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 Abstract

 The asymptotic behavior of the maximum likelihood estimator of a parameter
 in the drift term of a stationary ergodic diffusion process is studied under
 conditions in which the true drift function and true noise function do not

 coincide with those specified by the parametric model.

 STOCHASTIC DIFFERENTIAL EQUATIONS; MAXIMUM LIKELIHOOD ESTIMATION;

 ROBUSTNESS; ASYMPTOTIC NORMALITY

 1. Introduction

 Consider the problem of estimating the drift function b(x) of a stationary
 diffusion process (X,) given by

 dX, = b(X,)dt + or(X,)dW,, t 0,O

 where the process is observed over [0, T]. The method of maximum likelihood
 can be used if b(x) is assumed to have a parametric form f(x, 0), 0 E 0. Brown
 and Hewitt (1975), Kutoyants (1977), Lanska (1979) and Prakasa Rao and Rubin
 (1981) have shown that the maximum likelihood estimator of 0 is consistent and
 asymptotically normal. Non-parametric methods of estimating b have been
 developed by Banon (1978) and Geman (1980).

 Suppose that a parametric model for the process (X,) is given by

 dX, = f(X,, 0)dt + y(X,)dW,, t _ 0.

 This paper studies the asymptotic behavior of the maximum likelihood estimator

 of 0 under departures of the true drift function b(x) or true noise function or(x)
 from those specified by the parametric model.

 The need for such analysis stems from the desirability of using estimators that
 are robust under small departures from the underlying model. This kind of
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 512 IAN W. McKEAGUE

 analysis is familiar in other settings, for example Huber (1967), White (1981) and
 Berger and Langberg (1981).

 2. Maximum likelihood estimation under misspecified models

 Let (X,, t = 0) be a stationary, ergodic process which is assumed to be the
 unique solution of the stochastic differential equation

 (2.1) dX, = b(X,)dt + a(X,)dW,, tO 0

 where X, is distributed according to the stationary distribution of the process, b

 and oa are unknown measurable functions and (W,, t -0) is a standard Wiener
 process. Assume that (X,) has inaccessible boundaries on the state space
 (- x,Co). Using the notation of Mandl (1968), let

 B(x) = 2 x b(y)dy, p(x)= exp(- B (y))dy,

 M(x)=2= x exp B(y) m(x)) 2 dy,

 where the integrals are assumed to exist. Provided that m(+oc)<~c and
 m (- oc)> - o, the stationary distribution, denoted v, has distribution function
 M-'m(x) where M = m(+ oc)- m(- oc).
 Suppose a parametric model is used to estimate the drift function b(x) by the

 method of maximum likelihood. Let 0 denote a closed bounded interval. A

 family of measurable drift functions {f(x, 0), 0 E 0} and a measurable noise
 function y(x)> 0 are provided and inference is based on the model

 (2.2) dX, = f(X,, O)dt + y(X,)dW,, t = 0.
 The process (X,) is observed over [0, T]. Let j and A' denote the measures
 induced on C[0, T] by a process satisfying (2.2) and the process

 dY, = y(Y,)dW,, t >0

 Y(, = X,,

 respectively. Under conditions given in Liptser and Shiryayev (1977), Theorem

 7.19, it follows that A',2< p for all 0 E 0 and the log likelihood function
 lT(O)= log[dt /dAL']L(X) is given by

 (2.3) 1(0)= T f(X,,)dX, - I X,0)2 dt, a.e. (). f), y 2(X,) 2f, Y(x,)?
 A maximum likelihood estimator calculated from lT(0) is denoted OT.

 Assume that

 E b (Xo)- f(Xo,, 8) < )
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 Diffusion processes under misspecified models 513

 for all 0 E 0 and, as a function of 0, has a unique minimum at 0* E 0. The
 following results describe the asymptotic behavior of OT when the observed
 process satisfies (2.1). The conditions are stated later. g', g" denote first and
 second partial derivatives of a function g(x, 0) with respect to 0.

 Theorem 2.1. Under Conditions (C1)-(C3), OT-> 0* a.s. as T-oo.

 Theorem 2.2. Under Conditions (C1)-(C7), TI/2(OT - 0*) N(O, 1) where

 2Mf g'(y, O*) f g'(z, O*)dm(z)dp(s)dm(y)
 (2.4) 2=

 (li g"(x, 0*)dm(x)}

 (2.5) g(x, ) = f(x, 2+ 2(X) f(x, t 5 ,(x) ) \dY2(x)"
 Theorem 2.3. In the special case that the drift function has been correctly
 specified, i.e. b(x) = f(x, 0() for some 0, E 0, then (whether or not the noise
 function has been correctly specified)

 (i) OT --* 0 a.s. as T--*oo under Conditions (C1)-(C3);

 (ii) T2T - 00)-> N(O, V) under Conditi6ns (C1)-(C9), where

 rf '(y"] 002[(T(y)]2 S y 2 2dv(y)
 (2.6) V =- 0) 2 ()2 [f' (x)2 dv(x)}
 Remark. The minimum contrast estimator introduced by Lanska (1979) can
 be inconsistent under the conditions of Theorem 2.3, whereas the maximum
 likelihood estimator remains consistent in this case.

 Conditions.

 (C1) f(x, 0)-f(x, 02) -J(x)q(0-02), x ER, 6O, ,02E 0, where
 E[J(Xo)y(Xo)12 < o and lim,,o i,(a) = 0.

 (C2) E[o-(Xo)/y(Xo)] < and If(x, )1 ? K(x), x E R, E 0, where
 E [K(Xo)/y(Xo)]2 < oc

 (C3) f(x, 0) is continuous in (x, 0) and differentiable with respect to 0. There

 exists a > 0 such that If'(x, ,)- f'(x, 02) c(x) 1 - 2 , x E R, 0,2 ,
 where E[o-(Xo)c(Xo)/y2(Xo)]2 < OC.

 (C4) f(x, O)y-2(x) has a continuous first partial derivative with respect to x for
 each 0 E 0.

 (C5) lim ... f(x, O)y-2(x)exp B(x) = O, VO E O.
 (C6) The partial derivatives g', g", G', G" exist and are continuous in (x, 0),

 where G(x, 0) is defined by
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 514 IAN W. McKEAGUE

 (2.7) G(x, 0) = ffoL (y') dy.
 (C7) I g"(x, 01) - g"(x, 02) U(x)4(01 - 02), x E R, 01, 02 E , where

 EU(Xo)< oo and lim_.)o 4 (a) = 0. (C8) lim-.... f'(x, 0o)y-2(x)[exp B(x)] fxf'(s, 00o)y-2(s)ds = 0.
 (C9) limI.... f"(x, 00)y-2(X)exp B(x) = 0.
 (C10) Condition (C7) with g' in place of g".

 Proof of Theorem 2.1. From (2.1) and (2.3) IT(0) can be written

 1 ) f(X0, O)-b(X,) dt +1 2 dt lT(0)= 2Y(1)dt(X
 (2.8)

 (2.8) f(X,, 0)o(X,) d W,
 fo yy2(X,)

 Denote

 ITf(O) 0= f(X,)-b(X,)( dt.
 Using (C1) and (C2) it is possible to show that {(1/T)IT( ), T- 0} is equicontinu-
 ous and uniformly bounded almost surely as a family of functions of 0. By the
 Arzela-Ascoli theorem this family is relatively compact (almost surely) in the
 space of continuous functions on 0 provided with the supremum norm.
 Therefore, by the ergodic theorem

 1 1,-o ( E f(x,,, 0)_ - b(X,,)] T y(Xo) '

 uniformly in 0 E 0 as T--- 0c.
 Now consider the second term in (2.6). By Condition (C2) and the ergodic

 theorem

 T1 ' ]2 dt . E.2 as T---Xc. T , Y(X,) y (X0)
 Next, using Lemma 4.3 of Prakasa Rao and Rubin (1981) it follows that, under
 Conditions (C1)-(C3),

 1 f (X I, 0 ) (T(X 1 a.s. fT f(X, )2(Xt) dW, - 0, uniformly in 0 E Oas T - oc

 Thus

 (2.9) 1 lr() i T E f (X,, 0)- b(Xo) + oE 2 T y (Xo) y (Xo)J
 uniformly in 0 E @ as T-- oo. Since the right-hand side of (2.9) has a unique
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 Diffusion processes under misspecified models 515

 maximum at 0* E z and OT maximizes (1/T)lT(0), it is easily proved that

 OrT - 0* a.s. as T ---0.
 Proof of Theorem 2.2. The approach used by Prakasa Rao and Rubin (1981)

 to find the asymptotic distribution of OT in the correctly specified case does not

 extend to the misspecified case. Rather, the proof of this theorem uses the

 technique, introduced by Lanska (1979), of expressing 1T(O) in terms of
 Lebesgue integrals.

 The function G(x, 0) defined in (2.7) has a continuous second partial
 derivative with respect to x for each 0 E O by Condition (C4). Applying It6's
 formula, it follows that

 G(XT,60)= G(Xo,)+j b(X+,)2 ' ,,) 2a(X(X2)dt
 o 2 (XX2 ) X ( (X )O) W .

 + f T (x,)f(x,,o) dW, S 2(Xt ) dw,.
 Then, using (2.1) and (2.3),

 T ( f) f(X, 0)b(X,) It + f(XO)X) (X W, - fT d T 72(X, ) 7+2(X, ) Jot f(X,) )dt
 (2.10) T

 = G(XT, 0)- G(X, 0) -i g(X,, 0)dt,

 where g is defined in (2.5). Expand 1'(0) about OT,

 1(0*) = 1~(OT)+ (0* - OT)l~(0T), where IOT0 - 0" 0T - 0* I.
 Consider

 T-1/2 1(*) = T-1/2(G'(XT, 0*)- G'(Xo, 0*))+ T-1/2 g'(X, 0*)dt.

 Using the stationarity of (X,),

 T-1/2(G'(XT, 0*)- G'(Xo, 0*)) P 0 as T->oo.

 Using integration by parts and Condition (C5) it can be shown that

 (2.11) Eg'(X,, 0) = E f (Xo, 0)- b(Xo) ]2_E [ ,)1

 and since the right-hand side of this expression is minimized at 0* E 0, it follows

 that Eg(Xo, 0) is minimized at 0* E 0 and Eg'(Xo, 0*) = 0. Then, by Mandl
 (1968), p. 94,

 Tr- 1 g'(Xt, 0*) N(0,A),
 O
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 516 IAN W. McKEAGUE

 where

 A = g'(y, 0*) f g'(z, 0*)dm(z)dp(s)dm(y).

 Thus T-1/21-(0*)  N(O, A). By the ergodic theorem and Condition (C6)

 -i(t*) ( -Eg"(Xo, 0*).

 Next, using Conditions (C6), (C7) and the fact that Or-> 0* a.s.

 1 (-p (I(O - I( 0, as T ->o.

 Thus

 l(T-() Eg "(Xo, 0)= ~j g"(x, 0*)dm(x),
 as T-> oo. We conclude that

 T2OT - 02*) N(O, 1),

 where I is given in (2.4).

 Proof of Theorem 2.3. Suppose that b(x) = f(x, 0,), where 00oE 0. Then
 0* = 0o and (a) follows directly from Theorem 2.1. The proof of (b) consists in
 showing that I in (2.4) reduces to V given in (2.6). Using integration by parts it
 can be seen that

 fS g'(z, Oo)dm(z) = 2f'(s, 0o)y -2(s)exp B(s),

 which gives

 f f g'(z, 00)dm(z)dp(s) = 2 f'(s, 00)y-2(s)ds.

 Using integration by parts with Condition (C8),

 r2 2(y) d[f(y, 0o)Y-2(y)] ()(S, 0()y-2(s)dsdm(y)

 = 2 b(y) f '(y,0- ()

 -2 b(y)f'(y, do)y-2(y) f's O)y2(s)dsdm(y).
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 Diffusion processes under misspecified models 517

 It follows that the numerator of I reduces to

 4M f'(y, 00)2 '(y dm (y). _[y(y) IY(Y)
 Similarly, it can be shown that

 f g"(x, 0o)dm(x)= 2 [f'(x )]dm ).

 This completes the proof of the theorem.

 Examples.
 1. This example presents a misspecified drift function but correctly specified

 noise function. Suppose that the observed process satisfies

 dX, = - X,dt + V2 d W,,

 where Xo has an N(0, 1) distribution, the stationary distribution of (X,).
 Estimates are calculated from the parametric model

 dX, = - OXdt + 2dW,.

 The parameter 0* which minimizes E(Xo- OX3)2 is given by

 EX4 1

 EX - 5

 By Theorem 2.1, 0T - a.s. as T--~o. We also have g(x, 0) = 02x6-30x2, so
 that g'(x, 0*) = x6 - 3x2. Using repeated integration by parts

 g'(z, 0*)dm(z)= (zz6 - 3z2)exp( - z2/2)dz = -(I5 + s3)exp( - s2/2)

 so that

 fS g'(z, 0*)dm(z)dp(s)= 3y6+ y4

 and

 g'(y, 0*) f g'(z, 0*)dm(z)dp(s)dv(y)

 = (y6-3y2)(3y6+y4)dv(y)

 = '.EXO + OEXo - FX - j EXo
 = 94.8.
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 518 IAN W. McKEAGUE

 Also

 g"(x, 0*)dv(x)= EX, = 15.

 Thus = (2)(94.8)/(15)2 = 0.84, and by Theorem 2.2 we have T'/2(OT -)---
 N(0, 0.84). The asymptotic variance of O is less than in the correctly specified
 case for which T1/2(OT --1) --N(0, 1).

 2. Our second example has a correctly specified drift function and a mis-
 specified noise function. The observed process is the same as in the first example

 but the parametric model is given by

 dX, = - OXdt + 2 dW,.

 Theorem 2.3 yields TI/2(OT - 1) -- N(0, 2.75). The asymptotic variance of 0T has
 almost tripled due to the misspecified noise.

 3. Discriminating between separate families of drift functions

 Let (X,) satisfy (2.1) and assume throughout this section o-(x) 1. Suppose
 that two parametric models for this process have been suggested. It is required to
 decide in favor of the model which best fits the observed trajectory {X,, 0 5 t 5
 T}.

 Let {fi(x, 0): 0 E 0}, {f2(x, 0): 0 E (} be distinct families of drift functions,
 where 0, 'P are closed bounded intervals. A reasonable way to compare the
 goodness of fit of these families to the true drift function b(x) is to estimate the
 parameter

 A = E[f2(Xo, 4*) - b (Xo)]2 - E[f1(Xo, 0*)- b (Xo)]2.

 In this section we introduce an estimator for A. The noise function is assumed to

 be correctly specified; that is y(x) 1.
 Let /l'(0), 1(2o) denote the log likelihoods for the two models. Define

 AT -[l'(0T) - lT'(OT)].

 Given that fi, f2 satisfy Conditions (C1)-(C3), it follows from (2.7) in the proof of

 Theorem 2.1 that ATr--- A a.s. as T-- ooc. The following result shows that AT is
 asymptotically normal. Conditions from Section 2 are used interchangeably
 between the two families of drift functions indexed by 0 and 4.

 Theorem 3.1. Suppose that fi, f2 satisfy Conditions (C1)-(C6) and (C10),
 where g, g2 are given by (2.5) with f = fl,f2 respectively, y(x)- 1. Then

 TI/2(T - A) -A N(0, -2), where
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 Diffusion processes under misspecified models 519

 2"
 Y2 = -M [g2(y, *) gl(y, *) - a]

 x - ff [g2 (z,)-gl( *)0- A]dm(z)dp(s)dm(y).
 Proof. From (2.9) it is clear that T1/2(AT - A) has the same limiting distribu-

 tion as

 -1/2 [g2(X,, T) - gl(X,, r) - A]dt = T-1/2 [g2(X,, 4 *)- g(X,, 0*) - A]dt

 + T-1/2 f[g2(X, T) - g2(X,, ) *)]dt

 + T-1/2 [gX,, 0*) - gl(X,, Or)]dt

 = A + BT + Cr.

 Frbm (2.11),

 E[g2(Xo, g*)- gl(Xo, 0")- A] = 0

 so, by Mandl (1968), p. 94, Ar A N(0, 12). Next, consider CT. Expanding gi in a
 neighborhood around 0*,

 1 f r
 C,= T1/2( T -- *)T ? g(X,, OT)dt, where Oi - o* T - 0*I.

 But,

 (3.1) 1 g(X,, OT)dt = g'((X,, O*)dt +- [g(X,, Or)- g (X,, O*)]dt.

 By the proof of Theorem 2.2, Eg'(Xo, 0") = 0, so by the ergodic theorem the first
 term in (3.1) converges to 0 a.s. as T--oo. From Condition (C10), the second
 term in (3.1) is bounded above by

 (3.2) 4(O - 0*). - U(X,)dt,

 which converges to 0 a.s. since OT - 0* O - 0* , T 0* a.s. and

 T - U(X,)dt . EU(Xo) as T->oo.
 Thus CrO a.s. and similarly Br--O a.s. This completes the proof of the
 theorem.

 Example. Consider the two models
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 520 IAN W. McKEAGUE

 (3.3) dX = - OXdt + dW,

 (3.4) dX = - 4X3dt + dW,

 and suppose that the observed process satisfies (3.3) with 0 = 00>0. Some
 involved but routine calculations give that A = 0.200 and 12 = 0.6400 + 9.36003.
 Note that 12 --oo as 0o 0. The poor performance of AT for small 0o is to be
 expected since, as 0-> 0, the drift function has less effect on the dynamics of the
 process so it is harder to discriminate between the two models.
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