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Abstract: This paper develops a hybrid likelihood (HL) method based on a com-

promise between parametric and nonparametric likelihoods. Consider the setting

of a parametric model for the distribution of an observation Y with parameter ✓.

Suppose there is also an estimating function m(·, µ) identifying another parameter

µ via Em(Y, µ) = 0, at the outset defined independently of the parametric model.

To borrow strength from the parametric model while obtaining a degree of robust-

ness from the empirical likelihood method, we formulate inference about ✓ in terms

of the hybrid likelihood function Hn(✓) = Ln(✓)
1�a

Rn(µ(✓))
a. Here a 2 [0, 1) rep-

resents the extent of the compromise, Ln is the ordinary parametric likelihood for

✓, Rn is the empirical likelihood function, and µ is considered through the lens of

the parametric model. We establish asymptotic normality of the corresponding HL

estimator and a version of the Wilks theorem. We also examine extensions of these

results under misspecification of the parametric model, and propose methods for

selecting the balance parameter a.

Key words and phrases: Agnostic parametric inference, focus parameter, robust

methods, semiparametric estimation.

Some Personal Reflections on Peter

We are all grateful to Peter for his deeply influential contributions to the field

of statistics, in particular to the areas of nonparametric smoothing, bootstrap,

empirical likelihood (what this paper is about), functional data, high-dimensional

data, measurement errors, etc., many of which were major breakthroughs in the

area. His services to the profession were also exemplary and exceptional. It

seems that he could simply not say ‘no’ to the many requests for recommendation

letters, thesis reports, editorial duties, departmental reviews, and various other

requests for help, and as many of us have experienced, he handled all this with

an amazing speed, thoroughness, and e�ciency. We will also remember Peter

as a very warm, gentle, and humble person, who was particularly supportive of

young people.
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Nils Lid Hjort: I have many and uniformly warm remembrances of Peter.

We had met and talked a few times at conferences, and then Peter invited me for

a two-month stay in Canberra in 2000. This was both enjoyable, friendly, and

fruitful. I remember fondly not only technical discussions and the free-flowing

of ideas on blackboards (and since Peter could think twice as fast as anyone

else, that somehow improved my own arguing and thinking speed, or so I’d like

to think), but also the positive, widely international, upbeat, but unstressed

working atmosphere. Among the pluses for my Down Under adventures were

not merely meeting kangaroos in the wild while jogging and singing Schnittke,

but teaming up with fellow visitors for several good projects, in particular with

Gerda Claeskens; another sign of Peter’s deep role in building partnerships and

teams around him, by his sheer presence.

Then Peter and Jeannie visited us in Oslo for a six-week period in the autumn

of 2003. For their first day there, at least Jeannie was delighted that I had put on

my Peter Hall t-shirt and that I gave him a Hall of Fame wristwatch. For these

Oslo weeks he was therefore elaboratedly introduced at seminars and meetings

as Peter Hall of Fame; everyone understood that all other Peter Halls were

considerably less famous. A couple of project ideas we developed together, in

the middle of Peter’s dozens and dozens of other ongoing real-time projects, are

still in my drawers and files, patiently awaiting completion. Very few people can

be as quietly and undramatically supremely e�cient and productive as Peter.

Luckily most of us others don’t really have to, as long as we are doing decently

well a decent proportion of the time. But once in a while, in my working life,

when deadlines are approaching and I’ve lagged far behind, I put on my Peter

Hall t-shirt, and think of him. It tends to work.

Ingrid Van Keilegom: I first met Peter in 1995 during one of Peter’s many

visits to Louvain-la-Neuve (LLN). At that time I was still a graduate student

at Hasselt University. Two years later, in 1997, Peter obtained an honorary

doctorate from the Institute of Statistics in LLN (at the occasion of the fifth

anniversary of the Institute), during which I discovered that Peter was not only

a giant in his field but also a very human, modest, and kind person. Figure 1(a)

shows Peter at his acceptance speech. Later, in 2002, soon after I started working

as a young faculty member in LLN, Peter invited me to Canberra for six weeks, a

visit of which I have extremely positive memories. I am very grateful to Peter for

having given me the opportunity to work with him there. During this visit Peter

and I started working on two papers, and although Peter was very busy with

many other things, it was di�cult to stay on top of all new ideas and material
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(a) (b)

Figure 1. (a) Peter at the occasion of his honorary doctorate at the Institute of Statistics
in Louvain-la-Neuve in 1997; (b) Peter and Ingrid Van Keilegom in Tidbinbilla Nature
Reserve near Canberra in 2002 (picture taking by Jeannie Hall).

that he was suggesting and adding to the papers, day after day. At some point

during this visit Peter left Canberra for a 10-day visit to London, and I (naively)

thought I could spend more time on broadening my knowledge on the two topics

Peter had introduced to me. However, the next morning I received a fax of 20

pages of hand-written notes, containing a di�cult proof that Peter had found

during the flight to London. It took me the full next 10 days to unra✏e all the

details of the proof! Although Peter was very focused and busy with his work,

he often took his visitors on a trip during the weekends. I enjoyed very much the

trip to the Tidbinbilla Nature Reserve near Canberra, together with him and his

wife Jeannie. A picture taken in this park by Jeannie is seen in Figure 1(b).

After the visit to Canberra, Peter and I continued working on other projects

and, in around 2004, Peter visited LLN for several weeks. I picked him up in

the morning from the airport in Brussels. He came straight from Canberra and

had been more or less 30 hours underway. I supposed without asking that he

would like to go to the hotel to take a rest. But when we were approaching the

hotel, Peter insisted that I would drive immediately to the Institute in order to

start working straight away. He spent the whole day at the Institute discussing

with people and working in his o�ce, before going finally to his hotel! I always

wondered where he found the energy, the motivation and the strength to do this.
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He will be remembered by many of us as an extremely hard working person, and

as an example to all of us.

1. Introduction

For modelling data there are usually many options, ranging from purely para-

metric, semiparametric, to fully nonparametric. There are also numerous ways in

which to combine parametrics with nonparametrics, say estimating a model den-

sity by a combination of a parametric fit with a nonparametric estimator, or by

taking a weighted average of parametric and nonparametric quantile estimators.

This article concerns a proposal for a bridge between a given parametric model

and a nonparametric likelihood-ratio method. We construct a hybrid likelihood

function, based on the usual likelihood function for the parametric model, say

Ln(✓), with n referring to sample size, and the empirical likelihood function for

a given set of control parameters, say Rn(µ), where the µ parameters in ques-

tion are “pushed through” the parametric model, leading to Rn(µ(✓)), say. Our

hybrid likelihood Hn(✓), defined in (1.2) below, is used for estimating the pa-

rameter vector of the working model; we term the b✓hl in question the maximum

hybrid likelihood estimator. This in turn leads to estimates of other quantities

of interest. If  is such a focus parameter, expressed via the working model as

 =  (✓), then it is estimated using b hl =  (b✓hl).
If the working parametric model is correct, these hybrid estimators lose a

certain amount in terms of e�ciency, when compared to the usual maximum like-

lihood estimator. We show, however, that the e�ciency loss under ideal model

conditions is typically a small one, and that the hybrid estimator often outper-

forms the maximum likelihood when the working model is not correct. Thus

the hybrid likelihood is seen to o↵er parametric robustness, or protection against

model misspecification, by borrowing strength from the empirical likelihood, via

the selected control parameters.

Though our construction and methods can be lifted to e.g. regression models,

see Section S.5 in the supplementary material, it is practical to start with the

simpler i.i.d. framework, both for conveying the basic ideas and for developing

theory. Thus, let Y1, . . . , Yn be i.i.d. observations, stemming from some unknown

density f . We wish to fit the data to some parametric family, say f✓(y) = f(y, ✓),

with ✓ = (✓1, . . . , ✓p)t 2 ⇥, where ⇥ is an open subset of Rp. The purpose

of fitting the data to the model is typically to make inference about certain

quantities  =  (f), termed focus parameters, but without necessarily trusting

the model fully. Our machinery for constructing robust estimators for these focus
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parameters involves certain extra parameters, which we term control parameters,

say µj = µj(f) for j = 1, . . . , q. These are context-driven parameters, selected to

safeguard against certain types of model misspecification, and may or may not

include the focus parameters. Suppose in general terms that µ = (µ1, . . . , µq)

is identified via estimating equations, Ef mj(Y, µ) = 0 for j = 1, . . . , q. Now

consider

Rn(µ) = max

(
nY

i=1

(nwi) :
nX

i=1

wi = 1,
nX

i=1

wim(Yi, µ) = 0, each wi > 0

)
. (1.1)

This is the empirical likelihood function for µ, see Owen (2001), with further

discussions in e.g. Hjort, McKeague and Van Keilegom (2009) and Schweder

and Hjort (2016, Chap. 11). One might e.g. choose m(Y, µ) = g(Y ) � µ for

suitable g = (g1, . . . , gq), in which case the empirical likelihood machinery gives

confidence regions for the parameters µj = Ef gj(Y ). We can now introduce the

hybrid likelihood (HL) function

Hn(✓) = Ln(✓)
1�aRn(µ(✓))

a, (1.2)

where Ln(✓) =
Qn

i=1 f(Yi, ✓) is the ordinary likelihood, Rn(µ) is the empirical

likelihood for µ, but here computed at the value µ(✓), which is µ evaluated at

f✓, and with a being a balance parameter in [0, 1). The associated maximum HL

estimator is b✓hl, the maximiser of Hn(✓). If  =  (f) is a parameter of interest,

it is estimated as b hl =  (f(·, b✓hl)). This means first expressing  in terms of the

model parameters, say  =  (f(·, ✓)) =  (✓), and then plugging in the maximum

HL estimator. The general approach (1.2) works for multidimensional vectors Yi,

so the gj functions could e.g. be set up to reflect covariances. For one-dimensional

cases, options include mj(Y, µj) = I{Y  µj}�j/q (j = 1, . . . , q�1) for quantile

inference.

The hybrid method (1.2) provides a bridge from the purely parametric to

the nonparametric empirical likelihood. The a parameter dictates the degree of

balance. One can view (1.2) as a way for the empirical likelihood to borrow

strength from a parametric family, and, alternatively, as a means of robustifying

ordinary parametric model fitting by incorporating precision control for one or

more µj parameters. There might be practical circumstances to assist one in

selecting good µj parameters, or good estimating equations, or these may be

singled out at the outset of the study as being quantities of primary interest.

Example 1. Let f✓ be the normal density with parameters (⇠,�2), and take

mj(y, µj) = I{y  µj} � j/4 for j = 1, 2, 3. Then (1.1), with the ensuing

µj(⇠,�) = ⇠ + ���1(j/4) for j = 1, 2, 3, can be seen as estimating the normal
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parameters in a way which modifies the parametric ML method by taking into

account the wish to have good model fit for the three quartiles. Alternatively,

it can be viewed as a way of making inference for the three quartiles, borrowing

strength from the normal family in order to hopefully do better than simply using

the three empirical quartiles.

Example 2. Let f✓ be the Beta family with parameters (b, c), where ML es-

timates match moments for log Y and log(1 � Y ). Add to these the functions

mj(y, µj) = yj � µj for j = 1, 2. Again, this is Beta fitting with modification

for getting the mean and variance about right, or moment estimation borrowing

strength from the Beta family.

Example 3. Take your favourite parametric family f(y, ✓), and for an appro-

priate data set specify an interval or region A that actually matters. Then use

m(y, p) = I{y 2 A} � p as the ‘control equation’ above, with p = P{Y 2
A} =

R
A f(y, ✓) dy. The e↵ect is to push the parametric ML estimates, softly

or not softly depending on the size of a, so as to make sure that the empiri-

cal binomial estimate bp = n�1
Pn

i=1 I{Yi 2 A} is not far from the estimated

p(A, b✓) =
R
A f(y, b✓) dy. This can also be extended to using a partition of the

sample space, say A1, . . . , Ak, with control equations mj(y, p) = I{y 2 Aj}� pj
for j = 1, . . . , k � 1 (there is redundancy if trying to include also mk). It will be

seen via our theory that the hybrid likelihood estimation strategy in this case is

large-sample equivalent to maximising

(1� a)`n(✓)�
1

2
an r(Qn(✓)) = (1� a)

nX

i=1

log f(Yi, ✓)�
1

2
an

Qn(✓)

1 +Qn(✓)
,

where r(w) = w/(1 + w) and Qn(✓) =
Pk

j=1{bpj � pj(✓)}2/bpj . Here bpj is the

direct empirical binomial estimate of P{Y 2 Aj} and pj(b✓) is the model-based

estimate.

In Section 2 we explore the basic properties of HL estimators and the ensuing
b hl =  (b✓hl), under model conditions. Results here entail that the e�ciency loss

is typically small, and of size O(a2) in terms of the balance parameter a. In

Section 3 we study the behaviour of HL in O(1/
p
n) neighbourhoods of the

parametric model. It turns out that the HL estimator enjoys certain robustness

properties, as compared to the ML estimator. Section 4 examines aspects related

to fine-tuning the balance parameter a of (1.2), and we provide a recipe for its

selection. An illustration of our HL methodology is given in Section 5, involving

fitting a Gamma model to data of Roman era Egyptian life-lengths, a century

BC.
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Finally, coming back to the work of Peter Hall, a nice overview of all papers of

Peter on EL can be found in Chang, Guo and Tang (2017). We like to mention in

particular the paper by DiCiccio, Hall and Romano (1989), in which the features

and behaviour of parametric and empirical likelihood functions are compared.

We mention that Peter also made very influential contributions to the somewhat

related area of likelihood tilting, see e.g. Choi, Hall and Presnell (2000).

2. Behaviour of HL Under the Parametric Model

The aim of this section is to explore asymptotic properties of the HL es-

timator under the parametric model f(·) = f(·, ✓0) for an appropriate true ✓0.

We establish the local asymptotic normality of HL, the asymptotic normality of

the estimator b✓hl, and a version of the Wilks theorem. The HL estimator b✓hl
maximises

hn(✓) = logHn(✓) = (1� a)`n(✓) + a logRn(µ(✓)) (2.1)

over ✓ (assumed here to be unique), where `n(✓) = logLn(✓). We need to analyse

the local behaviour of the two parts of hn(·).
Consider the localised empirical likelihood Rn(µ(✓0 + s/

p
n)), where s be-

longs to some arbitrary compact S ⇢ Rp. For simplicity we write mi,n(s) =

m(Yi, µ(✓0 + s/
p
n)). Also, consider the functions Gn(�, s) =

Pn
i=1 2 log{1 +

�tmi,n(s)/
p
n} and G⇤

n(�, s) = 2�tVn(s) � �tWn(s)� of the q-dimensional �,

where Vn(s) = n�1/2
Pn

i=1mi,n(s) andWn(s) = n�1
Pn

i=1mi,n(s)mi,n(s)t. Hence

G⇤
n is the two-term Taylor expansion of Gn.

We now re-express the EL statistic in terms of Lagrange multipliers b�n, which
is pure analysis, not yet having anything to do with random variables, per se:

�2 logRn(µ(✓0+s/
p
n)) = max�Gn(�, s) = Gn(b�n(s), s), with b�n(s) the solution

to
Pn

i=1mi,n(s)/{1 + �tmi,n(s)/
p
n} = 0 for all s. This basic translation from

the EL definition via Lagrange multipliers is contained in Owen (2001, Chap. 11);

for a detailed proof, along with further discussion, see Hjort, McKeague and Van

Keilegom (2009, Remark 2.7). The following lemma is crucial for understanding

the basic properties of HL. The proof is in Section S.1 in the supplementary

material. For any matrix A = (aj,k), kAk = (
P

j,k a
2
j,k)

1/2 denotes the Euclidean

norm.

Lemma 1. For a compact S ⇢ Rp, suppose that (i) sups2S kVn(s)k = Opr(1);

(ii) sups2S kWn(s)�Wk !pr 0, where W = Varm(Y, µ(✓0)) is of full rank; (iii)

n�1/2 sups2S maxin kmi,n(s)k !pr 0. Then, the maximisers b�n(s) = argmax�
Gn(�, s) and �⇤n(s) = argmax�G

⇤
n(�, s) = W�1

n (s)Vn(s) are both Opr(1) uniformly
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in s 2 S, and sups2S |max�Gn(�, s) �max�G⇤
n(�, s)| = sups2S |Gn(b�n(s), s) �

G⇤
n(�

⇤
n(s), s)| !pr 0.

Note that we have an explicit expression for the maximiser of G⇤
n(·, s), hence

also its maximum, max�G⇤
n(�, s) = Vn(s)tW�1

n (s)Vn(s). It follows that in sit-

uations covered by Lemma 1, �2 logRn(µ(✓0 + s/
p
n)) = Vn(s)tW�1

n (s)Vn(s) +

opr(1), uniformly in s 2 S. Also, by the Law of Large Numbers, condition (ii) of

Lemma 1 is valid if sups kWn(s)�Wn(0)k !pr 0. If m and µ are smooth, then the

latter holds using the Mean Value Theorem. For the quantile example, Example

1, we can use results on the oscillation behaviour of empirical distributions (see

Stute (1982)).

For our Theorem 1 below we need assumptions on the m(y, µ) function in-

volved in (1.1), and also on how µ = µ(f✓) = µ(✓) behaves close to ✓0. In addition

to Em(Y, µ(✓0)) = 0, we assume that

sup
s2S

kVn(s)� Vn(0)� ⇠nsk = opr(1), (2.2)

with ⇠n of dimension q ⇥ p tending in probability to ⇠0. Suppose for illustration

that m(y, µ(✓)) has a derivative at ✓0, and write m(y, µ(✓0 + ")) = m(y, µ(✓0)) +

⇠(y)"+ r(y, "), for the appropriate ⇠(y) = @m(y, µ(✓0))/@✓, a q ⇥ p matrix, and

with a remainder term r(y, "). This fits with (2.2), with ⇠n = n�1
Pn

i=1 ⇠(Yi) !pr

⇠0 = E ⇠(Y ), as long as n�1/2
Pn

i=1 r(Yi, s/
p
n) !pr 0 uniformly in s. In smooth

cases we would typically have r(y, ") = O(k"k2), making the mentioned term of

size Opr(1/
p
n). On the other hand, when m(y, µ(✓)) = I{y  µ(✓)}�↵, we have

Vn(s)� Vn(0) = f(µ(✓0), ✓0)s+Opr(n�1/4) uniformly in s (see Stute (1982)).

We rewrite the log-HL in terms of a local 1/
p
n-scale perturbation around ✓0:

An(s) = hn

✓
✓0 +

sp
n

◆
� hn(✓0)

= (1� a)

⇢
`n

✓
✓0 +

sp
n

◆
� `n(✓0)

�

+ a

⇢
logRn

✓
µ

✓
✓0 +

sp
n

◆◆
� logRn(µ(✓0))

�
. (2.3)

Below we show that An(s) converges weakly to a quadratic limit A(s), uniformly

in s over compacta, which then leads to our most important insights concerning

HL-based estimation and inference. By the multivariate Central Limit Theorem, 
Un,0

Vn,0

!
=

 
n�1/2

Pn
i=1 u(Yi, ✓0)

n�1/2
Pn

i=1m(Yi, µ(✓0))

!
!d

 
U0

V0

!
⇠ Np+q(0,⌃),

where ⌃ =

 
J C

Ct W

!
. (2.4)
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Here, u(y, ✓) = @ log f(y, ✓)/@✓ is the score function, J = Varu(Y, ✓0) is the

Fisher information matrix of dimension p ⇥ p, C = Eu(Y, ✓0)m(Y, µ(✓0))t is of

dimension p⇥q, and W = Varm(Y, µ(✓0)) as before. The (p+q)⇥(p+q) variance

matrix ⌃ is assumed to be positive definite. This ensures that the parametric

and empirical likelihoods do not “tread on one another’s toes”, i.e. that the

mj(y, µ(✓)) functions are not in the span of the score functions, and vice versa.

Theorem 1. Suppose that smootheness conditions on log f(y, ✓) hold, as spelled

out in Section S.2; the conditions of Lemma 1 are in force, along with condition

(2.2) with the appropriate ⇠0, for each compact S ⇢ Rp; and that ⌃ has full rank.

Then, for each compact S, An(s) converges weakly to A(s) = stU⇤ � (1/2)stJ⇤s,

in the function space `1(S) endowed with the uniform topology, where U⇤ =

(1 � a)U0 � a⇠t0W
�1V0 and J⇤ = (1 � a)J + a⇠t0W

�1⇠0. Here U⇤ ⇠ Np(0,K⇤),

with variance matrix K⇤ = (1�a)2J+a2⇠t0W
�1⇠0�a(1�a)(CW�1⇠0+⇠t0W

�1Ct).

The theorem, proved in Section S.2 of the supplementary material, is valid

for each fixed balance parameter a in (1.2), with J⇤ and K⇤ also depending on

a. We discuss ways of fine-tuning a in Section 4.

The p⇥ q-dimensional block component C of the variance matrix ⌃ of (2.4)

can be worked with and represented in di↵erent ways. Suppose that µ is dif-

ferentiable at ✓ = ✓0, and denote the vector of partial derivatives by @µ/@✓,

with derivatives at ✓0, and with this matrix arranged as a p ⇥ q matrix, with

columns @µj(✓0)/@✓ for j = 1, . . . , q. From
R
m(y, µ(✓))f(y, ✓) dy = 0 for all

✓ follows the q ⇥ p-dimensional equation
R
m⇤(y, µ(✓0))f(y, ✓0) dy (@µ/@✓)t +R

m(y, µ(✓0))f(y, ✓0)u(y, ✓0)t dy = 0, where m⇤(y, µ) = @m(y, µ)/@µ, in case m

is di↵erentiable with respect to µ. This means C = �(@µ/@✓) E✓ m⇤(Y, µ(✓0)).

If m(y, µ) = g(y)� µ, for example, corresponding to parameters µ = E g(Y ), we

have C = @µ/@✓. Also, using (2.2) we have ⇠0 = �(@µ/@✓)t, of dimension q ⇥ p.

Applying Theorem 1 yields U⇤ = (1� a)U0 + a(@µ/@✓)W�1V0, along with

J⇤ = (1� a)J + a
@µ

@✓
W�1

✓
@µ

@✓

◆t

and K⇤ = (1� a)2J + {1� (1� a)2}@µ
@✓

W�1

✓
@µ

@✓

◆t

. (2.5)

For the following corollary of Theorem 1, we need to introduce the random

function �n(✓) = n�1{hn(✓)� hn(✓0)} along with its population version

�(✓) = �(1� a)KL(f✓0 , f✓)� aE log
�
1 + ⇠(✓)tm(Y, µ(✓))

�
, (2.6)

with b✓hl as the argmax of �n(·). Here KL(f, f✓) =
R
f log(f/f✓) dy is the
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Kullback–Leibler divergence, in this case from f✓0 to f✓, and with ⇠(✓) the so-

lution of Em(Y, µ(✓))/{1 + ⇠tm(Y, µ(✓)} = 0 (that this solution exists and is

unique is a consequence of the proof of Corollary 1 below).

Corollary 1. Under the conditions of Theorem 1 and under conditions (A1)–

(A3) given in Section S.3 of the supplementary material, (i) there is consistency

of b✓hl towards ✓0; (ii)
p
n(b✓hl � ✓0) !d (J⇤)�1U⇤ ⇠ Np

�
0, (J⇤)�1K⇤(J⇤)�1

�
; and

(iii) 2{hn(b✓hl)� hn(✓0)} !d (U⇤)t(J⇤)�1U⇤.

These results allow us to construct confidence regions for ✓0 and confidence

intervals for its components. Of course we are not merely interested in the

individual parameters of a model, but in certain functions of them, namely focus

parameters. Assume  =  (✓) =  (✓1, . . . , ✓p) is such a parameter, with  

di↵erentiable at ✓0 and denote c = @ (✓0)/@✓. The HL estimator for this  is

the plug-in b hl =  (b✓hl). With  0 =  (✓0) as the true parameter value, we then

have via the delta method that
p
n( b hl� 0) !d ct(J⇤)�1U⇤ ⇠ N(0,2), where 2 = ct(J⇤)�1K⇤(J⇤)�1c. (2.7)

The focus parameter  could, for example, be one of the components of µ = µ(✓)

used in the EL part of the HL, say µj , for which
p
n(bµj,hl � µ0,j) has a normal

limit with variance (@µj/@✓)t(J⇤)�1K⇤(J⇤)�1(@µj/@✓), in terms of (@µj/@✓) =

@µj(✓0)/@✓. Armed with Corollary 1, we can set up Wald and likelihood-ratio

type confidence regions and tests for ✓, and confidence intervals for  . Consistent

estimators bJ⇤ and bK⇤ of J⇤ and K⇤ would then be required, but these are readily

obtained via plug-in. Also, an estimate of J⇤ is typically obtained via the Hessian

of the optimisation algorithm used to find the HL estimator in the first place.

In order to investigate how much is lost in e�ciency when using the HL

estimator under model conditions, consider the case of small a. We have J⇤ =

J + aA1 and K⇤ = J + aA2 + O(a2), with A1 = ⇠t0W
�1⇠0 � J and A2 = �2J �

CW�1⇠0�⇠t0W�1Ct. For the class of functions of the formm(y, µ) = g(y)�T (µ),

corresponding to µ = T�1(E g(Y )), we have A2 = 2A1. It is assumed that

T (·) has a continuous inverse at µ(✓) for ✓ in a neighbourhood of ✓0. Writing

(J⇤)�1K⇤(J⇤)�1 as (J�1 � aJ�1A1J�1)(J + aA2)(J�1 � aJ�1A1J�1) + O(a2),

therefore, one finds that this is J�1 +O(a2), which in particular means that the

e�ciency loss is very small when a is small.

3. Hybrid Likelihood Outside Model Conditions

In Section 2 we investigated the hybrid likelihood estimation strategy under

the conditions of the parametric model. Under suitable conditions, the HL is
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consistent and asymptotically normal, with a certain mild loss of e�ciency under

model conditions, compared to the parametric ML method, the special case a =

0. In the present section we investigate the behaviour of the HL outside the

conditions of the parametric model, which is now viewed as a working model.

It turns out that HL often outperforms ML by reducing model bias, which in

mean squared error terms might more than compensate for a slight increase in

variability. This in turn calls for methods for fine-tuning the balance parameter

a in our basic hybrid construction (1.2), and we shall deal with this problem too,

in Section 4.

Our framework for investigating such properties involves extending the work-

ing model f(y, ✓) to a f(y, ✓, �) model, where � = (�1, . . . , �r) is a vector of extra

parameters. There is a null value � = �0 which brings this extended model back

to the working model. We now examine behaviour of the ML and the HL schemes

when � is in the neighbourhood of �0. Suppose in fact that

ftrue(y) = f

✓
y, ✓0, �0 +

�p
n

◆
, (3.1)

with the � = (�1, . . . , �r) parameter dictating the relative distance from the null

model. In this framework, suppose an estimator b✓ has the property that
p
n(b✓ � ✓0) !d Np(B�,⌦), (3.2)

with a suitable p ⇥ r matrix B related to how much the model bias a↵ects the

estimator of ✓, and limit variance matrix ⌦. Then a parameter  =  (f) of

interest can in this wider framework be expressed as  =  (✓, �), with true

value  true =  (✓0, �0 + �/
p
n). The spirit of these investigations is that the

statistician uses the working model with only ✓ present, without knowing the

extension model or the size of the � discrepancy. The ensuing estimator for  is

hence b =  (b✓, �0). The delta method then leads to
p
n( b �  true) !d N(bt�, ⌧2), (3.3)

with b = Bt(@ /@✓) � @ /@� and ⌧2 = (@ /@✓)t⌦(@ /@✓), and with partial

derivatives evaluated at the working model, i.e. at (✓0, �0). The limiting mean

squared error, for such an estimator of µ, is mse(�) = (bt�)2 + ⌧2. Among the

consequences of using the narrow working model when it is moderately wrong,

at the level of � = �0 + �/
p
n, is the bias bt�. The size of this bias depends on

the focus parameter, and it may be zero for some foci, even when the model is

incorrect.

We now examine both the ML and the HL methods in this framework, ex-

hibiting the associated B and ⌦ matrices and hence the mean squared errors, via
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(3.3). Consider the parametric ML estimator b✓ml first. To present the necessary

results, consider the (p+ r)⇥ (p+ r) Fisher information matrix

Jwide =

 
J00 J01
J10 J11

!
(3.4)

for the f(y, ✓, �) model, computed at the null values (✓0, �0). In particular, the

p⇥ p block J00, corresponding to the model with only ✓ and without �, is equal

to the earlier J matrix of (2.4) and appearing in Theorem 1 etc. Here one

can demonstrate, under appropriate mild regularity conditions, that
p
n(b✓narr �

✓0) !d Np(J
�1
00 J01�, J

�1
00 ). Just as (3.3) followed from (3.2), one finds for b ml =

 (b✓ml) that
p
n( b ml �  true) !d N(!t�, ⌧20 ), (3.5)

featuring ! = J10J
�1
00 (@ /@✓) � @ /@� and ⌧20 = (@ /@✓)tJ�1

00 (@ /@✓). See

also Hjort and Claeskens (2003) and Claeskens and Hjort (2008, Chap. 6, 7) for

further details, discussion, and precise regularity conditions.

In such a situation, with a clear interest parameter  , we use the HL

to get b hl =  (b✓hl, �0). We work out what happens with b✓hl in this frame-

work, generalising what is found in the previous section. Introduce S(y) =

@ log f(y, ✓0, �0)/@�, the score function in direction of these extension parame-

ters, and let K01 =
R
f(y, ✓0)m(y, µ(✓0))S(y) dy, of dimension q ⇥ r, along with

L01 = (1 � a)J01 � a(@ /@✓)tW�1K01, of dimension p ⇥ r, and with transpose

L10 = Lt
01. The following is proved in Section S.4.

Theorem 2. Assume data stem from the extended p+r-dimensional model (3.1),

and that the conditions listed in Corollary 1 are in force. For the HL method, with

the focus parameter  =  (f) built into the construction (1.2), results (3.2)–(3.3)

hold, with B = (J⇤)�1L01 and ⌦ = (J⇤)�1K⇤(J⇤)�1.

The limiting distribution for b hl =  (b✓hl) can again be read o↵, just as (3.3)

follows from (3.2):
p
n( b hl �  true) !d N(!t

hl�, ⌧
2
0,hl), (3.6)

with!hl = L10(J⇤)�1 (@ /@✓) � @ /@� and ⌧20,hl = (@ /@✓)t (J⇤)�1K⇤(J⇤)�1

(@ /@✓). The quantities involved in these large-sample properties of the HL esti-

mator depend on the balance parameter a employed in the basic HL construction

(1.2). For a = 0 we are back to the ML, with (3.6) specialising to (3.5). As a

moves away from zero, more emphasis is placed on the EL part, in e↵ect pushing

✓ so n�1
Pn

i=1m(Yi, µ(✓)) gets closer to zero. The result is typically a lower bias
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|!hl(a)t�|, compared to |!t�|, and a slightly larger standard deviation ⌧0,hl, com-

pared to ⌧0. Thus selecting a good value of a is a bias-variance balancing game,

which we discuss in the following section.

4. Fine-Tuning the Balance Parameter

The basic HL construction of (1.2) first entails selecting context relevant

control parameters µ, and then a focus parameter  . A special case is that of

using the focus  as the single control parameter. In each case, there is also

the balance parameter a to decide upon. Ways of fine-tuning the balance are

discussed here.

Balancing robustness and e�ciency. By allowing the empirical likeli-

hood to be combined with the likelihood from a given parametric model, one

may buy robustness, via the control parameters µ in the HL construction, at the

expense of a certain mild loss of e�ciency. One way to fine-tune the balance,

after having decided on the control parameters, is to select a so that the loss of

e�ciency under the conditions of the parametric working model is limited by a

fixed, small amount, say 5%. This may be achieved by using the corollaries of

Section 2 by comparing the inverse Fisher information matrix J�1, associated

with the ML estimator, to the sandwich matrix (J⇤
a )

�1K⇤
a(J

⇤
a )

�1, for the HL

estimator. Here we refer to the corollaries of Section 2, see e.g. (2.5), and have

added the subscript a, for emphasis. If there is special interest in some focus

parameter  , one may select a so that

a = {ct(J⇤
a )

�1K⇤
a(J

⇤
a )

�1c}1/2  (1 + ")0 = (1 + ")(ctJ�1c)1/2, (4.1)

with " the required threshold. With " = 0.05, for example, one ensures that

confidence intervals are only 5% wider than those based on the ML, but with the

additional security of having controlled well for the µ parameters in the process,

e.g. for robustness reasons. Pedantically speaking, in (2.7) there is really a ca =

@ (✓0,a)/@✓ also depending on the a, associated with the limit in probability ✓0,a
of the HL estimator, but when discussing e�ciencies at the parametric model,

the ✓0,a is the same as the true ✓0, so ca is the same as c = @ (✓0)/@✓. A concrete

illustration of this approach is in the following section.

Features of the mse(a). The methods above, as with (4.1), rely on the

theory developed in Section 2, under the conditions of the parametric working

model. In what follows we need the theory given in Section 3, examining the

behaviour of the HL estimator in a neighbourhood around the working model.

Results there can first be used to examine the limiting mse properties for the ML
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Figure 2. (a) The dotted horizontal line indicates the root-mse for the ML estimator,
and the full curve the root-mse for the HL estimator, as a function of the balance
parameter a in the HL construction. (b) The root-fic(a), as a function of the balance
parameter a, constructed on the basis of n = 100 simulated observations, from a case
where � = 1 + �/

p
n, with � described in the text.

and the HL estimators where it will be seen that the HL often can behave better;

a slightly larger variance is being compensated for with a smaller modelling bias.

Secondly, the mean squared error curve, as a function of the balance parameter

a, can be estimated from data. This leads to the idea of selecting a to be the

minimiser of this estimated risk curve, pursued below.

For a given focus parameter  , the limit mse when using the HL with pa-

rameter a is found from (3.6):

mse(a) = {!hl(a)
t�}2 + ⌧0,hl(a)

2. (4.2)

The first exercise is to evaluate this curve, as a function of the balance parameter

a, in situations with given model extension parameter �. The mse(a) at a = 0

corresponds to the mse for the ML estimator. If mse(a) is smaller than mse(0),

for some a, then the HL is doing a better job than the ML.

Figure 2(a) displays the root-mse(a) curve in a simple setup, where the

parametric start model is Beta(✓, 1), with density ✓y✓�1, and the focus parameter

used for the HL construction is  = EY 2, which is ✓/(✓ + 2) under model

conditions. The extended model, under which we examine the mse properties of

the ML and the HL, is the Beta(✓, �), with � = 1 + �/
p
n in (3.1). The � for

this illustration is chosen to be Q1/2 = (J11)1/2, from (4.3) below, which may

be interpreted as one standard deviation away from the null model. The root-



HYBRID EMPIRICAL LIKELIHOOD 2403

mse(a) curve, computed via numerical integration, shows that the HL estimator
b✓hl/(b✓hl+2) does better than the parametric ML estimator b✓ml/(b✓ml+2), unless a

is close to 1. Similar curves are seen for other �, for other focus parameters, and

for more complex models. Occasionally, mse(a) is increasing in a, indicating in

such cases that ML is better than HL, but this typically happens only when the

model discrepancy parameter � is small, i.e. when the working model is nearly

correct.

It is of interest to note that !hl(a) in (3.6) starts out for a = 0 at ! =

J10J
�1
00 (@ /@✓) � @ /@� in (3.5), associated with the ML method, but then

it decreases in size towards zero, as a grows from zero to one. Hence, when

HL employs only a small part of the ordinary log-likelihood in its construction,

the consequent b hl,a has small bias, but potentially a bigger variance than ML.

The HL may thus be seen as a debiasing operation, for the control and focus

parameters, in cases where the parametric model f(·, ✓) cannot be fully trusted.

Estimation of mse(a). Concrete evaluation of the mse(a) curves of (4.2)

shows that the HL scheme typically is worthwhile, in that the mse is lower than

that of the ML, for a range of a values. To find a good value of a from data, a

natural idea is to estimate the mse(a) and then pick its minimiser. For mse(a),

the ingredients !hl(a) and ⌧0,hl(a) involved in (3.6) may be estimated consistently

via plug-in of the relevant quantities. The di�culty lies with the � part, and

more specifically with ��t in !hl(a)��t!hl(a). For this parameter, defined on

the O(1/
p
n) scale via � = �0 + �/

p
n, the essential information lies in Dn =p

n(b�ml � �0), via parametric ML estimation in the extended f(y, ✓, �) model.

As demonstrated and discussed in Claeskens and Hjort (2008, Chap. 6–7), in

connection with construction of their Focused Information Criterion (FIC), we

have

Dn !d D ⇠ Nr(�, Q), with Q = J11 = (J11 � J10J
�1
00 J01)

�1. (4.3)

The factor �/
p
n in the O(1/

p
n) construction cannot be estimated consistently.

Since DDt has mean ��t+Q in the limit, we estimate squared bias parameters of

the type (bt�)2 = b��tb using {bt(DnDt
n � bQ)b}+, in which bQ estimates Q = J11,

and x+ = max(x, 0). We construct the r⇥ r matrix bQ from estimating and then

inverting the full (p+ r)⇥ (p+ r) Fisher information matrix Jwide of (3.4). This

leads to estimating mse(a) using

fic(a) = {b!hl(a)
t(DnD

t
n � bQ)b!hl(a)}+ + b⌧0,hl(a)2

=
⇥
nb!hl(a)

t{(b� � �0)(b� � �0)
t � bQ}b!hl(a)

⇤
+
+ b⌧0,hl(a)2.
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Figure 2(b) displays such a root-fic curve, the estimated root-mse(a). Whereas

the root-mse(a) curve shown in Figure 2(a) is coming from considerations and

numerical investigation of the extended f(y, ✓, �) model alone, pre-data, the root-

fic(a) curve is constructed for a given dataset. The start model and its extension

are as with Figure 2(a), a Beta(✓, 1) inside a Beta(✓, �), with n = 100 simulated

data points using � = 1 + �/
p
n with � chosen as for Figure 2(a). Again, the

HL method was applied, using the second moment  = EY 2 as both control and

focus. The estimated risk is smallest for a = 0.41.

5. An Illustration: Roman Era Egyptian Life-Lengths

A fascinating dataset on n = 141 life-lengths from Roman era Egypt, a cen-

tury BC, is examined in Pearson (1902), where he compares life-length distribu-

tions from two societies, two thousand years apart. The data are also discussed,

modelled and analysed in Claeskens and Hjort (2008, Chap. 2).

Here we have fitted the data to the Gamma(b, c) distribution, first using the

ML, with parameter estimates (1.6077, 0.0524). The q-q plot of Figure 3(a) dis-

plays the points (F�1(i/(n+1),bb,bc), y(i)), with F�1(·, b, c) denoting the quantile

function of the Gamma and y(i) the ordered life-lengths, from 1.5 to 96. We

learn that the gamma distribution does a decent job for these data, but that

the fit is not good for the longer lives. There is hence scope for the HL for esti-

mating and assessing relevant quantities in a more robust and indeed controlled

fashion than via the ML. Here we focus on p = p(b, c) = P{Y 2 [L1, L2]} =R L2

L1
f(y, b, c) dy, for age groups [L1, L2] of interest. The hybrid log-likelihood is

hence hn(b, c) = (1 � a)`n(b, c) + a logRn(p(b, c)), with Rn(p) being the EL as-

sociated with m(y, p) = I{y 2 [L1, L2]}� p. We may then, for each a, maximise

this function and read o↵ both the HL estimates (bba,bca) and the consequent

bpa = p(bba,bca). Figure 3(b) displays this bpa, as a function of a, for the age group

[9.5, 20.5]. For a = 0 we have the ML based estimate 0.251, and with increasing

a there is more weight to the EL, which has the point estimate 0.171.

To decide on a good balance, recipes of Section 4 may be appealed to. The

relatively speaking simplest of these is that associated with (4.1), where we nu-

merically compute a = {ct(J⇤)�1K⇤(J⇤)�1c}1/2 for each a, at the ML position

in the parameter space of (b, c), and with J⇤ and K⇤ from (2.5). The loss of

e�ciency a/0 is quite small for small a, and is at level 1.10 for a = 0.61.

For this value of a, where confidence intervals are stretched 10% compared to the

gamma-model-based ML solution, we find bpa equal to 0.232, with estimated stan-

dard deviation ba/
p
n = 0.188/

p
n = 0.016. Similarly the HL machinery may be
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Figure 3. (a) The q-q plot shows the ordered life-lengths y(i) plotted against the ML-

estimated gamma quantile function F�1(i/(n + 1),bb,bc). (b) The curve bpa, with the
probability p = P{Y 2 [9.5, 20.5]} estimated via the HL estimator, is displayed, as a
function of the balance parameter a. At balance position a = 0.61, the e�ciency loss is
10% compared to the ML precision under ideal gamma model conditions.

put to work for other age intervals, for each such using the p = P{Y 2 [L1, L2]}
as both control and focus, and for models other than the gamma. We may employ

the HL with a collection of control parameters, like age groups, before landing

on inference for a focus parameter; see Example 3. The more elaborate recipe of

selecting a, developed in Section 4 and using fic(a), can also be used here.

6. Further Developments and the Supplementary Material

Various concluding remarks and extra developments are placed in the arti-

cle’s Supplementary Material section. In particular, proofs of Lemma 1, Theo-

rems 1 and 2 and Corollary 1 are given there. Other material involves extension

of the basic HL construction to regression type data, in Section S.5; log-HL-

profiling operations and a deviance fuction, leading to a full confidence curve for

a focus parameter, in Section S.6, an implicit goodness-of-fit test for the para-

metric vehicle model, in Section S.7, and a related but di↵erent hybrid likelihood

construction, in Section S.8.

Supplementary Materials

This additional section contains the following sections. Sections S.1, S.2, S.3,

S.4 give the technical proofs of Lemma 1, Theorem 1, Cororally 1 and Theorem 2.



2406 HJORT, MCKEAGUE AND VAN KEILEGOM

Then Section S.5 crucially indicates how the HL methodology can be lifted from

the i.i.d. case to regression type models, whereas a Wilks type theorem based

on HL-profiling, useful for constructing confidence curves for focus parameters,

is developed in Section S.6. An implicit goodness-of-fit test for the parametric

working model is identified in Section S.7. Finally Section S.8 describes an alter-

native hybrid approach, related to, but di↵erent from the HL. This alternative

method is first-order equivalent to the HL method inside O(1/
p
n) neighbour-

hoods of the parametric vehicle model, but not at farther distances.
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