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Abstract: This study develops a marginal screening test to detect the presence

of significant predictors for a right-censored time-to-event outcome under a high-

dimensional accelerated failure time (AFT) model. Establishing a rigorous screen-

ing test in this setting is challenging, because of the right censoring and the post-

selection inference. In the latter case, an implicit variable selection step needs to be

included to avoid inflating the Type-I error. A prior study solved this problem by

constructing an adaptive resampling test under an ordinary linear regression. To

accommodate right censoring, we develop a new approach based on a maximally

selected Koul–Susarla–Van Ryzin estimator from a marginal AFT working model.

A regularized bootstrap method is used to calibrate the test. Our test is more pow-

erful and less conservative than both a Bonferroni correction of the marginal tests

and other competing methods. The proposed method is evaluated in simulation

studies and applied to two real data sets.

Key words and phrases: Accelerated failure time model, bootstrap, family-wise

error rate, inverse probability weighting, multiple testing, post-selection inference.

1. Introduction

The problem of detecting informative predictors of a survival outcome has

received much attention over the past decade, especially since the advent of

high-throughput genomic data. For example, a specific gene expression may

influence a patient’s survival time from diffuse large B-cell lymphoma (DLBCL).

Identifying such associations from massive collections of gene-expression data

remains a challenging issue. Motivated by a DLBCL study (Rosenwald et al.

(2002)), we consider the fundamental detection problem of whether there exists

at least one predictor (or genetic feature) that is associated with the survival

outcome in the presence of right censoring.

To address this problem, we develop an adaptive resampling test for survival

data (ARTS), related to the approach developed by McKeague and Qian (2015)

(henceforth, MQ) for uncensored outcomes. This test provides marginal screen-

ing of the predictors, along with rigorous control of the family-wise error rate
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(FWER) resulting from the implicit multiple testing. Furthermore, our testing

procedure adjusts for low-dimensional baseline clinical covariates that are not

included in the systematic screening of the gene-expression measurements. To

identify the full set of active predictors, we propose a forward-stepwise version

of the ARTS procedure that adjusts for previously included predictors at each

step, and continues until no further significant predictors are found.

We specify the link between the survival outcome and the predictors in terms

of a general semiparametric accelerated failure time (AFT) model that does not

make any distributional assumption on the error term. Our approach also ap-

plies when the error distribution is modeled parametrically (as in Kalbfleisch

and Prentice (2002), Medeiros et al. (2014)), although we focus on the semi-

parametric case. Let T be the (log-transformed) time-to-event outcome, and

U = (U1, . . . , Up)
T denote a p-dimensional vector of predictors. Here, p can be

large, although it is taken to be fixed for the purpose of developing the asymptotic

theory. The AFT model is given by

T = α0 +UTβ0 + ε, (1.1)

where α0 ∈ R is an intercept, and β0 ∈ Rp is a vector of regression coefficients.

We assume that the error term ε has a zero mean and finite variance, and is

uncorrelated with U . The transformed survival outcome T is possibly right-

censored by C, which is assumed to be independent of (T,U) and bounded above

by τ , the time to the end of the follow-up. We also make the standard assumption

that P (T ≤ C) > 0 to ensure that sufficient failure times are observed over the

follow-up period (asymptotically).

In the framework of semiparametric AFT models, Koul, Susarla and Van

Ryzin (1981) (henceforth, KSV) introduced the technique of inversely weight-

ing the observed outcomes by the Kaplan–Meier estimate for the censoring, en-

abling them to apply standard least squares estimators from the uncensored

linear model. Subsequently, two additional sophisticated methods were proposed

to fit the semiparametric AFT model. The Buckley–James estimator replaces

the censored survival outcome by the conditional expectation of T , given the

data (Buckley and James (1979), Ritov (1990)). The rank-based method is an

estimating equation approach formulated in terms of the partial likelihood score

function (Tsiatis (1990), Lai and Ying (1991a), Lai and Ying (1991b), Ying

(1993), Jin et al. (2003)). Our proposed marginal screening test is based on the

KSV estimator, which has an advantage over the Buckley–James and rank-based

methods in that it preserves a direct link with the linear model. In particular,
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it maintains the marginal correlations between the inversely weighted response

and the predictors.

An especially attractive feature of the AFT model is that the marginal as-

sociation between T and each predictor can be represented directly in terms of

a correlation. As discussed below, this allows us to reduce the high-dimensional

screening problem to a single test of whether the most correlated predictor with

T is significant. The most popular approach to the screening of predictors in

survival analyses is to use relative or excess conditional hazard function repre-

sentations of associations. However, the AFT approach has the advantage that

a lack of any marginal correlation implies the absence of all correlation between

T and U ; in the hazard-rate setting, there is no such connection.

Another attractive feature of the AFT model is that it is relatively insen-

sitive to unmeasured heterogeneity, because the error term can act as a latent

variable representing omitted confounders (Keiding, Andersen and Klein (1997)).

In hazard-rate approaches, latent variables are typically included using inflexi-

ble parametric frailty models that are not easily applied in practice. In general,

the presence of unmeasured heterogeneity causes the attenuation of parameter

estimates. This is especially pronounced in hazard-rate approaches, such as the

Cox model or additive risk models (Lin and Ying (1994), McKeague and Sasieni

(1994)). On the other hand, such attenuation is much less problematic for the

AFT model because the error term is only assumed to be uncorrelated with the

predictors, and requires no special distributional assumption.

Under the AFT model (1.1), we test the null hypothesis β0 = 0, that is, that

no predictor is linearly associated with T , against the omnibus alternative. The

data consist of independent and identically distributed (i.i.d.) copies (Xi, δi,Ui),

for i = 1, . . . , n, of (X, δ,U), where X = min(T,C) and δ = 1(T ≤ C). The

ARTS marginal screening procedure fits a series of working AFT models using

one component of U at a time, and then selects the marginal KSV regression

parameter estimate θ̂n that has the maximal absolute value. When the predic-

tors are pre-standardized, the maximal regression parameter corresponds to the

maximal correlation between T and any component of U , motivating
√
nθ̂n as a

suitable test statistic. The limiting distribution of this test statistic is nonregular

(discontinuous at zero as a function of β0), making it difficult to calibrate the

test, as explained in the standard linear regression setting by MQ. Furthermore,

the presence of censoring introduces additional (discontinuous) dispersion in the

limiting distribution of
√
nθ̂n, which needs to be addressed.

The marginal KSV estimates stem from regressing the estimated synthetic
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response Y = δX/Ĝn(X) on successive components of U , where Y is regarded as

an inverse probability weighted estimate, and Ĝn is the standard Kaplan–Meier

estimator of the survival function of C (denoted by G0). Under independent

censoring (as stated earlier), the use of least squares estimators, treating Y as

a response variable, is justified in view of the uniform consistency of Ĝn under

mild conditions (e.g., when the distribution functions of T and C have no com-

mon jumps; see Stute and Wang (1993)). Independent censoring is a common

assumption in the high-dimensional screening of predictors for survival outcomes

(He, Wang and Hong (2013), Song et al. (2014), Li et al. (2016)). However, it

is much less restrictive to assume that T and C are conditionally independent,

given U , in which case the conditional survival function G0(·|U) of C given U can

depend on the predictors. Estimating G0(·|U) is challenging unless there is prior

knowledge that only a single predictor is involved, using a local Kaplan–Meier

estimator (Dabrowska (1989)). For simplicity, however, we assume independent

censoring throughout.

Variable selection methods for right-censored survival data are widely avail-

able, although formal testing procedures are far less prevalent. For example, vari-

ants of the regularized Cox regression have been studied by Tibshirani (1997), Fan

and Li (2002), Bunea and McKeague (2005), Zhang and Lu (2007), Bøvelstad,

Nyg̊ard and Borgan (2009), Engler and Li (2009), Antoniadis, Fryzlewicz and

Letué (2010), Binder, Porzelius and Schumacher (2011), Wu (2012), and Sinnott

and Cai (2016). Penalized AFT models have been considered by Huang, Ma and

Xie (2006), Datta, Le-Rademacher and Datta (2007), Johnson (2008), Johnson,

Lin and Zeng (2008), Cai, Huang and Tian (2009), Huang and Ma (2010), Bradic,

Fan and Jiang (2011), Ma and Du (2012), and Li, Dicker and Zhao (2014). These

methods ensure the consistency of variable selection only (i.e., the oracle prop-

erty), and do not address the issue of post-selection inference. Fang, Ning and

Liu (2017) have established asymptotically valid confidence intervals for a pre-

conceived regression parameter in a high-dimensional Cox model after variable

selection on the remaining predictors, but this does not apply to marginal screen-

ing (where no regression parameter is singled out, a priori). Zhong, Hu and Li

(2015) have considered the same problem for preconceived regression parameters

within a high-dimensional additive risk model. Taylor and Tibshirani (2018)

recently proposed a method of finding post-selection corrected p-values and con-

fidence intervals for the Cox model based on conditional testing. However, to the

best of our knowledge, their method has not been explored theoretically (except

in a linear regression setting with independent normal errors; see Lockhart et al.
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(2014)).

Statistical methods for variable selection based on marginal screening on sur-

vival data have been studied by Fan, Feng and Wu (2010), who extended sure

independence screening to survival outcomes based on the Cox model. Their

method applies to the selection of components of ultra-high-dimensional predic-

tors, although no formal testing is available. Other relevant references include

Zhao and Li (2012), Gorst-Rasmussen and Scheike (2013), He, Wang and Hong

(2013), Song et al. (2014), Zhao and Li (2014), Hong, Kang and Li (2018), Li

et al. (2016), and Hong et al. (2018).

The remainder of the paper is organized as follows. In Section 2, we formulate

the testing problem and introduce the proposed test statistic based on marginal

KSV estimators. The adaptive bootstrap procedure used to calibrate the test is

provided at the end of Section 2. In Section 3, we propose a variant of ARTS

that adjusts for the effect of baseline clinical covariates. A forward-stepwise

ARTS procedure is developed in Section 4. Various competing methods are

discussed in Section 5. The numerical results reported in Section 6 show that

ARTS performs favorably compared with these competing methods. In Section

7, we present applications to gene-expression data and primary biliary cirrhosis

data. Concluding remarks are given in Section 8. The proofs of all the results

are provided in the online Supplementary Material.

2. ARTS Procedure

2.1. Preliminaries

The method proposed by Koul, Susarla and Van Ryzin (1981) for fitting the

AFT model (1.1) replaces T by the synthetic response Ỹ = δX/G0(X), which is

justified by the property

E[Ỹ |U ] = E

[
δX

G0(X)
| U
]

= E

[
T

G0(T )
E [δ|T ] | U

]
= E[T |U ], (2.1)

where G0 is unknown, but can be estimated by its Kaplan–Meier estimator.

In other words, T and Ỹ have identical conditional means, given U , assuming

independent censoring. Therefore, we can recast the AFT model as Ỹ = α0 +

UTβ0 + ε̃, using a new error term ε̃ that still has a zero mean and finite variance,

and is uncorrelated withU (see the Supplementary Material for a detailed proof).

Using similar arguments, we can show that E[Ỹ 2] = E[T 2/G0(T )] ≥ E[T 2]

and E[Uj Ỹ ] = E[UjT ], for j = 1, . . . , p. Hence, this property implies that the

correlation between T and Uj is uniformly proportional to the correlation between
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Ỹ and Uj over j, leading to the equality

arg max
j=1,...,p

|Corr(Uj , T )| = arg max
j=1,...,p

|Corr(Uj , Ỹ )|. (2.2)

In the next section, we use (2.2) to reduce the screening problem to a test of

whether the most correlated predictor with T (or, equivalently, with Ỹ ) is signif-

icant. In practice, we recommend the pre-standardization of the predictors (as is

common in variable selection) to provide scale-invariance. However, we develop

the ARTS procedure in terms of the unstandardized predictors for simplicity of

notation.

2.2. Maximally selected KSV estimator

To specify the predictor that is the most correlated with T , we introduce

the notation

j(b) = arg max
j=1,...,p

|Corr(Uj ,U
Tb)| for any b ∈ Rp. (2.3)

Under model (1.1), it is natural to have Corr(Uj , T ) = Corr(Uj ,U
Tβ0), which

indicates that j(β0) = arg maxj=1,...,p |Corr(Uj , T )|. We assume j(β0) is unique

when β0 6= 0. Thus, testing whether β0 = 0 is equivalent to a test of

H0 : θ0 = 0 versus HA : θ0 6= 0,

where θ0 denotes the marginal regression coefficient of Uj(β0), the most correlated

predictor with T (or, equivalently, with Ỹ by (2.2)). Henceforth, for notational

simplicity, we denote the label j(β0) by j0.

The synthetic response Ỹ is not observed, but it can be estimated by Y =

δX/Ĝn(X), which leads to the sample version of j0 given by

ĵn = arg max
j=1,...,p

∣∣∣∣Pn(Uj − PnUj)Y
SjSY

∣∣∣∣ , (2.4)

where Pn is the empirical distribution, and Sj and SY are the sample standard

deviations of Uj and Y , respectively. The best fitting marginal linear model for

T with predictor Uj0 has the intercept and slope

(a0, θ0) =

(
ET − θ0EUj0 ,

Cov(Uj0 , T )

Var(Uj0)

)
.

The maximally selected KSV estimator of (a0, θ0) is

(α̂n, θ̂n) =

(
PnY − θ̂nPnUĵn ,

1

S2
ĵn

Pn(Uĵn − PnUĵn)Y

)
, (2.5)

where S2
ĵn

denotes the sample variance of Uĵn . We reject H0 in favor of HA for
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extreme values of the test statistic
√
nθ̂n.

2.3. Local behavior of θ̂n

The challenge of calibrating a test based on
√
nθ̂n is to adapt to its nonreg-

ular limiting behavior at β0 = 0 (as shown in Theorem 1 below). To accurately

capture the asymptotic behavior of θ̂n in
√
n-neighborhoods of β0 = 0, we con-

sider the local linear model

T (n) = α0 +UTβn + ε, (2.6)

where βn = β0 + b0/
√
n, with a local parameter b0 ∈ Rp, and ε is unchanged.

Under model (2.6), the observed time and the censoring status are denoted

by X(n) = min(T (n), C) and δ(n) = 1(T (n) ≤ C), respectively. We also define

the synthetic response Ỹ (n) and the estimated synthetic response Y (n) in an

analogous fashion:

Ỹ (n) =
δ(n)X(n)

G0(X(n)−)
and Y (n) =

δ(n)X(n)

Ĝn(X(n)−)
.

For any fixed n, Ỹ (n) has the same mean and covariance with U as those of T (n).

The error term associated with Ỹ (n) is ε̃n = Ỹ (n) − α0 −UTβn, which also has

zero mean and is uncorrelated with U . Instead of j0, the label of the predictor

most correlated with T (n) is

jn ≡ j(βn) = arg max
j=1,...,p

|Corr(Uj , T
(n))| = arg max

j=1,...,p
|Corr(Uj , Ỹ

(n))|,

and our earlier hypotheses become

H0 : θn = 0 versus HA : θn 6= 0,

where

θn =
Cov(Ujn , T

(n))

Var(Ujn)
. (2.7)

Note that jn = j(b0) when β0 = 0, but b0 6= 0, and j(b0) is assumed unique.

Otherwise, jn is not well defined, and the null hypothesis θn = 0 holds when

β0 = 0 and b0 = 0. If j0 is unique, then jn → j0. The estimators ĵn and θ̂n are

now defined by replacing Y by Y (n) in (2.4) and (2.5).

We develop the limiting distribution of
√
nθ̂n in the following theorem un-

der assumptions (A.1)–(A.4) below. The proof is based on the functional delta

method (van der Vaart (2000), Chap. 20) and a functional central limit theorem

(Pollard (1990), Sec. 10), and is provided in the Supplementary Material.

(A.1) The predictors Uj , for j = 1, . . . , p, are bounded, and |Corr(Uj , Uk)| < 1,
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for all j 6= k.

(A.2) The error term ε in (2.6) has a zero mean and finite variance, and is uncor-

related with U .

(A.3) The censoring time C is independent of (T,U) and is bounded above by τ

(the time to the end of the follow-up).

(A.4) The marginal survival function of the censoring, G0, is continuous on T , and

there exists a positive constant cg such that G0(τ) > cg > 0. In addition,

the marginal survival function of T , F0, is continuous on T , and there exists

a positive constant cf such that F0(τ) > cf > 0.

Theorem 1. Suppose that j0 = j(β0) is unique when β0 6= 0; j(b0) is unique

when β0 = 0 and b0 6= 0, and that the regularity conditions (A.1)–(A.4) hold.

Under the local model (2.6),

√
n(θ̂n − θn)

d→

{
(Mj0 + ϕj0(L))/Vj0 if β0 6= 0,

(MJ + ϕJ(L))/VJ + (CJ/VJ − Cj(b0)/Vj(b0))Tb0 if β0 = 0,

where Vj = Var(Uj), Cj = Cov(Uj ,U), J = arg maxj=1,...,p{Mj + ϕj(L) +

CTj b0}2/Vj, M = {Mj , j = 1, . . . , p} is a mean-zero normal random vector, L is

a mean-zero Gaussian process, and (M ,L) is a mean-zero Gaussian process, the

covariance of which is provided in the Supplementary Material. The j-indexed

functional ϕj : `∞τ → R is defined by

ϕj(h) = E

[
(Uj − EUj)Th(T )

G0(T )

]
,

where `∞τ denotes the space of bounded functions on T .

Remark 1. The Gaussian process L is the weak limit of the process
√
n(Ĝn −

G0). When there is no censoring, Ĝn(t) = G0(t) = 1, for all t, such that L is a

zero process. Then, ϕj(L) = 0 for all j, and the limiting distribution reduces to

that given by MQ. When there is censoring, L is a nontrivial Gaussian process

and introduces further dispersion into our limiting distribution.

Remark 2. When there is censoring and β0 6= 0, we have T and U correlated,

leading to nonzero ϕj(L) for all j. Along with the nontrivial process L, the

additional term ϕj0(L) will be present.

Remark 3. When there is censoring and β0 = 0, ϕj(L) will vanish everywhere,

almost surely (a.s.) for all j, if ε and U are independent. As a result, the

additional term ϕJ(L) disappears. Given the independence between ε and U ,
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the limiting distribution simplifies to

MJ

VJ
+

(
CJ
VJ
−
Cj(b0)

Vj(b0)

)T
b0.

This less complex form of the limiting distribution can be estimated easily from

the data. In addition to the possibility of evaluating the asymptotic power (dis-

cussed in Section 6), it enables calibration via simulation from the estimated

null limiting distribution of
√
nθ̂n (later introduced as “CEND” in Section 5).

However, the validity of this approach relies on the highly restrictive assumption

that ε and U are independent.

The discontinuity of the limiting distribution at β0 = 0 introduces difficulties

when designing a screening test based on θ̂n. If β0 6= 0, naive resampling methods

can give consistent estimates of the limiting distribution of
√
n(θ̂n−θn). However,

if β0 = 0, resampling methods that fail to consider the local behavior of
√
nθ̂n

around β0 = 0 will give inconsistent estimates of the limiting distribution. To

accommodate this nonuniform weak convergence at the point of nonregularity

(i.e., β0 = 0), our proposed ARTS allows for the flexibility of using different

bootstrap strategies to approximate the limiting distribution when β0 6= 0 or

β0 = 0. Recall that S2
j is the sample variance of Uj , for all j. We decompose

√
n(θ̂n − θn) into
√
n(θ̂n − θn)1(|Tn| > λn or β0 6= 0) +

√
n(θ̂n − θn)1(|Tn| ≤ λn,β0 = 0), (2.8)

where Tn =
√
nθ̂n/σ̂n is the maximally selected studentized statistic, and

σ̂2n =
Pn(Y − α̂n − θ̂nUĵn)2

S2
ĵn

with (α̂n, θ̂n, ĵn) defined in (2.4) and (2.5). The statistic Tn serves as a pretest

to identify the nonregular situation in which we need a more accurate bootstrap

strategy to capture the local asymptotic behavior of θ̂n. Although the asymptotic

variance of the KSV estimator in the fixed design case is known (Zhou (1992),

Srinivasan and Zhou (1994)), in the present random design case it is simpler to

avoid using such a complex standard error estimator. Instead, we base the pretest

on the relatively simple statistic Tn. We show that σ̂2n is asymptotically bounded

away from zero and bounded above (the proof is provided in the Supplementary

Material). Together with the results in Theorem 1, we prove that |Tn|
a.s.→ ∞ when

β0 6= 0, and |Tn| = Op(1) when β0 = 0. The specification of λn is presented in

the next section.

We isolate the possibility of β0 = 0 by comparing |Tn| with some screening
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threshold λn. The first term in (2.8) can be estimated consistently using a cen-

tered percentile bootstrap whenever λn = o(
√
n) and λn →∞, because we show

1(|Tn| > λn)
p→ 1(β0 6= 0) (stated as Lemma 4.1 in the Supplementary Material,

along with a detailed proof). Estimating the second term in (2.8) entails addi-

tional work. Recall that Pn is the empirical distribution, P is the distribution of

(X(n), δ(n),U), and Gn =
√
n(Pn − P ). For j = 1, . . . , p, we define

Mn,j = Gnε̃n(Uj − PnUj) and Dn,j =
√
nPn(Uj − PnUj)(Y (n) − Ỹ (n)).

For b ∈ Rp, we define

Jn(b) = arg max
j=1,...,p

(Mn,j + Dn,j + Pn(Uj − PnUj)UTb)2

S2
j

,

and a b-indexed process

Qn(b) =
(Mn,Jn(b) + Dn,Jn(b) + Pn(UJn(b) − PnUJn(b))U

Tb)

S2
Jn(b)

−
CTj(b)b

Vj(b)
.

Below, we express the second term in (2.8) as a function Qn(b0). When β0 = 0,

it is easy to see that

√
nθ̂j =

√
nPn(Uj − PnUj)Ỹ (n)

S2
j

+

√
nPn(Uj − PnUj)(Y (n) − Ỹ (n))

S2
j

=
(Gnε̃n(Uj−PnUj)+

√
nPn(Uj−PnUj)(Y (n)−Ỹ (n)) + Pn(Uj−PnUj)UTb0)

S2
j

=
(Mn,j + Dn,j + Pn(Uj − PnUj)UTb0)

S2
j

,

for all j. Along with ĵn = Jn(b0) and jn = j(b0) when β0 = 0, we have
√
nθn =

CTj(b0)b0/Vj(b0) and therefore,
√
n(θ̂n − θn) = Qn(b0). Hence, the decomposition

of
√
n(θ̂n − θn) can be expressed as

√
n(θ̂n − θn) =

√
n(θ̂n − θn)1(|Tn| > λn or β0 6= 0) + Qn(b0)1(|Tn| ≤ λn,β0=0).

(2.9)

In Theorem 2 below, we show that Qn(b) can be consistently bootstrapped

for any given b. Provided that b0 is known, we can directly bootstrap the ex-

pression in (2.9) to consistently estimate the limiting distribution of
√
n(θ̂n−θn).

Hereafter, the superscript ∗ is used to indicate the bootstrap version of an esti-

mator.

Theorem 2. Suppose that all conditions for Theorem 1 hold, and the tuning

parameter λn satisfies λn = o(
√
n) and λn → ∞ as n → ∞. Under the local

model (2.6),
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√
n(θ̂∗n − θ̂n)1(|T∗n| > λn or |Tn| > λn) + Q∗n(b0)1(|T∗n| ≤ λn, |Tn| ≤ λn)

converges to the limiting distribution of
√
n(θ̂n − θn) conditionally (on the data)

in probability.

2.4. ARTS screening procedure

The ARTS screening procedure uses a bootstrap calibration for the test

statistic
√
nθ̂n based on a special case of Theorem 2, specifically, b0 = 0. To

approximate the limiting distribution of
√
nθ̂n under the null, it suffices to boot-

strap

Bn =
√
n(θ̂n − θn)1(|Tn| > λn or β0 6= 0) + Qn(0)1(|Tn| ≤ λn,β0 = 0), (2.10)

and the corresponding bootstrap version is

B∗n =
√
n(θ̂∗n − θ̂n)1(|T∗n| > λn or |Tn| > λn) + Q∗n(0)1(|T∗n| ≤ λn, |Tn| ≤ λn).

(2.11)

For some nominal level α, define the critical values cl and cu, respectively, by the

lower and upper 100(α/2)-th percentiles of 1,000 replications of B∗n. We reject

the null hypothesis, and conclude that there is at least one significant predictor

if
√
nθ̂n falls outside the interval [cl, cu].

Given the conditions that λn = o(
√
n) and λn → ∞, the pretest demon-

strates an asymptotically negligible Type-I error rate P (|Tn| > λn|θn = 0)→ 0,

because we have shown that P (|Tn| > λn) → 1(β0 6= 0) in Lemma 4.1, stated

in the Supplementary Material. Provided that ε̃ and U are independent, a spe-

cial case of Theorem 1 indicates that Tn
d→ maxj=1,...,p |Zj | at the null, where

{Zj , j = 1, . . . , p} is a vector of standard normal random variables. Using sim-

ilar arguments to those of MQ, the asymptotic Type-I error rate of the pretest

can be controlled below level α if we set λn ≥ Φ−1(1 − α/(2p)), where Φ de-

notes the standard normal distribution function. To satisfy the conditions that

λn = o(
√
n) and λn → ∞, one reasonable selection of the threshold would be

λn = max{
√
a log n,Φ−1(1− α/(2p))}, for some constant a > 0.

To determine the value of the constant a in practice, we use a double-

bootstrap. That is, we produce 1,000 bootstrap estimates θ̂∗n, and apply the

ARTS to a further 1,000 nested double-bootstrap samples to obtain the accep-

tance region [c∗l , c
∗
u] for each θ̂∗n. If the test statistic

√
n(θ̂∗n − θ̂n) falls outside

[c∗l , c
∗
u], we record this as a rejection. The constant a is specified as the value that

results in 5% of these 1,000 ARTS procedures being rejected. This data-driven

selection of a is adopted in our numerical studies and applications to real data.
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Note that in each bootstrap and nested double-bootstrap sample, we set τ as

the 90% empirical percentile of the observed time and control the censoring rate

around the same level, as in the original data.

3. ARTS Adjusted for Baseline Covariates

When screening high-dimensional predictors of survival outcomes, it is com-

mon practice to adjust for baseline demographic and clinical covariates. These

baseline covariates include age, disease stage, tumor thickness, and lymph node

status; in the DLBCL study, we have the International Prognostic Index (IPI).

The IPI is a widely used prognostic index that reflects the combination of clinical

covariates (cf., The International Non-Hodgkin’s Lymphoma Prognostic Factors

Project (1993)). Such baseline covariates (with moderate dimensionality) do not

need to be screened, but do need to be incorporated as covariates in the AFT

model. In this section, we modify the ARTS (as adjusted ARTS ) to account for

the effect of these covariates.

Let Ũ = (Ũ1, . . . , Ũq)
T be a vector of baseline covariates. With Ũ included,

the true AFT model (1.1) can be expressed as

T = α0 +UTβ0 + ŨTγ0 + ε, (3.1)

where γ0 ∈ Rq, Ũ is assumed to be bounded, and the error term ε is uncorrelated

with Ũ . We wish to test whether β0 = 0, which includes an adjustment for Ũ .

Projecting Ũ on the space spanned by U , we reformulate the AFT model (3.1)

as

T = α′0 +DTβ0 + ε′, (3.2)

where D = (D1, . . . , Dp)
T with Dj = Uj − α̃j − ŨT γ̃j ; at the same time,

(α̃j , γ̃
T
j ) = (E[Uj ]− E[ŨT γ̃j ], (Σ

−1
Ũ

Cov(Uj , Ũ))T ) ,

α′0 = α0 + (α̃1, . . . , α̃p)β0 + E[ŨT ((γ̃1, . . . , γ̃p)β0 + γ0)] ,

ε′ = ŨT ((γ̃1, . . . , γ̃p)β0 + γ0)− E[ŨT ((γ̃1, . . . , γ̃p)β0 + γ0)] + ε,

and ΣŨ is the covariance matrix of Ũ . Note that α̃j + ŨT γ̃j is the best linear

unbiased predictor of Uj based on Ũ . According to the definition of (α̃j , γ̃j),

it is obvious that E[Dj ] = 0 and Cov(Dj , Ũ
Tγ) = 0, for all j and any vector

γ ∈ Rq. The new error term ε′ inherits the properties of ε and satisfies the

moment conditions required for the ARTS: E[ε′] = 0, E[(ε′)2] < ∞, and ε′ is

uncorrelated with D. To test whether β0 = 0 under model (3.2), it suffices to
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test

H0 : θ′0 = 0 versus HA : θ′0 6= 0,

where θ′0 = Cov(Dj′(β0), T )/Var(Dj′(β0)), and j′(b) = arg maxj=1,...,p |Corr(Dj ,

DTb)| for any b ∈ Rp, implying j′(β0) = arg maxj=1,...,p |Corr(Dj , T )|.
The adjusted ARTS regresses each screening predictor on baseline covariates

and applies the ARTS with the corresponding residuals D̂ = (D̂1, . . . , D̂p)
T as

predictors. Because D̂j involves a least-squares-type estimate of (α̃j , γ̃j) for j =

1, . . . , p, we can use the strong consistency of the estimates over all j (implied

by SLLN and fixed p) to justify the replacement of D by D̂. The bootstrap

consistency is also guaranteed. Thus, we only need to resample the residuals in

the procedures of the bootstrap and double-bootstrap. This offers a considerable

saving in terms of computation cost (caused by implementing projections every

time we have bootstrap or double-bootstrap samples), especially when p is large.

We tailor the adjustment of Ũ to fit within the ARTS framework to avoid using

a test statistic in matrix form, which is inevitable when fitting a multi-variable

AFT model to adjust for Ũ . This idea is crucial because it has the advantage of

extending the theoretical results developed for the ARTS to the adjusted ARTS.

4. Forward-stepwise ARTS

Given one significant predictor detected by the ARTS, it is natural to con-

tinue searching for other potential predictors, conditional on the information

provided by the identified predictor. We implement the idea used in the ad-

justed ARTS procedure to fulfill this task in a forward and stepwise direction.

The conditional screening continues until no further significance is detected. We

refer to this screening procedure as the forward-stepwise ARTS, implemented as

follows:

1. Given the predictor Uĵn detected by the ARTS, obtain residuals from re-

gressing Uj on Uĵn whenever j 6= ĵn. Treat the residuals as screened predic-

tors and run the adjusted ARTS. If no significant results are returned, stop

the procedure; otherwise, collect the newly found significant predictor Uj̃n .

2. Use the residuals from regressing Uj on (Uĵn , Uj̃n) as updated predictors,

for all j /∈ (ĵn, j̃n). Implement the adjusted ARTS based on these updated

predictors, in order to detect the next significant predictor.

3. Keep accumulating predictors until no further significant predictors are de-

tected.
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Our forward-stepwise ARTS procedure successively updates the predictors using

the residuals from regressing on previously identified predictors. Compared with

the residual analysis suggested by MQ, our forward-stepwise procedure allows

the regression coefficients of all already included predictors to be refitted at each

step. This implies the detection of further significant predictors, adjusting for

those already-included.

5. Competing Methods

We compare the performance of the ARTS with several procedures that are

widely applied to detect the presence of significant predictors for the survival out-

come. When considering the adjustment of baseline covariates, these procedures

can be modified as alternatives to the adjusted ARTS procedure.

5.1. AFT model approaches

Marginal parametric AFT models with Bonferroni correction (BONF-AFT). A marg-

inal parametric AFT model is often used to predict T from each predictor by

specifying a parametric form of the error distribution, from which we obtain the

maximum likelihood estimate of the marginal regression coefficient of each pre-

dictor. A Z-test with a Bonferroni correction is carried out to test whether each

marginal regression coefficient is zero. This method can be implemented using

the survreg function from the survival package of R. To adjust for baseline

covariates, we treat the residual D̂j as the predictor in a marginal parametric

AFT model, for j = 1, . . . , p. In our finite-sample simulations, we specify that

the error term follows a standard normal distribution.

Marginal AFT models with higher criticism correction (HC). The higher criticism

method is a test proposed by John Tukey for determining the overall significance

of a collection of independent p-values. We use the statistic developed by Donoho

and Jin, which is expected to perform well if the predictors are nearly uncorre-

lated (Donoho and Jin (2004), Donoho and Jin (2015)).

Centered percentile bootstrap with AFT model (CPB-AFT). In contrast to the ARTS,

this procedure works on the premise that there is at least one active predictor.

Thus, it only bootstraps the first part of (2.9) to estimate the upper and lower

100(α/2)-th percentiles of the limiting distribution of
√
n(θ̂n − θn). The esti-

mated percentiles provide critical values for the test statistic
√
nθ̂n (Efron and

Tibshirani (1993)). Note that this method yields a special case of the ARTS with

λn = 0. We can easily modify this method to adjust for baseline covariates by



MARGINAL SCREENING ON SURVIVAL DATA 2119

replacing θn and θ̂n with their counterparts in the framework given in Section 3.

Calibration by simulation from the estimated null distribution (CEND). The asymp-

totic acceptance region is used to calibrate the test, and can be constructed from

the special case in which ε and U are independent. Here, we simulate the lim-

iting distribution of the scaled test statistic
√
nθ̂n/s under the null, where s2 =

Pn(Y
(n)
i − α̂n− θ̂nUĵn)2. At the null, Theorem 1 implies that

√
nθ̂n/s

d→ M̃J/VJ ,

where {M̃j , j = 1, . . . , p} ∼ Np(0,ΣU ), ΣU is the covariance matrix of U , and

J = arg maxj M̃
2
j /Vj . With ΣU estimated using the sample covariance matrix of

U , we generate 1,000 realizations from Np(0,ΣU ), which we to obtain 1,000 ran-

dom copies of
√
nθ̂n. Then, we use the corresponding percentiles to develop the

acceptance region. We reject the null hypothesis if
√
nθ̂n falls outside this region.

The version that adjusts for baseline covariates can be developed analogously by

taking D̂ as predictors.

5.2. Cox model approaches

The other popular approach for linking predictors to the survival outcome

is the Cox model, where the related statistical inference can be developed based

on the partial likelihood (Cox (1972), Cox (1975)).

Partial likelihood ratio test (PLRT). This test uses the likelihood ratio test statistic

Λ, which is the ratio of the partial likelihood from the full Cox model to that from

the reduced model at the null. Provided that Λ
d→ χ2

p (chi-square distribution

with p degrees of freedom), comparing Λ with a χ2
p-distributed random variable

gives the p-value to calibrate the test. However, the PLRT is only feasible in

the case of n > p, because it involves a full linear model containing all of the

predictors. To adjust for baseline covariates, we define the test statistic as the

ratio of the partial likelihood from a Cox model containing (U , Ũ) to that from

a Cox model considering Ũ only. This statistic weakly converges to χ2
p.

Marginal Cox models with Bonferroni correction (BONF-COX). This procedure is

similar to the BONF-AFT, but is based on marginal Cox models to link the

survival outcome to each predictor Uj , for j = 1, . . . , p. Given the asymptotic

normality of the maximum partial likelihood estimator (MPLE) (Andersen and

Gill (1982)), we conduct a Z-test with a Bonferroni correction to investigate

whether each marginal regression coefficient is zero. To adjust for baseline co-

variates, we can instead fit Cox models containing (Uj , Ũ) for all j, and use the

corresponding MPLE of the regression coefficient of Uj as the test statistic.
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Centered percentile bootstrap with Cox model (CPB-COX). This procedure is sim-

ilar to the CPB-AFT in general, but the selected predictor is determined in a

different fashion. The marginal p-values are obtained from Z-tests based on sepa-

rate marginal Cox models, and we select the predictor that marginally introduces

the minimal p-value. We apply a centered percentile bootstrap on the MPLE

of the regression coefficient of this selected predictor (i.e., the most significant

predictor). To consider additional baseline covariates, we consider Cox models

containing (Uj , Ũ), for all j, and bootstrap the MPLE of the regression coeffi-

cient of the most significant predictor among Uj , while adjusting for Ũ .

Global test based on Cox model (GLOBAL). A score test is proposed to investigate

whether the predictors U contribute to the hazard rate (Goeman et al. (2005)).

The components of β0 are assumed to be random and independently follow a

prior distribution with mean zero and common variance v. Here, it suffices to

test whether v = 0 to investigate whether β0 = 0. Let r = (r1, . . . , rn)T , with

ri = UT
i β0 for all i, and note that r is not observed because the unknown pa-

rameter vector β0 is included. By the assumptions on β0, r has mean zero and

covariance matrix vUUT . Under the noninformative censoring assumption, the

marginal likelihood function of v is defined by

L(v) = Er

[
exp

(
n∑
i=1

[δi(ln(h0(Xi)) + ri)− exp(ri)H0(Xi)]

)]
, (5.1)

where H0(t) =
∫ t
0 h0(s)ds is the cumulative baseline hazard function up to time

t. Applying the second-order Taylor expansion to the exponential term in (5.1)

with respect to r, L(v) can be expressed by the first and second moments of r

(Le Cessie and van Houwelingen (1995)). This implies that we can establish the

desired test statistic in terms of the score function of v, which only involves the

first and second moments of β0, without specifying the prior distribution. There

are two ways to calculate the p-value: using asymptotic theory, and using per-

mutation arguments. We compare both to the ARTS in our numerical studies.

This global test can be modified to adjust for baseline covariates by simultane-

ously including U and Ũ in the Cox model, and the test statistic is constructed

conditional on the MPLE of the regression coefficients of Ũ .

6. Numerical Studies

6.1. Finite-sample simulations

The performance of the ARTS is evaluated using numerical studies under
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different data-generating scenarios. The underlying survival outcome can follow

either an AFT model or a proportional hazards model. For the former, we

consider three data-generating models:

Model 1 T = ε;

Model 2 T = U1/4 + ε;

Model 3 T =
∑p

j=1 βjUj + ε with β1 = · · · = β5 = 0.15, β6 = · · · = β10 =

−0.1, and βj = 0 for j ≥ 11,

where ε denotes the noise, which follows a standard normal distribution and is

independent of U . In Model 1, there is no active predictor, whereas there is only

a single active predictor in Model 2. In Model 3, we have 10 active predictors

and the most correlated predictor is not unique. The censoring time C follows an

exponential distribution with various rate parameters for light censoring (10% of

subjects with censored survival outcomes), moderate censoring (20%), and heavy

censoring (40%). The vector of predictors U follows a p-dimensional normal

distribution with each component Uj ∼ N (0, 1), and an exchangeable correlation

structure Corr(Uj , Uk) = 0.5 for j 6= k.

We also generate the survival outcome based on the following proportional

hazards models (Bender, Austin and Blettner (2005)):

Model 4 h(t|U) = 2 exp(t);

Model 5 h(t|U) = 2 exp(t) exp(U1/4);

Model 6 h(t|U) = 2 exp(t) exp(
∑p

j=1 βjUj) with the value of (β1, . . . , βp)

as stated in Model 3.

To achieve the designed censoring rates, we generate the censoring time as an

exponential random variable, for various choices of the rate parameter. We use

Models 1 and 4 as the null models, Models 2 and 5 as the alternative models

with a sparse signal, and Models 3 and 6 as the alternative models with weak

dense signals.

For each data-generating scenario, we consider two sample sizes (n = 100 and

200), and five values for the dimension of the predictors (p = 10, 50, 100, 150,

and 200). A nominal significance level of 5% is used throughout. The number of

bootstrap replications is set as 1,000. The selection of the threshold λn follows

the steps stated in Section 2.4. To provide a full comparison, we compare the

performance of the ARTS with the competing methods introduced in Section

5. The empirical rejection rates based on 1,000 Monte Carlo replications under

various censoring rates are displayed in Figures 1–2. The panels for Models 1



2122 HUANG, MCKEAGUE AND QIAN

and 4 give Type-I error rates, which we compare using the nominal level of 5%.

The panels for Models 2–6 indicate the power of each test.

In Figure 1, the ARTS controls the Type-I error rates (or equivalently, FW-

ERs) around the nominal level, and demonstrates relatively high power for all

alternative models. The BONF-AFT method gives more conservative Type- I

error rates and lower power than the ARTS, with the exception of achieving

similar power to the ARTS under alternative models with heavy censoring and

n = 200. The HC method is anti-conservative and fails to control the Type-I

errors. We suspect this is due to the relatively high correlation between the pre-

dictors, for which HC is not designed. The BONF-COX method and the global

test based on asymptotic theory (GLOBAL-asymp) are highly conservative and

lead to low power. Both the CPB-AFT and the CPB-COX are anti-conservative,

with the empirical Type-I error rates considerably exceeding the nominal level

under different sample sizes and various censoring rates (and thus going out of

range somewhere in the left panels of Figure 1). The global test based on the

permutation arguments (GLOBAL-permut) takes good control of the Type-I er-

ror rates, but claims much lower power than the ARTS, especially under light or

moderate censoring. Both the CEND and the PLRT exhibit poor performance:

the former yields large Type-I error rates but low power, whereas the latter in-

troduces extremely high Type-I error rates. (The results of the PLRT are not

shown here.) The unsatisfying performance of the CEND may result from small

sample sizes in the simulations, given that the CEND is developed based on a

simplified form of the limiting distribution. The power of each approach rises

as the sample size increases and the censoring rate decreases. A comparison be-

tween the results of Models 2 and 3 shows no adverse impact on the power of the

ARTS when the maximally correlated predictor is nonunique.

In Figure 2, where the data are not generated from AFT models, the ARTS

retains good control of the Type-I error rates. On the other hand, the power of the

ARTS is unstable when n = 100 or in the case of heavy censoring. Under light or

moderate censoring, the power of the ARTS under Models 5 and 6 deteriorates

sharply when n = 100 and p increases, whereas the ARTS maintains stable

power when n = 200. With a misspecified error distribution, the BONF-AFT

surprisingly controls the Type-I error rates well, but leads to much worse power.

In contrast, the BONF-COX yields relatively greater power when the underlying

survival outcome is generated from the proportional hazards model, although it

is still conservative at the null. Other competing methods present similar results

to those in Figure 1. Despite being unstable in terms of power owing to model
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misspecification, the ARTS still strikes a better balance between controlling the

Type-I error and achieving sufficient power than other methods do, especially for

light or moderate censoring and a large sample size. Comparing Figure 1 with

Figure 2, we find that the ARTS is less susceptible to model misspecification than

competing methods are. In the scenarios of the AFT data-generating models,

the ARTS apparently dominates the Cox model approaches throughout; in the

scenarios where the data are generated from proportional hazards models, the

ARTS still exhibits better performance in the FWER and power than that of

the Cox-model-relevant approaches when the censoring is light or moderate and

n = 200.

6.2. Screening performance of ARTS

We further assess the performance of the ARTS as a full screening method

(i.e., retaining all covariates with marginal test statistics beyond the critical val-

ues calculated for
√
nθ̂n) in terms of the false discovery rate (FDR), false negative

rate (FNR), and false positive rate (FPR). Using a simulation study, we compare

the screening performance of the ARTS with the Benjamini–Hochberg procedure

(BH, Benjamini and Hochberg (1995)) and the Holm–Bonferroni procedure (HB,

Holm (1979)). Relevant results are presented in Section S5 of the Supplementary

Material.

The power (as given by the average values of (1 - FNR)) is slightly less for

the ARTS than for the BH, which is expected because the acceptance region

is constructed from the critical values of the maximum correlation statistic θ̂n,

leading to results that are more conservative. We expect, however, that the

forward-stepwise ARTS will outperform the ARTS screening procedure because

it re-calibrates at each step. In terms of the FDR and FPR, the performance of

the ARTS and BH are comparable, although that of the Bonferroni method is

more conservative as expected. The HB and Bonferroni methods show similar

performance with respect to all the measures.

6.3. Asymptotic power evaluation

In this section, we conduct a simulation study to evaluate the asymptotic

FWER and the power of the ARTS, as compared with those of the BONF-AFT.

We assess the asymptotic FWER and power based on the limiting distribution

shown in Theorem 1. This approach can be a computationally efficient alterna-

tive to the simulation method used in our finite-sample studies, because it avoids

the required double-bootstrap (for threshold selection) that incurs a heavy com-
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Figure 1. Empirical rejection rates based on 1,000 samples generated from Models 1–3,
with the dimension ranging from p = 10 to p = 200.

putation when implementing the ARTS.

Owing to the complicated limiting distribution shown in Theorem 1, this

approach is only feasible when ϕj(L) can be reasonably negligible for all j. One

possible situation is when β0 = 0 and the error term ε is independent of U .

This restriction on ε facilitates the evaluation of the asymptotic FWER at the

null (β0 = 0, b0 = 0) and the asymptotic power at local alternatives (β0 = 0,

b0 6= 0). This offers a saving in terms of computational costs, at the price of

being sensitive to model misspecification.
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Figure 2. Empirical rejection rates based on 1,000 samples generated from Models 4–6,
with the dimension ranging from p = 10 to p = 200.

Consider a local model

T (n) = (n−1/2b0)U1 + ε, (6.1)

where U1 is the first element of U . The predictors U , the error term ε, and the

censoring time C are generated as in Section 6.1. We allow b0 to vary over a

grid in [0, 5] by increments of 0.5. Under this local model, the complex limiting

distribution reduces to a simpler form:

√
n(θ̂n − θn)

d→ (MJ + b0Cov(UJ , U1))

Var(UJ)
− b0, (6.2)

where J = arg maxj{Mj+b0Cov(Uj , U1)}2/Var(Uj), andM = {Mj , j = 1, . . . , p}
is a mean-zero normal random vector with a covariance matrix given by that of
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the random vector {ε̃(Uj − EUj), j = 1, . . . , p}. This evaluation procedure is

implemented as follows.

1. For each value of b0 on the grid, generate a large sample (with n = 10, 000)

from the local model (6.1) and compute the corresponding Y (n). Using a

fixed threshold λn, use the ARTS to develop the acceptance region [cl, cu]

based on this sample.

2. For each given b0, take 10,000 draws from the limiting distribution in (6.2),

and then obtain 10,000 realizations of
√
nθ̂n.

3. The asymptotic rejection rate of the ARTS (for the given b0) is assessed by

computing the proportion of the realizations that fall outside [cl, cu] from

the 10,000 realizations of
√
nθ̂n.

To reflect the random variation of the asymptotic FWER and the power over the

samples generated in Step 1, we independently implement the above procedure

20 times and display the corresponding asymptotic rejection rates in a box plot

for each b0. For comparison, we also plot the asymptotic power of the BONF-

AFT, which is approximated by the rejection rate from 1,000 samples, each of

size n = 10,000.

To make the above evaluation practical for large p, say p = 1,000, the thresh-

old λn is fixed at 0, 4.3, 6.1, and 7.4 as the constant a takes corresponding values

of 0, 2, 4, and 6. We present the results under light censoring (Figure 3), moder-

ate censoring (Figure 4), and heavy censoring (Figure 5). Because the plots are

similar between a = 0 and a = 1 and have no obvious difference when a ≥ 6,

we only present the results for a = 0, 2, 4, 6, for conciseness. From these figures,

we observe that smaller values of a lead to the ARTS yielding results that are

more anti-conservative, as observed in previous numerical studies. When a = 0,

in particular, the ARTS reduces to the CPB-AFT. On the other hand, the ARTS

behaves more stably and provides more accurate control of the Type-I error rates

as a increases. In addition, the variation within each box plot decreases when

the value of a increases.

Comparing the asymptotic power of the BONF-AFT (denoted by the circle)

with the median of each box plot, we find that the ARTS has more satisfactory

performance than that of the BONF-AFT in most cases. In terms of median

power, the ARTS even provides an extra 20% power in some situations (e.g., at

b0 = 3, when a = 4 or a = 6 for all types of censoring). To control the asymptotic

FWER, a reasonable choice is a = 4 under light or moderate censoring, because
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Figure 3. Asymptotic Type-I error and power of ARTS compared with BONF-AFT for
p = 1,000 under light censoring, where ARTS is implemented with a fixed threshold λn
specified by a = {0, 2, 4, 6}, and each box plot is based on 20 independent replications
with n = 10, 000.

the median FWER starts to touch the nominal level and the corresponding varia-

tion within the box plot diminishes. On the other hand, the selection of a should

fall between 2 and 4 under heavy censoring, because the median FWER remains

higher than 5% when a = 2, but drops below 5% at a = 4.

6.4. Error dependent on predictors

In this section, we present the control on the FWER of the ARTS, when the

error term ε is still uncorrelated with but dependent on the predictors U . For

simplicity, U follows a p-dimensional normal distribution with mean zero and an

identity covariance matrix, implying that the predictors are independent of each
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Figure 4. Asymptotic Type-I error and power, as in Figure 3, except under moderate
censoring.

other. The FWERs of other AFT-model-relevant methods are also provided; here

we omit the anti-conservative results of the CPB-AFT for conciseness, focusing

instead on the CEND, which requires independence between ε and U .

To produce a dependent error structure on the predictors, we generate the

error term ε by random replications from a normal distribution with mean zero

and a standard deviation of 0.7(|U1| + 0.7). Then, we simulate the transformed

time-to-event outcome under the null model T = ε. Though not independent,

ε remains uncorrelated with U by Cov(ε, U1) = E[εU1] = E{U1E[ε|U1]} = 0,

and Cov(ε, Uj) = E{UjE[ε|U1]} = 0 for j 6= 1. The censoring time C still

follows an exponential distribution, with varying rate parameters specified for

different censoring rates. Figure 6 shows that only the ARTS controls the FWER

around the nominal level in the case of dependent errors, except for giving slightly
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Figure 5. Asymptotic Type-I error and power, as in Figure 3, except under heavy
censoring.

conservative FWERs for p ≥ 50, heavy censoring, and n = 100.

7. Applications to Real Data

7.1. DLBCL data

We revisit the DLBCL data introduced earlier (Rosenwald et al. (2002)).

This data set contains the after-chemotherapy survival time from DLBCL dis-

eases, the categorical IPI variable (with three levels: low, medium, and high),

and 7,399 genetic features of 222 patients with complete information on genetic

predictors. The censoring rate is 43%. More details about the DLBCL data can

be found in the literature (cf., Bøvelstad, Nyg̊ard and Borgan (2009), Binder,

Porzelius and Schumacher (2011)). To adjust for the prognostic information pro-
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Figure 6. Empirical rejection rates based on 1,000 samples generated from the null model
with dependent errors under various p, sample sizes, and censoring rates.

vided by IPI, we apply the adjusted ARTS to this data set to detect the presence

of significant genetic features. To maintain the stability of the KSV estimator,

the observed event times are restricted up to τ = 2.36, which corresponds to the

90% empirical percentile of the observed event times. This excludes one obser-

vation that has an estimated synthetic response of 55.867 and severely distorts

the estimation of the marginal regression coefficients. For the ARTS, we use the

double-bootstrap to select the constant a from 0 to 15, by increments of 0.5. Be-

fore implementing the ARTS, we perform a pre-processing step to filter out genes

that lack significant differentiation between the censored group (patients still alive

at the end of the follow-up) and the uncensored group (patients who died of DL-

BCL diseases within the follow-up). For each gene, a standard two-sample t-test

is conducted to determine whether the gene-expression measurement differenti-

ates between these two groups. By comparing the corresponding p-values with
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the nominal level of 5%, this pre-processing step reduces the number of screening

genetic features to 1,026 (p = 1,026).

To give a fair comparison with the ARTS, we also apply the following AFT-

model-relevant competing methods: BONF-AFT and CPB-AFT, with IPI infor-

mation adjusted. The CEND method is not included, because it is challenging to

verify the required assumption of independence between the error and the pre-

dictors. In addition, the HC method is not considered because it is designed for

nearly uncorrelated predictors, which is unrealistic in gene-expression data. The

three implemented approaches yield similar p-values. The minimal Bonferroni

corrected p-value from the BONF-AFT is 4.39%. The ARTS procedure reduces

to a special case with λn = 0 and gives the same p-value of 3.40% as that of

the CPB-AFT, from 1,000 bootstrap samples. Figure 7 shows the sampling dis-

tribution of the test statistics used by the ARTS and CPB-AFT based on these

bootstrap samples, as well as how the corresponding p-values are obtained. Given

the nominal level of 5%, these three approaches all indicate one significant gene

for the survival time of patients. The ID of the detected gene is “27,766,” which

belongs to the group of major histocompatibility class (MHC) II signatures. This

finding supports the notion that a loss of MHC II expression correlates with a

worse survival outcome, and corresponds to the results provided by Miller et al.

(1988), Rosenwald et al. (2002), Rimsza et al. (2004), Roberts et al. (2006), and

Higashi et al. (2016), among others.

7.2. Primary biliary cirrhosis data

In this example, we demonstrate how to apply the forward-stepwise ARTS

to successively identify interaction effects, provided that the main effects of some

covariates have been shown statistically or clinically significant. We use data from

the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted

between 1974 and 1984 (Fleming and Harrington (1991), Appendix D.1). A total

of 312 PBC patients participated in the randomized placebo controlled trial of

the drug D-penicillamine; in our data analysis, we restrict our attention to the

276 patients for whom we have complete covariate information. The censoring

rate is 60%.

The survival outcome is the time from registration to death. Over the follow-

up, there is no significant treatment effect (Fleming and Harrington (1991)).

Only five of the 16 risk factors were found to be statistically significant under

the setting of the Cox model (Dickson et al. (1989)) or under the AFT model

(Jin et al. (2003)). Furthermore, they were identified as a subset of the active
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Figure 7. DLBCL example. Left panel: histogram of B∗
n, giving the two-sided ARTS

p-value 3.40%. Right panel: histogram of
√
n(θ̂∗n − θ̂n), giving the two-sided CPB-AFT

p-value 3.40%.

predictors under the general Cox model (Bunea and McKeague (2005)). These

significant risk factors are age (in years), presence of edema (0 = no; 0.5 =

resolved; 1 = unresolved with therapy), serum bilirubin (in mg/dl), albumin (in

gm/dl), and protime (standardized blood clotting time, in seconds). Of these

risk factors, serum bilirubin, albumin, and protime are log-transformed. We

successively locate significant pairwise interaction terms of 17 variables, adjusting

for the five aforementioned risk factors. These 17 variables include the treatment

indicator and 16 clinical risk factors for the survival time (p =
(
17
2

)
= 136).

Figure 8 displays the pattern of p-values for the newly entered interaction

term at each step. The forward-stepwise ARTS procedure detects one significant

interaction term, where the constant a and the end of the follow-up τ are selected

as in Section 7.1. This detected interaction is between platelet (platelets per

cubic ml/1,000) and alk.phos (alkaline phosphatase, in U/liter). For comparison,

we also present the successive p-values given by the CPB-AFT. The conclusion
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Figure 8. PBC example. The patterns of p-values for forward-stepwise ARTS and CPB-
AFT.

remains the same, but the p-values of the CPB-AFT are smaller, as expected.

To examine the effect of taking covariate-dependent censoring into account

when applying the ARTS in this example, we run the forward-stepwise ARTS

as before, except we replace Ĝn by a Cox-model-based estimate, conditional

on selected covariates (alkaline phosphotase and log-transformed protime). In

contrast to our earlier finding of one significant interaction term, here we find

none (results not shown). The CPB-AFT procedure (with the same Cox model

estimate of G0) leads to the same conclusion.

8. Discussion

We have developed an adaptive resampling test for survival data (ARTS)

to detect the presence of significant predictors for right-censored survival out-

comes. We use marginal correlation screening to reduce the high-dimensional

detection problem to a single test of whether θ0 = 0, where θ0 is the marginal

regression coefficient of the most correlated predictor with the survival outcome.

In the setting of marginal screening for survival data, few studies have exam-

ined the problem of post-selection inference. The problem is challenging, not

only because of the nonregular asymptotic behavior of the test statistic at the



2134 HUANG, MCKEAGUE AND QIAN

null (i.e., θ0 = 0), but also because of the presence of censoring. Within this

framework, the ARTS is designed to adapt to the nonregularity, while dealing

with the increased dispersion introduced by the censoring. The advantage of the

ARTS is that it provides a post-selection-corrected p-value without sacrificing

power, while avoiding distributional assumptions, specific correlation structures

between predictors, and a preconceived choice of the regression parameters of

interest. The ARTS procedure is also versatile for practical use. Various exten-

sions of the ARTS are proposed to adjust for additional baseline covariates of

clinicians’ interests and to successively identify further active predictors.

We recognize that the ARTS requires an independent-censoring assumption

that may be violated in some clinical contexts. One direction for future work

is to develop rigorous theoretical results for the ARTS under the assumption of

conditionally independent censoring, given the predictors. To address this type

of censoring mechanism, we can use the Cox model or the local Kaplan–Meier

estimator to incorporate covariates into the estimation of the conditional survival

function of the censoring on the predictors G0(·|U). The generalization of the

censoring mechanism could still be challenging in our framework, even with some

of the proposals for estimating G0(·|U) listed above. One challenge is how to

determine the covariates to be included in the estimation of G0(·|U) under the

high-dimensional AFT model. Then, we need to find out whether the post-

selection inference results would be affected, because these included covariates

may not be completely contained under a series of working AFT models using

one predictor per time. To the best of our knowledge, this question has not been

fully answered in the area of marginal screening based on survival data, and is

worth further attention.

Although our simulation results show that the ARTS performs well when p�
n, we have provided theoretical support only, assuming a fixed p. Formal testing

procedures that can adjust to the nonregular behavior of θ̂n under diverging p

appear to be challenging. A potential alternative approach that might be able to

handle a diverging p would be to extend the efficient influence function technique

of Luedtke and van der Laan (2018) to the right-censored setting in terms of a

regularized version of the KSV estimator.

Supplementary Materials

The online Supplementary Material includes detailed proofs of the theorems,

as well as additional simulation results.
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