

one when a is small.

3 Hybrid likelihood outside model conditions

In Section 2 we investigated the hybrid likelihood estimation strategy under the conditions of the parametric

model. Under suitable conditions, the HL will be consistent and asymptotically normal, with a certain

mild loss of efficiency under model conditions, compared to the parametric ML method, i.e. to the special

case a = 0. In the present section we investigate the behaviour of the HL outside the conditions of the

parametric model, which is now viewed as a working model. It will turn out that HL often outperforms

ML by reducing model bias, which in mean squared error terms might more than compensate for a slight

increase in variability. This in turn calls for methods for fine-tuning the balance parameter a in our basic

hybrid construction (2), and we shall deal with this problem too, in Section 4.

Our framework for investigating such properties involves extending the working model f(y, θ) to a

f(y, θ, γ) model, where γ = (γ1, . . . , γr) is a vector of extra parameters. There is a null value γ = γ0

which brings this extended model back to the working model. We shall examine behaviour of the ML and

the HL schemes when γ is in the neighbourhood of γ0. Suppose in fact that

ftrue(y) = f(y, θ0, γ0 + δ/
√
n), (10)

with the δ = (δ1, . . . , δr) parameter dictating the relative distance from the null model. In this framework,

suppose an estimator θ̂ has the property that

√
n(θ̂ − θ0)→d Np(Bδ,Ω), (11)
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with a suitable p×r matrix B related to how much the model bias affects the estimator of θ, and limit variance

matrix Ω. Then a parameter ψ = ψ(f) of interest can in this wider framework be expressed as ψ = ψ(θ, γ),

with true value ψtrue = ψ(θ0, γ0 + δ/
√
n). The spirit of these investigations is that the statistician uses the

working model with only θ present, without knowing the extension model or the size of the δ discrepancy.

The ensuing estimator for ψ is hence ψ̂ = ψ(θ̂, γ0). The delta method then leads to

√
n(ψ̂ − ψtrue)→d N(btδ, τ2), (12)

with b = Bt ∂ψ
∂θ −

∂ψ
∂γ and τ2 = (∂ψ∂θ )tΩ∂ψ

∂θ , and with partial derivatives evaluated at the working model, i.e. at

(θ0, γ0). The limiting mean squared error, for such an estimator of µ, is mse(δ) = (btδ)2 + τ2. Among the

consequence of using the narrow working model when it is moderately wrong, at the level of γ = γ0 + δ/
√
n,

is the bias btδ. Note that the size of this bias depends on the focus parameter, and that it may be zero for

some foci, even when the model is incorrect.

We shall now examine both the ML and the HL methods in this framework, exhibiting the associated

B and Ω matrices and hence the mean squared errors, via (12). Consider the parametric ML estimator θ̂ml

first. To present the necessary results, consider the (p+ r)× (p+ r) Fisher information matrix

Jwide =

J00 J01
J10 J11

 (13)

for the f(y, θ, γ) model, computed at the null values (θ0, γ0). In particular, the p×p block J00, corresponding

to the model with only θ and without γ, is equal to the earlier J matrix of (6) and appearing in Theorem 1

etc. Here one may demonstrate, under appropriate mild regularity conditions, that
√
n(θ̂narr − θ0) →d

Np(J
−1
00 J01δ, J

−1
00 ). Just as (12) followed from (11), one finds for ψ̂ml = ψ(θ̂ml) that

√
n(ψ̂ml − ψtrue)→d N(ωtδ, τ20 ), (14)

featuring ω = J10J
−1
00

∂ψ
∂θ −

∂ψ
∂γ and τ20 = (∂ψ∂θ )tJ−100

∂ψ
∂θ . See also Hjort and Claeskens (2003) and Claeskens

and Hjort (2008, Chs. 6, 7) for further details, discussion, and precise regularity conditions.

In such a situation, with a clear interest parameter ψ, we use the HL to get ψ̂hl = ψ(θ̂hl, γ0). We
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shall work out what happens with θ̂hl in this framework, generalising what is found in the previous section.

Introduce S(y) = ∂ log f(y, θ0, γ0)/∂γ, the score function in direction of these extension parameters, and let

K01 =
∫
f(y, θ0)m(y, µ(θ0))S(y) dy, of dimension q × r, along with L01 = (1 − a)J01 − a(∂ψ∂θ )tW−1K01, of

dimension p× r, and with transpose L10 = Lt
01. The following is proved in Section S.4.

Theorem 2. Assume data stem from the extended p + r-dimensional model (10), and that the conditions

listed in Corollary 1 are in force. For the HL method, with the focus parameter ψ = ψ(f) built into the

construction (2), results (11)–(12) hold, with B = (J∗)−1L01 and Ω = (J∗)−1K∗(J∗)−1.

The limiting distribution for ψ̂hl = ψ(θ̂hl) can again be read off, just as (12) follows from (11):

√
n(ψ̂hl − ψtrue)→d N(ωt

hlδ, τ
2
0,hl), (15)

with ωhl = L10(J∗)−1 ∂ψ∂θ −
∂ψ
∂γ and τ20,hl = (∂ψ∂θ )t(J∗)−1K∗(J∗)−1 ∂ψ∂θ . Note that the quantities involved in

describing these large-sample properties for the HL estimator depend on the balance parameter a employed

in the basic HL construction (2). For a = 0 we are back to the ML, with (15) specialising to (14). When a

moves away from zero, more emphasis is given to the EL part, in effect to push θ to get n−1
∑n
i=1m(Yi, µ(θ))

closer to zero. The result is typically a lower bias |ωhl(a)tδ|, compared to |ωtδ|, and a slightly larger standard

deviation τ0,hl, compared to τ0. Thus selecting a good value of a is a bias-variance balancing game, which

we discuss in the following section.

4 Fine-tuning the balance parameter

The basic HL construction of (2) first entails selecting context relevant control parameters µ, and then a

focus parameter ψ. A special case is that of using the focus ψ as the single control parameter. In each case,

there is also the balance parameter a to decide upon. Ways of fine-tuning the balance are discussed here.

Balancing robustness and efficiency. By allowing the empirical likelihood to be combined with the

likelihood from a given parametric model, one may buy robustness, via the control parameters µ in the HL

construction, at the expense of a certain mild loss of efficiency. One way to fine-tune the balance, after

having decided on the control parameters, is to select a so that the loss of efficiency under the conditions of

the parametric working model is limited by a fixed, small amount, say 5%. This may be achieved by using
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the corollaries of Section 2 by comparing the inverse Fisher information matrix J−1, associated with the ML

estimator, to the sandwich matrix (J∗a )−1K∗a(J∗a )−1, for the HL estimator. Here we refer to the corollaries

of Section 2, see e.g. (7), and have added the subscript a, for emphasis. If there is special interest in some

focus parameter ψ, one may select a so that

κa = {ct(J∗a )−1K∗a(J∗a )−1c}1/2 ≤ (1 + ε)κ0 = (1 + ε)(ctJ−1c)1/2, (16)

with ε the required threshold. With ε = 0.05, for example, one ensures that confidence intervals are only

5% wider than those based on the ML, but with the additional security of having controlled well for the

µ parameters in the process, e.g. for robustness reasons. Pedantically speaking, in (9) there is really a

ca = ∂ψ(θ0,a)/∂θ also depending on the a, associated with the limit in probability θ0,a of the HL estimator,

but when discussing efficiencies at the parametric model, the θ0,a is the same as the true θ0, so ca is the

same as c = ∂ψ(θ0)/∂θ. A concrete illustration of this approach is in the following section.

Features of the mse(a). The methods above, as with (16), rely on the theory developed in Section 2,

under the conditions of the parametric working model. In what follows we need the theory given in Section

3, examining the behaviour of the HL estimator in a neighbourhood around the working model. Results

there can first be used to examine the limiting mse properties for the ML and the HL estimators where it

will be seen that the HL often can behave better; a slightly larger variance is being compensated for with a

smaller modelling bias. Secondly, the mean squared error curve, as a function of the balance parameter a,

can be estimated from data. This leads to the idea of selecting a to be the minimiser of this estimated risk

curve, pursued below.

For given focus parameter ψ, the limit mse when using the HL with parameter a is found from (15):

mse(a) = {ωhl(a)tδ}2 + τ0,hl(a)2. (17)

The first exercise is to evaluate this curve, as a function of the balance parameter a, in situations with given

model extension parameter δ. The mse(a) at a = 0 corresponds to the mse for the ML estimator. If mse(a)

is smaller than mse(0), for some a, then the HL is doing a better job than the ML.



16 NILS LID HJORT, IAN W. MCKEAGUE, and INGRID VAN KEILEGOM

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
27

0
0.

27
5

0.
28

0
0.

28
5

0.
29

0
0.

29
5

0.
30

0

a

ro
ot

−m
se

 fo
r H

L 
an

d 
M

L

0.0 0.2 0.4 0.6 0.8 1.0

0.
26

0
0.

26
5

0.
27

0
0.

27
5

0.
28

0

a

ro
ot

−f
ic

(a
)

Figure 2: (a) The dotted horizontal line indicates the root-mse for the ML estimator, and the full curve
the root-mse for the HL estimator, as a function of the balance parameter a in the HL construction. (b)
The root-fic(a), as a function of the balance parameter a, constructed on the basis of n = 100 simulated
observations, from a case where γ = 1 + δ/

√
n, with δ described in the text.

Figure 2(a) displays the root-mse(a) curve in a simple setup, where the parametric start model is the

Beta(θ, 1), i.e. with density θyθ−1, and the focus parameter used for the HL construction is ψ = EY 2, which

is θ/(θ + 2) under model conditions. The extended model, under which we examine the mse properties of

the ML and the HL, is the Beta(θ, γ), with γ = 1 + δ/
√
n in (10). The δ for this illustration is chosen

to be Q1/2 = (J11)1/2, from (18) below, which may be interpreted as one standard deviation away from

the null model. The root-mse(a) curve, computed via numerical integration, shows that the HL estimator

θ̂hl/(θ̂hl + 2) does better than the parametric ML estimator θ̂ml/(θ̂ml + 2), unless a is close to 1. Similar

curves are seen for other δ, for other focus parameters, and for more complex models. Occasionally, mse(a)

is increasing in a, indicating in such cases that ML is better than HL, but this typically happens only when

the model discrepancy parameter δ is small, i.e. when the working model is nearly correct.

It is of interest to note that ωhl(a) in (15) starts out for a = 0 at ω = J10J
−1
00

∂ψ
∂θ −

∂ψ
∂γ in (14), associated

with the ML method, but then it decreases in size towards zero, as a grows from zero to one. Hence, when

HL employs only a small part of the ordinary log-likelihood in its construction, the consequent ψ̂hl,a has

small bias, but potentially a bigger variance than ML. The HL may thus be seen as a debiasing operation,

for the control and focus parameters, in cases where the parametric model f(·, θ) cannot be fully trusted.

Estimation of mse(a). Concrete evaluation of the mse(a) curves of (17) shows that the HL scheme
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typically is worthwhile, in that the mse is lower than that of the ML, for a range of a values. To find

a good value of a from data, a natural idea is to estimate the mse(a) and then pick its minimiser. For

mse(a), the ingredients ωhl(a) and τ0,hl(a) involved in (15) may be estimated consistently via plug-in of the

relevant quantities. The difficulty lies with the δ part, and more specifically with δδt in ωhl(a)δδtωhl(a).

For this parameter, defined on the O(1/
√
n) scale via γ = γ0 + δ/

√
n, the essential information lies in

Dn =
√
n(γ̂ml − γ0), via parametric ML estimation in the extended f(y, θ, γ) model. As demonstrated

and discussed in Claeskens and Hjort (2008, Chs. 6–7), in connection with construction of their Focused

Information Criterion (FIC), we have

Dn →d D ∼ Nr(δ,Q), with Q = J11 = (J11 − J10J−100 J01)−1. (18)

The factor δ/
√
n in the O(1/

√
n) construction cannot be estimated consistently. Since DDt has mean δδt+Q

in the limit, we estimate squared bias parameters of the type (btδ)2 = bδδtb using {bt(DnD
t
n − Q̂)b}+, in

which Q̂ estimates Q = J11, and x+ = max(x, 0). We construct the r × r matrix Q̂ from estimating and

then inverting the full (p + r) × (p + r) Fisher information matrix Jwide of (13). This leads to estimating

mse(a) using

fic(a) = {ω̂hl(a)t(DnD
t
n − Q̂)ω̂hl(a)}+ + τ̂0,hl(a)2 =

[
nω̂hl(a)t{(γ̂ − γ0)(γ̂ − γ0)t − Q̂}ω̂hl(a)

]
+

+ τ̂0,hl(a)2.

Figure 2(b) displays such a root-fic curve, the estimated root-mse(a). Whereas the root-mse(a) curve

shown in Figure 2(a) is coming from considerations and numerical investigation of the extended f(y, θ, γ)

model alone, pre-data, the root-fic(a) curve is constructed for a given dataset. The start model and its

extension are as with Figure 2(a), a Beta(θ, 1) inside a Beta(θ, γ), with n = 100 simulated data points using

γ = 1+δ/
√
n with δ chosen as for Figure 2(a). Again, the HL method was applied, using the second moment

ψ = EY 2 as both control and focus. The estimated risk is smallest for a = 0.41.

5 An illustration: Roman era Egyptian life-lengths

A fascinating dataset on n = 141 life-lengths from Roman era Egypt, a century BC, is examined in Pearson

(1902), where he compares life-length distributions from two societies, two thousand years apart. The data
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are also discussed, modelled and analysed in Claeskens and Hjort (2008, Ch. 2).
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Figure 3: (a) The q-q plot shows the ordered life-lengths y(i) plotted against the ML-estimated gamma

quantile function F−1(i/(n + 1), b̂, ĉ). (b) The curve p̂a, with the probability p = P{Y ∈ [9.5, 20.5]}
estimated via the HL estimator, is displayed, as a function of the balance parameter a. At balance position
a = 0.61, the efficiency loss is 10% compared to the ML precision under ideal gamma model conditions.

Here we have fitted the data to the Gamma(b, c) distribution, first using the ML, with parameter estimates

(1.6077, 0.0524). The q-q plot of Figure 3(a) displays the points (F−1(i/(n+ 1), b̂, ĉ), y(i)), with F−1(·, b, c)

denoting the quantile function of the Gamma and y(i) the ordered life-lengths, from 1.5 to 96. We learn that

the gamma distribution does a decent job for these data, but that the fit is not good for the longer lives.

There is hence scope for the HL for estimating and assessing relevant quantities in a more robust and indeed

controlled fashion than via the ML. Here we focus on p = p(b, c) = P{Y ∈ [L1, L2]} =
∫ L2

L1
f(y, b, c) dy, for

age groups [L1, L2] of interest. The hybrid log-likelihood is hence hn(b, c) = (1−a)`n(b, c)+a logRn(p(b, c)),

with Rn(p) being the EL associated with m(y, p) = I{y ∈ [L1, L2]} − p. We may then, for each a, maximise

this function and read off both the HL estimates (̂ba, ĉa) and the consequent p̂a = p(̂ba, ĉa). Figure 3(b)

displays this p̂a, as a function of a, for the age group [9.5, 20.5]. For a = 0 we have the ML based estimate

0.251, and with increasing a there is more weight to the EL, which has the point estimate 0.171.

To decide on a good balance, recipes of Section 4 may be appealed to. The relatively speaking simplest

of these is that associated with (16), where we numerically compute κa = {ct(J∗)−1K∗(J∗)−1c}1/2 for each

a, at the ML position in the parameter space of (b, c), and with J∗ and K∗ from (7). The loss of efficiency

κa/κ0 is quite small for small a, and is at level 1.10 for a = 0.61. For this value of a, where confidence
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intervals are stretched 10% compared to the gamma-model-based ML solution, we find p̂a equal to 0.232,

with estimated standard deviation κ̂a/
√
n = 0.188/

√
n = 0.016. Similarly the HL machinery may be put to

work for other age intervals, for each such using the p = P{Y ∈ [L1, L2]} as both control and focus, and

for models other than the gamma. We may employ the HL with a collection of control parameters, like

age groups, before landing on inference for a focus parameter; see Example 3. The more elaborate recipe of

selecting a, developed in Section 4 and using fic(a), can also be used here.

6 Further developments and the Supplementary Material

Various concluding remarks and extra developments are placed in the article’s Supplementary Material

section. In particular, proofs of Lemma 1, Theorems 1 and 2 and Corollary 1 are given there. Other material

involves (i) the important extension of the basic HL construction to regression type data, in Section S.5; (ii)

log-HL-profiling operations and a deviance fuction, leading to a full confidence curve for a focus parameter,

in Section S.6; (iii) an implicit goodness-of-fit test for the parametric vehicle model, in Section S.7; and

finally (iv) a related but different hybrid likelihood construction, in Section S.8.
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Supplementary material

This additional section contains the following sections. Sections S.1, S.2, S.3, S.4 give the technical proofs

of Lemma 1, Theorem 1, Cororally 1 and Theorem 2. Then Section S.5 crucially indicates how the HL

methodology can be lifted from the i.i.d. case to regression type models, whereas a Wilks type theorem

based on HL-profiling, useful for constructing confidence curves for focus parameters, is developed in Section

S.6. An implicit goodness-of-fit test for the parametric working model is identified in Section S.7. Finally

Section S.8 describes an alternative hybrid approach, related to, but different from the HL. This alternative

method is first-order equivalent to the HL method inside O(1/
√
n) neighbourhoods of the parametric vehicle

model, but not at farther distances.

S.1 Proof of Lemma 1

The proof is based on techniques and arguments related to those of Hjort et al. (2009), but with necessary

extensions and modifications.

For the maximiser of Gn(·, s), write λ̂n(s) = ‖λ̂n(s)‖u(s) for a vector u(s) of unit length. With arguments

as in Owen (2001, p. 220),

‖λ̂n(s)‖
{
u(s)tWn(s)u(s)− En(s)u(s)tVn(s)

}
≤ u(s)tVn(s),

with En(s) = n−1/2 maxi≤n ‖mi,n(s)‖, which tends to zero in probability uniformly in s by assumption (iii).

Also from assumption (i), sups∈S |u(s)tVn(s)| = Opr(1). Moreover, u(s)tWn(s)u(s) ≥ en,min(s), the smallest

eigenvalue of Wn(s), which converges in probability to the smallest eigenvalue of W , and this is bounded away

from zero by assumption (ii). It follows that ‖λ̂n(s)‖ = Opr(1) uniformly in s. Also, λ∗n(s) = Wn(s)−1Vn(s)

is bounded in probability uniformly in s. Via log(1 + x) = x− 1
2x

2 + 1
3x

3h(x), where |h(x)| ≤ 2 for |x| ≤ 1
2 ,

write

Gn(λ, s) = 2λtVn(s)− 1
2λ

tWn(s)λ+ rn(λ, s) = G∗n(λ, s) + rn(λ, s).
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For arbitrary c > 0, consider any λ with ‖λ‖ ≤ c. Then we find

|rn(λ, s)| ≤ 2

3

n∑
i=1

|λtmi,n(s)/
√
n|3 |h(λtmi,n(s)/

√
n)| ≤ 4

3
En(s)‖λ‖λtWn(s)λ ≤ 4

3
En(s)c3en,max(s),

in terms of the largest eigenvalue of Wn(s), as long as cEn(s) ≤ 1
2 . Choose c big enough to have both λ̂n(s)

and λ∗n(s) inside this ball for all s with probability exceeding 1− ε′, for a preassigned small ε′. Then,

P
(

sup
s∈S
|max

λ
Gn(λ, s)−max

λ
G∗n(λ, s)| ≥ ε

)
≤ P

(
sup
s∈S

sup
‖λ‖≤c

|Gn(λ, s)−G∗n(λ, s)| ≥ ε
)

≤ P
(

(4/3)c3 sup
s∈S

(En(s)en,max(s)) ≥ ε
)

+ P
(

sup
s∈S
‖λ̂n(s)‖ > c

)
+P
(

sup
s∈S
‖λ∗n(s)‖ > c

)
+ P

(
c sup
s∈S

En(s) > 1
2

)
.

The lim-sup of the probability sequence on the left hand side is hence bounded by 4ε′. We have proven that

sups∈S |maxλGn(λ, s)−maxλG
∗
n(λ, s)| →pr 0.

S.2 Proof of Theorem 1

We work with the two components of (5) separately. First, with Un = n−1/2
∑n
i=1 u(Yi, θ0), which tends to

U0 ∼ Np(0, J), cf. (6),

`n(θ0 + s/
√
n)− `n(θ0) = stUn − 1

2s
tJs+ εn(s), with sup

s∈S
|εn(s)| →pr 0, (19)

under various sets of mild regularity conditions. If log f(y, θ) is concave in θ, no other conditions are required,

beyond finiteness of the Fisher information matrix J , see Hjort and Pollard (1994). Without concavity, but

assuming the existence of third order derivatives Di,j,k(y, θ) = ∂3 log f(y, θ)/∂θi∂θj∂θk, it is straightforward

via Tayor expansion to verify (19) under the condition that supθ∈N maxi,j,k |Di,j,k(Y, θ)| has finite mean,

with N a neighbourhood around θ0. This condition is met for most of the usually employed parametric

families. We finally point out that (19) can be established without third order derivatives, with a mild
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continuity condition on the second derivatives, see e.g. Ferguson (1996, Ch. 18).

Secondly, we shall see that Lemma 1 may be applied, implying

logRn(µ(θ0 + s/
√
n)) = − 1

2Vn(s)tWn(s)−1Vn(s) + opr(1), (20)

uniformly in s ∈ S. For this to be valid it is in view of Lemma 1 sufficient to check condition (i) of that

lemma (we assumed conditions (ii) and (iii)). Here (i) follows using (4), since

sup
s
‖Vn(s)‖ = sup

s
‖Vn(0) + ξns‖+ opr(1)→d sup

s
‖V0 + ξ0s‖.

Hence, sups ‖Vn(s)‖ = Opr(1).

From these efforts we find

logRn(µ(θ0 + s/
√
n))− logRn(µ(θ0)) →d − 1

2 (V0 + ξ0s)
tW−1(V0 + ξ0s) + 1

2V
t
0W

−1V0

= −V t
0W

−1ξ0s− 1
2s

tξt0W
−1ξ0s.

This convergence also takes place jointly with (19), in view of (6), and we arrive at the conclusion of the

theorem.

S.3 Proof of Corollary 1

Corollary 1 is valid under the following conditions, where Γ(·) is defined in (8):

(A1) For all ε > 0, sup‖θ−θ0‖>ε Γ(θ) < Γ(θ0).

(A2) The class
{
y 7→ ∂

∂θ log f(y, θ) : θ ∈ Θ
}

is P -Donsker (see e.g. van der Vaart and Wellner (1996, Ch. 2)).

(A3) Conditions (C0)–(C2) and (C4)–(C6) in Molanes López et al. (2009) are valid, with their function

g(X,µ0, ν) replaced by our function m(Y, µ(θ)), with θ playing the role of ν, except that instead of

demanding boundedness of our function m(Y, µ) we assume merely that the class

y 7→ m(y, µ)m(y, µ)t

{1 + ξtm(y, µ)}2
,
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with µ and ξ in a neighbourhood of µ(θ0) and 0, is P -Donsker (this is a much milder condition than

boundedness).

First note that Γn(θ) can be written as

Γn(θ) = (1− a)n−1
n∑
i=1

{log f(Yi, θ)− log f(Yi, θ0)} − an−1
n∑
i=1

log
(
1 + ξ̂(θ)tm(Yi, µ(θ))

)
,

where ξ̂(θ) is the solution of

n−1
n∑
i=1

m(Yi, µ(θ))

1 + ξtm(Yi, µ(θ))
= 0.

Note that this corresponds with the formula of logRn given below Lemma 1 but with λ(θ)/
√
n relabelled

as ξ(θ). That the ξ̂(θ) solution is unique follows from considerations along the lines of Molanes López et al.

(2009, p. 415). To prove the consistency part, we make use of Theorem 5.7 in van der Vaart (1998). It

suffices by condition (A1) to show that supθ |Γn(θ) − Γ(θ)| →pr 0, which we show separately for the ML

and the EL part. For the parametric part we know that n−1`n(θ) − E log f(Y, θ) is opr(1) uniformly in θ

by condition (A2). For the EL part, the proof is similar to the proof of Lemma 4 in Molanes López et al.

(2009) (except that no rate is required here and that the convergence is uniformly in θ), and hence details

are omitted.

Next, to prove statement (ii) of the corollary, we make use of Theorems 1 and 2 in Sherman (1993)

about the asymptotics for the maximiser of a (not necessarily concave) criterion function, and the results

in Molanes López et al. (2009), who use the Sherman (1993) paper to establish asymptotic normality and

a version of the Wilks theorem in an EL context with nuisance parameters. For the verification of the

conditions of Theorem 1 (which shows root-n consistency of θ̂hl) and Theorem 2 (which shows asymptotic

normality of θ̂hl) in Sherman (1993), we consider separately the ML part and the EL part. We note that

Theorem 1 in Sherman (1993) requires consistency of the estimator, which we here have established by

arguments above. For the EL part all the work is already done using our Theorem 1 and Lemmas 1–6 in
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Molanes López et al. (2009), which are valid under condition (A3). Next, the conditions of Theorems 1 and

2 in Sherman (1993) for the ML part follow using standard arguments from parametric likelihood theory

and condition (A2). It now follows that θ̂hl is asymptotically normal, and its asymptotic variance is equal

to (J∗)−1K∗(J∗)−1 using Theorem 1.

Finally, claim (iii) of the corollary follows from a combination of Theorem 1 with s =
√
n(θ̂hl − θ0) and

the asymptotic normality of
√
n(θ̂hl − θ0) to (J∗)−1U∗. Indeed,

2{hn(θ̂hl)− hn(θ0)} →d 2{(U∗)t(J∗)−1U∗ − 1
2 (U∗)t(J∗)−1J∗(J∗)−1U∗} = (U∗)t(J∗)−1U∗,

and this finishes the proof of the corollary.

S.4 Proof of Theorem 2

To prove Theorem 2, we revisit several previous arguments for the An(·) →d A(·) part of Theorem 1, but

now needing to extend these to the case of the model departure parameter δ being present. First, we have

`n(θ0 + s/
√
n)− `n(θ0) = Uns− 1

2s
tJns+ opr(1)→d (U + J01δ)

ts− 1
2s

tJ00s.

This is essentially since Un = n−1/2
∑n
i=1 u(Yi, θ0) now is seen to have mean J01δ, but the same variance,

up to the required order. We need a parallel result for Vn,0 = n−1/2
∑n
i=1m(Yi, µ(θ0)) under ftrue. Here

Etruem(Y, µ(θ0)) =

∫
m(y, µ(θ0))f(y, θ0){1 + S(y)tδ/

√
n+ o(1/

√
n)}dy

= 0 +K01δ/
√
n+ o(1/

√
n),

yielding Vn,0 →d V0 + K01δ. Along with some further details, this leads to the required extension of the

An →d A part of Theorem 1 and its proof, to the present local neighbourhood model state of affairs;

An(s) = hn(θ0 + s/
√
n)− hn(θ0)→d A(s) = stU∗plus − 1

2s
tJ∗s,
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with J∗ as defined earlier and with

U∗plus = (1− a)(U + J01δ)− aξt0W−1(V0 +K01δ) = U∗ + L01δ.

Following and then modifying the technical details of the proof of Corollary 1, we arrive at

√
n(θ̂hl − θ0)→d (J∗)−1(U∗ + L01δ) ∼ Np((J

∗)−1L01δ, (J
∗)−1K∗(J∗)−1),

as required.

S.5 The HL for regression models

Our HL machinery can be lifted from the iid framework to regression. The following example illustrates

the general idea. Consider the normal linear regression model for data (xi, yi), with covariate vector xi

of dimension say d, and with yi having mean xtiβ. The ML solution is associated with the estimation

equation Em(Y,X, β) = 0, where m(y, x, β) = (y − xtβ)x. The underlying regression parameter can be

expressed as β = (EXXt)−1 EXY , involving also the covariate distribution. Consider now a subvector x0,

of dimension say d0 < d, and the associated estimating equation m0(y, x, γ) = (y − xt0γ)x0. This invites the

HL construction (1− a)`n(β) + a logRn(γ(β)). Here `n(β) is the ordinary parametric log-likelihood; Rn(γ)

is the EL associated with m0; and γ(β) is (EX0X
t
0)−1 EX0Y seen through the lens of the smaller regression,

where EX0Y = X0X
tβ. This leads to inference about β where it is taken into account that regression with

respect to the x0 components is of particular importance.

S.6 Confidence curve for a focus parameter

For a focus parameter ψ = ψ(θ), consider the profiled log-hybrid-likelihood function hn,prof(ψ) = max{hn(θ) :

ψ(θ) = ψ}. Note that hn,max = hn(θ̂hl) is also the same as hn,prof(ψ̂hl). We shall find use for the hybrid

deviance function associated with ψ,

∆n(ψ) = 2{hn,prof(ψ̂hl)− hn,prof(ψ)}.
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Essentially relying on Theorem 1, which involves matrices J∗ and K∗ and the limit variable U∗ ∼ Np(0,K
∗),

we show below that

∆n(ψ0)→d ∆ =
{ct(J∗)−1U∗}2

ct(J∗)−1c
∼ kχ2

1, (21)

where k = ct(J∗)−1K∗(J∗)−1c/ct(J∗)−1c. Here c = ∂ψ(θ0)/∂θ, as in (9). Estimating this k via plug-in

then leads to the full confidence curve cc(ψ) = Γ1(∆n(ψ)/k̂), see Schweder and Hjort (2016, Chs. 2–3),

often improving on the usual symmetric normal-approximation based confidence intervals. Here Γ1(·) is the

distribution function of the χ2
1.

To show (21), we go via a profiled version of An(s) in (5), namely Bn(t) = hn,prof(ψ0+t/
√
n)−hn,prof(ψ0),

where ψ0 = ψ(θ0). For Bn(t) and ∆n(ψ) we have the following.

Theorem 3. Assume the conditions of Theorem 1 are in force. With ψ0 = ψ(θ0) the true parameter value,

and c = ∂ψ(θ0)/∂θ, we have Bn(t)→d B(t) = {ct(J∗)−1U∗t− 1
2 t

2}/ct(J∗)−1c. Also,

∆n(ψ0) = 2 maxBn →d ∆ = 2 maxB =
{ct(J∗)−1U∗}2

ct(J∗)−1c
.

It is clear that ∆ ∼ kχ2
1, with the k given above. Proving the theorem is achieved via Theorem 1, along

the lines of a similar type of result for log-likelihood profiling given in Schweder and Hjort (2016, Section

2.4), and we leave out the details.

Remark 1. The special case of a = 0 for the HL construction corresponds to parametric ML estimation, and

results reached above specialise to the classical results
√
n(θ̂ml−θ0)→d Np(0, J

−1), 2{`n,max−`n(θ0)} →d χ
2
p,

and
√
n(ψ̂ml − ψ0) →d N(0, ctJ−1c). Theorem 3 is then the Wilks theorem for the profiled log-likelihood

function. The other extreme case is that of a → 1, with the EL applied to µ = µ(θ). Here Theorem 1

yields U∗ = −ξt0W−1V0, and with both J∗ and K∗ equal to ξt0W
−1ξ0. This case corresponds to a version of

the classic EL chi-squared result, now filtered through the parametric model, and with −2 logRn(µ(θ0))→d

(U∗)t(J∗)−1U∗ ∼ χ2
p. Also,

√
n(ψ̂el − ψ0)→d N(0, κ2), with κ2 = ctξt0W

−1ξ0c; here ψ̂el = ψ(θ̂el) in terms of
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the EL estimator, the maximiser of Rn(µ(θ)).

S.7 An implied goodness-of-fit test for the parametric model

Methods developed in Section 4, in particular those associated with estimating the mean squared error of

the final estimator, lend themselves nicely to a goodness-of-fit test for the parametric working model, as

follows. We accept the parametric model if the fic(a) criterion of Section 4 tells us that â = 0 is the best

balance, and if â > 0 the model is rejected. This model test can be accurately examined, by working out an

expression for the derivative of fic(a) at a = 0, say Ẑ0
n; we reject the model if Ẑ0

n > 0 (since then and only

then is â positive).

Here Ẑ0
n is the estimated version of the limit experiment variable Z0, which we shall identify below, as a

function of D ∼ Nq(δ,Q), cf. (18). Let us write ωhl(a) = ω + aν + O(a2). Since τ0,hl(a)2 = τ20 + O(a2), the

derivative of

fic(a) = (ω + aν)t(DDt −Q)(ω + aν) + τ20 +O(a2)

with respect to a, at zero, is seen to be Z0 = 2ωt(DDt − Q)ν. Hence the limit experiment version of the

test is to reject the parametric model if (ωtD)(νtD) > ωtQν, or

Z =
ωtD

(ωtQω)1/2
νtD

(νtQν)1/2
> ρ =

ωtQν

(ωtQω)1/2(νtQν)1/2
.

Under the null hypothesis of the model, Z is equal in distribution to X1X2, where (X1, X2) is a binormal pair,

with zero means, unit variances, and correlation ρ. The implied significance level, of the implied goodness

of fit test, is hence α = P{X1X2 > ρ}, which can be read off via numerical integration or simulation, for a

given ρ.

The ν quantity can be identified with a bit of algebraic work, and then estimated consistently from the

data. We note that for the special case of m(y, µ) = g(y) − µ, and with focus on this mean parameter

µ = E g(Y ), then ν becomes proportional to ω. The test above is then equivalent to rejecting the model if
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(ω̂tDn)2/ω̂tQ̂ω̂ > 1, which under the null model happens with probability converging to α = P{χ2
1 > 1} =

0.317.

S.8 A related hybrid estimation method

In earlier sections we have motivated and developed theory for the hybrid likelihood and the HL estimator.

A crucial factor has been the quadratic approximation (20). The latter is essentially valid within a O(1/
√
n)

neighbourhood around the true data generating mechanism, and has yielded the results of Sections 2 and 4.

A related though different strategy is however to take this quadratic approximation as the starting point.

The suggestion is then to define the alternative hybrid estimator as the maximiser θ̃ of

Nn(θ) = (1− a)`n(θ)− 1
2aVn(θ)tWn(θ)−1Vn(θ). (22)

Under and close to the parametric working model, the HL estimator θ̂ and the new-HL estimator θ̃ are

first-order equivalent, in the sense of
√
n(θ̂− θ̃)→pr 0. Of course we could have put up (22) without knowing

or caring about EL or HL in the first place, and with different balance weights. But here we are naturally led

to the balance weights 1−a for the log-likelihood and − 1
2a for the quadratic form, from the HL construction.

The advantage of (22) is partly that it is easier computationally, without a layer of Lagrange maximisation

for each θ. More importantly, it manages well also outside the O(1/
√
n) neighbourhoods of the working

model. The new-HL estimator tends under weak regularity conditions to the maximiser θ0 of the limit

function of Nn(θ)/n, which may written

N(θ) = (1− a)

∫
g log fθ dy − 1

2a v
t
θ(Σθ + vθv

t
θ)
−1vθ,

in terms of vθ = Ef m(Y, µ(θ)) and Σθ = Varfm(Y, µ(θ)). Note next that (A+xxt)−1 = A−1−A−1xxtA−1/(1+

xtA−1x), for invertible A and vector x of appropriate dimension. This leads to the identity

xt(A+ xxt)−1x =
xtA−1x

1 + xtA−1x
.
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Hence the θ0 associated with the new-HL method is the miminiser of the statistical distance function

da(f, fθ) = (1− a)KL(f, fθ) + 1
2a

vtθΣ
−1
θ vθ

1 + vtθΣ
−1
θ vθ

(23)

from the real f to the modelled fθ; here KL(f, fθ) =
∫
f log(f/fθ) dy is the Kullback–Leibler distance. For

a close to zero, the new-HL is essentially maximising the log-likelihood function, associated with attempting

to minimise the KL divergence. For a coming close to 1 the method amounts to minimising an empirical

version of vtθΣ
−1
θ vθ, which means making vθ = Ef m(Y, µ(θ)) close to zero. This is also what the empirical

likelihood is aiming at.
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