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Abstract

The Kaplan—Meier estimator of a survival function is well known to be asymp-
totically efficient when cause of failure is always observed. It has been an open
problem, however, to find an efficient estimator when failure indicators are missing
at random. Lo (1991) showed that nonparametric maximum likelihood estimators
are inconsistent, and this has led to several proposals of ad hoc estimators, none of
which are efficient. We now introduce a sieved-nonparametric maximum likelihood
estimator, and show that it is efficient. Our approach is related to the estimation
of a bivariate survival function from bivariate right-censored data.

1 Introduction

Suppose that we wish to estimate a survival distribution based on right-censored data.
When cause of failure is always observed, the method of nonparametric maximum likeli-
hood leads to the well-studied Kaplan—Meier (1958) estimator, which has many desirable
properties including asymptotic efficiency (Wellner, 1982). In this paper we address the
problem of finding an asymptotically efficient estimator when cause-of-failure information
is missing for some individuals.

Cause-of-failure information can be missing for a number of reasons. For example, in
epidemiological studies relevant death certificate information can be missing, or autopsy
results and hospital case notes can be inconclusive. In such cases it is not possible to
determine whether mortality is due to the cause of interest or due to extraneous causes.
In a study of the reporting of motorcycle injury fatalities occurring in Connecticut in
1987, Lapidus et al. (1994) found that 40% of death certificates were missing some or
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all of the required information. A study of mortality patterns among young people in
the Netherlands (Bijlsma, 1994) found that 9% of cases had ‘ill-defined symptoms, signs
and conditions,” and over 90% of those were registered as ‘cause-unknown,’” mainly due
to missing death certificates of people who had died abroad.

Let T' be the survival time of interest, let C' be a censoring time which is independent
of T, and let ¢ be a Bernoulli random variable which is allowed to depend on (7, C') in
a way to be specified in a moment. Let X = TAC and A = [(X =T). If (X,A) is
always observed, i.e., we have classical right-censored data on T', then we can estimate the
survival function of 7" using the Kaplan—Meier estimator. In the problem studied here,
however, the failure indicator A is missing if £ happens to be 0. That is, we have n i.i.d.
observations on Y = (X, €A, §).

Our goal is to efficiently estimate the survival function Sz of 1" under the assumption

PE=1]X,4)=P(=1]X), (1)

that & and A are conditionally independent given X. This assumption places our problem
in the framework of ‘missing at random,’ introduced by Rubin (1976), or, more generally,
‘coarsening at random’ (CAR), see Heitjan and Rubin (1991), Jacobsen and Keiding
(1995) and Gill, van der Laan and Robins (1997). Coarsening is a sampling mechanism in
which instead of observing a random quantity of interest one is only able to observe that
it takes a value in some possibly randomly determined set of values. CAR isolates those
situations in which the coarsening mechanism can be ignored when making inferences.

Our approach is to find the nonparametric maximum likelihood estimator (NPMLE)
of St based on reduced data produced by a discretization of X. In this way we ‘repair’
the usual NPMLE, which is inconsistent for estimating Sp. The proposed estimator is
found by noticing that our problem can be considered as a special case of nonparametric
estimation of a bivariate distribution from bivariate right-censored data. Indeed, the
coarsening mechanism acting on (X, A) amounts to right-censorship of A: observation of
Y is equivalent to observation of (X, A¢), where Ay = A A (2§ — 1). We are then able
to use van der Laan’s (1996b) efficient sieved-NPMLE of a bivariate distribution function
to estimate the distribution F of (X, A). This estimator reduces to a simple and explicit
form F,, in our case. Finally, using the fact that Sp is a simple functional ® of F', we
construct the proposed estimator Sy = O(F,).

Many authors have studied our problem under the stronger assumption that £ and
A are completely independent, i.e., that P(( = 1 | X, A) does not depend on (X, A).
The failure indicators are then said to be ‘missing completely at random’ (MCAR), cf.
Little and Rubin (1987). MCAR can be checked from observation of (X, A¢) given that
CAR is in effect, and it allows the use of relatively simple estimators. For example,
the survival distribution can be consistently estimated under MCAR by simply ignoring
the missing data (cases with & = 0) and applying the Kaplan—Meier estimator to the
complete data. However, this ‘complete case estimator’ is highly inefficient if there is a
significant degree of missingness. The first attempt to improve upon the complete case
estimator was made by Dinse (1982) who used the EM algorithm to obtain a NPMLE. Lo
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(1991) showed that there are infinitely many NPMLEs and some of them are inconsistent.
He constructed two alternative estimators, one of which is consistent and asymptotically
normal. Gijbels, Lin and Ying (1993) and McKeague and Subramanian (1996) have
proposed further improvements.

Knowing that the coarsening mechanism is MCAR can help in constructing locally
efficient estimators at this submodel. However, the function n(z) = P(( =1 | X = z),
which specifies the coarsening mechanism, factors out of the likelihood (i.e., the likelihood
factors into a part which only depends on the distribution functions of T' and C, and a
part which only depends on 7) and can be ignored as far as global efficiency is concerned.
A globally efficient estimator of F' or Sy therefore adapts to arbitrary CAR mechanisms
by (implicit) nonparametric estimation of 7, see (2). This puts us in the setting of an ‘ill-
posed inverse problem’ (cf. O’Sullivan, 1986) so that some kind of regularization procedure
(e.g., kernel smoothing, method of sieves, etc.) is needed; as in density estimation or
nonparametric regression, direct NPMLE is not successful.

Although the CAR assumption itself is fairly strong, it is the minimal condition on
the coarsening mechanism under which the survival distribution is identifiable from ob-
servations on (X,A¢). Indeed, the independence between the survival and censoring
mechanisms ensures that the distribution of 7' is identifiable (see (3) and (4)) from the
distribution of (X, A), which can be expressed as

P(é=1,X € dz,A =6) )
P=1|X €dr,A=5) )

F(dz,8) = P(X € do,A = §) =

5 € {0,1}. In general, the numerator in F is identifiable but the denominator is not
because A is unobserved unless ¢ = 1. The CAR assumption is precisely what is needed
to make the denominator identifiable, and implies that F' will be identifiable if 7(z) is
bounded away from zero.

The CAR assumption can of course be violated in practice, e.g., in the motorcycle
injury fatalities example, the relevant death certificate information is more likely to be
missing when death is due to motorcycle injuries than when it is due to other (less
specific) causes. However, CAR cannot be checked from data on (X, A¢) alone, cf. the
assumption of independence between 7" and C' in the classical right-censored data model.
To judge whether CAR is in effect it would be necessary to have data on the coarsening
mechanism itself, that is, data on (X, A) when £ = 0. In the motorcycle example, such
data is available through police accident reports (Lapidus et al., 1994), and the survival
distribution could be identified through estimation of F'. In the present paper we shall
restrict attention to the situation where only (X, A¢) is observed and CAR is in effect.

The paper is organized as follows. The proposed estimator Sr is constructed in Section
2, and shown to be asymptotically efficient in Section 3. An alternative approach to the
problem, based on some general results of Robins and Rotnitzky (1992), is discussed
in Section 4. Some numerical results assessing the performance of Sy are presented in
Section 5.



2 The proposed estimator

2.1 Special case of bivariate right-censored data

By the well-known product integral representation of the survival function S on which
the Kaplan-Meier estimator is based we have

Sr(t) = T 04(1 — Ar(dz)), (3)
where Flds,1)
Ar(dz) = ) (4)

Let D[0, 7] be the cadlag function space of real valued functions on [0, 7] endowed with
the supremum norm. The equations (3) and (4) define Sy as a mapping ® : (D[0,7])? —
DJ0, 7] from (F(z,1), F(x,0)) to St:

Sr(t) = (F)(t). (5)

Gill and Johansen (1990) (the product integral mapping) and Gill (1989) proved that &
is compactly differentiable in the sense required by the functional delta-method (see Gill,
1989). Hence if we construct an efficient estimator of the bivariate distribution F'(z, ),
then plugging this estimator in (5) provides us with an efficient estimator of Sy. Here
we use the result that a compactly differentiable functional of an efficient estimator is
efficient (van der Vaart, 1991).

Another well-known fact concerning the univariate right-censored data model is that
for any bivariate distribution F'(dz,§) there exist independent random variables 7" and C'
such that (X = TAC,A = (T < C)) ~ F (see e.g. Bickel, Klaassen, Ritov, Wellner,
1993). In other words, F' is completely unspecified. Hence the problem is to estimate F
nonparametrically using the i.i.d. data on (X, Ag).

If we define Cy =2if £ =1 and C; = —1if £ =0, then

(X, A, €) = (X,AANC, I(AACy = A)).

In other words, A is right-censored by the discrete random variable C';. This shows
that indeed estimating Sy comes down to estimating a bivariate distribution of (X, A),
A € {0, 1}, where X is always uncensored, but A is right-censored.

Estimation of a bivariate survival function based on bivariate right-censored data
is an extensively studied topic. The NPMLE for this problem is inconsistent due to
the fact that the lines induced by the singly-censored observations do not contain any
uncensored observations for continuous data. This lack of interaction with the uncensored
observations implies that the self-consistency equation (Efron, 1967) for the NPMLE has a
wide class of solutions. We refer to Pruitt (1991) and van der Laan (1996a,b) for discussion
on inconsistency of NPMLE in missing data models where the induced regions contain no
uncensored observations. The inconsistency of the NPMLE has led to many proposals of
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ad hoc estimators, but these are not useful to us since they invariably require independence
of X and € (i.e., MCAR would be needed). Here we do not give a description of the
literature, but refer to the later developments in Bickel, Klaassen, Ritov and Wellner
(1993) or van der Laan (1996a,b).

In van der Laan (1996b) an asymptotically efficient estimator of the bivariate survival
function is proposed which is an NPMLE based on reduced data in the sense that the
uncensored components of the singly censored observations are interval censored by a
given grid partition. It was shown that for a fixed grid (that does not depend on n) this
estimator is asymptotically efficient for the reduced data, and if the width of the grid
converges to zero slowly enough with n, then the estimator is efficient. Moreover, this
estimator is suited to our problem since is applicable under any CAR-bivariate-censoring
mechanism. It turns out that this (in general implicit) estimator simplifies to a very
simple form in our special case. Here we propose this estimator.

2.2 The reduced data NPMLE of F

Let 0 = ay < a3 < ... < a; = 7 be a partition of the interval [0, 7], and set ap41 = oo.
Define the discretized version Xy of X by:

— CL]' le € (ajyaj—l—l] and 5 = 0
Xd_{X if €= 1.

In other words, if A is observed, then X is unchanged, but if A is missing ({ = 1), then X
is interval censored in the sense that we only observe that X € (a;, a;41]. Our estimator
of F' will be the NPMLE based on the reduced data (X4, {A,§).

Let E(z) = (aj,a;+1], where a; is such that z € (a;,a;41]. Let R; = (a;,a;41] ¥
{0,1} be the regions for (X, A) implied by an observation (X; = a;, A = —1) with a
missing failure indicator. As in van der Laan (1996b) we restrict the NPMLE of F' to
be discrete with pointmasses at all complete observations (X;, A;) and on one (or more)
artificially chosen point in each R; that contains no complete observations. Of course, if
the partition does not depend on n, then as n — oo all R; contain complete observations
with probability tending to 1.

Let F,, be the NPMLE and denote its marginal distribution in X by Fx,. Also, let
ful(z,8) = F,,({z},d) be the density of F,, with respect to the counting measure on the
above mentioned support points. Since we are dealing with a censored data model, f,
satisfies the self-consistency equation

1 n
fu(z,6) = Ey, (— S I( Xy =z,A; =) ‘ reduced data)
iz
(see Gill, 1989, Example 2), which can be written (cf. (7.4) in Efron, 1967) as

f"(.??,CS) = %iI(Xf = ‘T)Ai = 57 é'i = ]-) + li](Xz S E(ﬂ?),& = 0) fn($,5)
=1
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The way to read a self-consistency equation is that each observation gets mass 1/n which
has to be redistributed over its induced region for (X, A) according to the estimate (based
on f, itself) of the conditional distribution over this region. So a point (z, §) gets mass 1/n
from each complete observation on (x,d) and it gets mass 1/n times f,(z,9)/Fxn(E(z))
from each incomplete observation with an implied region R; containing (z, ).

|en

Ag = .
A¢=0 3
Ag=—1 © © ©
a; aj+1

Figure 1: Pointmasses for the reduced data NPMLE of F.

At first sight it seems that (6) is not easily solvable. In this special case, however,
Fx.,(E(x)) is known so we can obtain an explicit solution; incomplete observations with
a different X; do not interact in the sense that their implied regions R; are disjoint.
Hence the mass given to a region R; is just 1/n times the number of observations with
X € (aj,a;;1]; other observations cannot give any mass to R;. Thus Fx ,(E(z)) equals
this fraction with R; = F(z) x {0,1}.

Denote the marginal distribution of X by Px. Let Py and P; be the sub-distributions
of (X,A) with £ = 0 and 1, respectively. The marginal sub-distributions of the X
components of Py and P; are written F x and P; x. A subscript n added to any of these
(sub)-distributions will indicate that we are referring to its empirical counterpart.

Note that Px,(FE(z)) is the fraction of X; € E(z), and Px,(E(z)) is the empirical
distribution of the discretized X. Thus we have Fx ,(E(z)) = Px.,(E(z)). Also, the first
term on the right-hand side of (6) is just P;,({z},d). For each (z,§) corresponding to a
complete observation (X; = z, A; = §) we can explicitly solve for f,(z,d), which provides

us with: Py n(E(2))
X.n x
fulw8) = 22T} ). ")
The mass f,(z,6) for the artificially chosen points in the R; that do not contain com-
plete observations is only determined by Fx ,.((a;,a;+1]) = Po.n((a;, aj11]); so incomplete
observations with X; = a; where I?; does not contain any complete observations can re-
distribute their mass in an arbitrary manner over 17;. The latter fact is exactly the reason
why the interval censoring of the observations with missing failure indicators is essential
for estimation of F'; regions implied by incomplete observations should contain complete
observations with probability tending to 1.
A simple example is helpful for understanding f,,. Figure 1 displays five observations
in an interval, three of which have missing failure indicators. The combined mass of these



three points (%) is redistributed to the two complete observations, each of which will have

a mass of = + - = 2. This agrees with the answer obtained from (7).

2.3 The estimator of the survival function of T

The estimator (7) provides us with an estimator of F'(dz,1) and of Sx(z—) = P(X > z).
Hence substitution of (7) into (5) provides us with our proposal for estimating Sp(t):

Sr(t) = T o <1 _ %) , (8)

where Sx,, is the survival function corresponding to Fx ,. Notice that if P(§ = 1) = 1,
then Sy is just the Kaplan-Meier estimator, as it should be.

3 Analysis of the estimator and its influence curve
We will first show that (7) indeed defines a sensible estimator. We need a slightly stronger

CAR assumption than the minimal-CAR assumption (1) in order that F be identifiable
from the discretized data; we assume

P(E=1]X,A)=P(=1]Xp), (9)
where Xp = a; if X € (a;,a;11]. Applying this condition to the denominator in (2) we
obtain Py (B()

F(dz,8) = =X by §), 10

(00,8 = 20,5 (10)

which shows that (7) will provide us with an consistent estimator of F.

Now regard (10) as defining a map ®; : (D[0,7])® — (D[0, 7])? from the distributions
(Pi(z,1), Pi(x,0), Py(z)), i.e. the distributions that determine the observation (Xg, A¢),
to the distributions (F(z,1), F(z,0)). Then

St = ®(P1(Pi(+, 1), Pi(+,0), Po)

and

SA’T = (I)((I)l(Pl,n('a l)apl,n('ao)apﬂ,n))-

The functional delta-method (Gill, 1989) tells us that for proving weak convergence of
V(Sy — Sr) as random elements of D[0,7] to a Gaussian process it suffices to prove
compact differentiability of ® and ®;. The compact differentiability of ® has already
been established [see Gill and Johansen (1990) and Gill (1989)], and the compact differ-
entiability of ®; only requires compact differentiability of the mapping (F,G) — [ FdG.
The latter has been proved in Gill (1989). The assumptions needed here are that the
denominators are bounded away from zero; for ® this means that Sx(7) > 0 and for @,
it means that Py x((a;,a;41]) > 0forall j =0,1,...,k.
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As shown in van der Laan (1996b, Theorem 5.1) the estimator F,, of F is efficient for
the reduced data. Hence the compact differentiability of ® and van der Vaart’s (1991)
result imply that St is efficient for the reduced data. This proves the following theorem.

Theorem 3.1 Let the partition 0 = ay < a1 < ...,ar = T be such that P(X €
(aj,a;41),6 = 1) > 0 for j = 0,1,...,k — 1 and P(X > 7) > 0. Also assume that
P =1|X,A) =P =1|Xp). Then /n(Sy — St) converges weakly as a sequence
of random elements of D[0,7] to a Gaussian process. Moreover, Sy (t) is asymptotically
efficient for the reduced data (Xg4,EA, ).

Here Xp and X4 can be chosen arbitrarily close to X. Of course, if £ depends on the full
X, then the estimator will still be efficient if the mesh of the partition converges to zero
at a rate which is not too slow and not too quick (cf. van der Laan, 1996b, Theorem 5.1),
but S would be inconsistent for a fixed partition. On the other hand, if £ depends on X
only through Xp (for some fixed partition), and the mesh of the partition converges to
zero slowly enough as n — oo, then gT(t) is asymptotically efficient for the original data
(cf. van der Laan, 1996b, Theorem 5.1). In particular, this holds if ¢ is independent of X.

3.1 The influence curve of the estimator

The compact differentiability of ® implies (see Gill, 1989) that ST(t) is asymptotically

linear:
1 T

Sr(t) = Sr(t) = - Y- 1CY) + op(1/ V),

where the i.i.d. random variables ICy(Y;) are just the derivative d® o d®(P) of ® o ®;
at P = (Pi(-, 1), Pi(-,0), Fy) applied to the empirical distribution of P based on one
observation Y; = (X;, & A, &), and evaluated at t. Here IC, is called the influence curve
of Sp(t). We have that \/n(Sy(t) — Sr(t)) is asymptotically normal with mean zero and
variance equal to the variance of ICy(Y). Hence an estimator of IC; will lead to an
estimate of the asymptotic variance of Sy (¢) and a (pointwise) confidence interval for
Sz(t) in the usual fashion.

Determining the influence curve comes down simply to finding the derivatives (linear
approximations) of ® and ®; by neglecting all second order terms and substituting the
linearization of ®; in the linearization of ®. Here it means that we need to find the
linearization of F,,(dz,1)— F(dz, 1) and the corresponding linearization of Sx ,,(z) —Sx(z)
and substitute these in the linearization of ST(t) — Sz(t), the product integral mapping,
in terms of F,(dz,1) — F(dz,1) and Sx ,(z) — Sx(z).

By using telescoping (see Gill, van der Laan, Wellner, 1995) it follows that:

o Bx(BE) oo Py (e a0
~ PLX(E(:C))(PL" Py)(dz,8) + (Pxn — Px)(E( ))PLX(E(:C))



Px(E(x))

_(Pl,X.,n - PlX)(E(x))W

Pl(d;v, 6)

This provides us with the linearization of F,(dx,d) — F(dz, ) in terms of the empirical
distribution of the data. We have

Py(B) |
Pi(E(z)) P =1|X € E(z))
Py(dz,6)  F(dz,9)
P(ER) ~ Fx(B@)

Px(B(@)) 05y _ 1 F(dz,d)

B(B@e 0 = BT E@) Fr(B()

For notational convenience we define 7p(z) = P(§ = 1| X € E(x)). Substitution of these
expressions in the linearization of F,(dz,d) — F(dz, ) provides us with:

Fuldz, 8) — F(dz,8) =~ @(R.n — P)(d,8) + (Pxp - Pﬂ(E(@)%
(P — Pux) (B(e)) —— 2 0) ()

mp(x) Fx(B(z))

The linearization of Fy ,(dz)— Fx (dz) is now simply obtained by adding the linearizations
of F,,(dz,1) — F(dz,1) and F,(dz,0) — F(dz,0). Hence

Sxa(@) = Sx(@) = [ #@)(PI,XW ~ Pux)(da)+ [ (Pxo - Px)(E(x))iFi ?(fSEd(Z)))
ST L Px(da)
[P = P (B) — s s (12)

Now, it remains to find the linearization of Sz — Sy in terms of the linearizations (11) and
(12). The linearization of the product integral Az — 7T (1 — dAr) = Sy is given in Gill
and Johansen (1990) and follows directly from the Duhamel equation. The linearization

of (F(dz,9),Sx(z)) = F(dz,1)/Sx(x) = Ar(dz) is trivial. We have:

Sr0) =520 ~ 500 [ Ty (e

SX ((L‘)
(Sxn — Sx)(2) .
e Ed ,1)) . (13)

Substitute now for Sx, —Sx and F,(dxz,1) — F(dz,1) in (13) the linearizations (11) and
(12) to obtain:

Se(t) = Se(t) 1 1 _ oy Fldr 1)
Rl A v ot <(PX”" POEE) 7 w5 ) (14
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n (Pr,,— P1)(dz,1)  (Prx.— PiLx)(E(z))F(dz, 1))

Tp(x) 7p(z) Fx (E(z))
1 1 ~
o ({2} Sxfep | ) (/ (s i = Prx)(ds)
~ (Pixo— Pux)(B(s))\ Fx(ds)
+[ ((Px,n — Px)(E(s)) — 7n(s) ) FX(E(S))) '

If we have only one observation (i.e. n = 1), then Py, (dz,6) = I(X € dz, A =6,{ = 1),
Px,.(E(z)) = (X € E(z)) and P, ,,(E(z)) = (X € E(z),{ = 1). Substitution of these
indicators into (15) provides us with the influence curve of Sp(t

):
Iey) . I(X<tA=16=1) (15)
5@ 0- A (Om(X)
o oy I(X € B@),e=1)\ _ Fds1)
| Ty (< Fe) ) s d@)
] 1 (X >a,6=1)
e AN S EE X)L l)

L (/:c (“X € Bls) - TSRS 1)> FZ};SE”Z)))) e

Estimation of IC requires estimation of Sy and F', and is simply carried out by plugging-
in our proposals, and an estimate of 7mp(z). If it is known that ¢ is independent of X,
then one simply estimates P({ = 1) by the fraction of uncensored (X;, A;). If dependence
between & and X is expected, then one estimates mp(z) by the fraction of completely

observed (X, A;) with X; € E(x).

3.2 The efficient influence curve

The influence curve (15) is the influence curve of Sy for a fixed grid. If we let the mesh of
the grid converge to zero slowly with n, then Sris efficient; so it is asymptotically linear
with influence curve equal to the efficient influence curve. Hence the efficient influence
curve must be the limit of (15) for max; | a; —a;_1 |— 0. If the mesh of the grid converges
to zero, then an integral with integrand I(X € E(z)) only integrates over an infinitesimal
interval (a;, a;41] and hence

o) Flde, 1) I(X <t)dF(,1)

+ [(X € B(z))F(de,1)  I(X <t).. -
/0 SO E@) S0 MR E®)) C Sx(0)  dfx )
where o) = dr(-,1), . P(Xedz,C>z) Ar(dz)
(z) = W(ﬂf) T P(TACedz) — Agp(de) + Ac(dz)
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Furthermore, we have that 7p(X) — m(X) and [I(X € E(z))Fx(dz)/Fx(E(z)) — 1.
Hence the efficient influence curve is given by:
1C;(Y) 1 B
Sy~ T (s
N I(X<t,A=1,¢6=1) +/'t 1 1 (X >e&=
(1= A{XH)Sx(X)m(X) ~ Jo 1-A({z}) Sx(=)?  7(X)

CIE=1\ X1 F(dal)
! <1 m(X) ) /0 1—A({z}) Sx(z)?" (16)

Estimation of the efficient influence curve requires nonparametric estimation of the density
k and hence requires smoothing, which explains why a standard NPMLE is not consistent
for this problem. Moreover, if £ depends fully on X, then it requires nonparametric
estimation of the binary regression function 7(X). Although we do not pursue it here,
the efficient influence curve can be used to construct one-step efficient estimators. If
the efficient influence curve is estimated consistently, then the one-step estimator will be
efficient (see van der Laan, 1996a, Corollary 2.2).

Gill, van der Laan and Robins (1997) have shown for general nonparametric models
under minimal-CAR that there exists only one influence curve; in our case the weakest
possible CAR assumption is (1), and (16) is the unique influence curve. Consequently,
any inefficient estimator cannot be asymptotically linear. This explains why inefficient
estimators can only be constructed under stronger assumptions than just minimal-CAR;
the missing failure indicator model is an interesting example (another one is the bivariate
censoring model) were many estimators have been proposed, all being inconsistent under

minimal CAR.

(X<t &= )) k(X)
m(X) Sx(X)

Y p(de,1)

4 An alternative approach

Results of Robins and Rotnitzky (1992) make it possible to construct an alternative
efficient estimator for Sy using the general theory of semiparametric efficiency bounds
[see, e.g., Newey (1991) and Bickel et al. (1993)].

Suppose we observe a random vector Y having distribution P € { P}, which is iden-
tified by an unknown (possibly infinite dimensional) parameter 6. Let L2(P) denote the
Hilbert space of P-square integrable functions with mean zero. Consider a smooth one-
dimensional (SOD) submodel {P*} C {Py} passing through P and having score function
k(Y) € Li(P) at e = 0, see Bickel et al.’s (1993) definition of a ‘regular parametric’ sub-
model. The tangent space T(P) is the L3(P)-closure of the linear span of all such score
functions k. For example, if nothing is known about P, then P¢(dy) = (1 + ek(y))P(dy)
is a SOD submodel for any bounded function & with mean zero (provided e is sufficiently
small), so T(P) is seen to be the whole of LZ(P) in this case.

Let u = p(0) = wu(Pp) be a real parameter that is pathwise differentiable at P: there
exists g € LZ(P) such that lim,_o (u(P?) — u(P)) /e = (g, k), for any SOD submodel {P¢}
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with score function k, where (-, -) is the inner product in L(P). The function g is called
a gradient (or influence curve) for y; the projection I C', of any gradient on the tangent
space is unique and is known as the canonical gradient (or efficient influence curve). The
supremum of the Cramér—Rao bounds for all SOD submodels (the information bound) is
given by the second moment of /C(Y").

In the present context, we observe Y = (X,£A,§) and the distribution P of Y is
identified by # = (F, ). Consider the parameter yp = p(F) = F(z,6) for given z and
5 € {0,1}. In the full model that only assumes a CAR missingness process, we have
T(P) = Li(P), see Gill, van der Laan and Robins (1997). Thus, any gradient for y is
necessarily its canonical gradient. The canonical gradient of p can be found as a gradient
in the submodel with 7 known minus its projection on the space of missingness scores (i.e.,
the tangent space for the submodel in which only 7 is unknown). Robins and Rotnitzky
(1992, Theorem 4.2) provide closed form expressions for the projection on a space of
missingness scores when the missingness process is monotone. In our case, however, the
missingness process is very simple (it acts on only one component of the complete data
vector), so it is easy to find the projection without reference to this general theorem, see
the Appendix.

The following proposition expresses the canonical gradient of p explicitly in terms of

the functions 7(z) and p(z) = P(A =4 |&=1,X =z).

Proposition 4.1 Suppose the CAR assumption (1) holds and w(X) is bounded away from
zero. Then the canonical gradient of p is

§
m(X)

[CHY) =

I3

10 < 0,8 =8) =l = (X < 20X) — ) (555~ 1)

This result can be used to obtain a closed form efficient estimator ji of p by solving the
estimating equation Y7 [C’;(Y,;) = 0, where /C}; is a plug-in estimate of /C’; in which 7
and p are replaced by suitable estimates T and p. The solution is

= n-lilﬂxo-lf(x < )& = 8) — [6 — ()P},

which is a special case of an estimator that has been studied by Robins and Ritov (1997,
Sections 7 and 8). Under our assumption that P({ = 1| X) = P({ =1 | Xp), a natural
estimator of m(z) = m(zp) is the empirical proportion of subjects with £ = 1 among the
subjects whose discretized value of X = zp. A kernel estimator can be used for p(z).

The above representation of the efficient influence curve for p implies that if one
estimates p inconsistently, then /i is still consistent and asymptotically linear. This build-
in protection against misspecification of p allows the construction of estimators of p that
are efficient at a chosen submodel for p and are always consistent and asymptotically
linear. Such estimators typically have a better finite sample performance at the chosen
submodel.
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The estimator & = fi(z, ) could be used in place of F,(z,6) in the product integral
formula (8) to provide an alternative efficient estimator of Sr(t) having the efficient influ-
ence curve given by (16). Another way of computing (16) would be to apply the results
of Robins and Rotnitzky (1992) directly to the known influence curve of Sy(t) in the case
of complete data (X, A). This would lead to yet another efficient estimator of Sz(t) in
terms of 7 and p, along the lines used to construct f.

The benefit of the Robins—Rotnitzky approach is that the computation of the efficient
influence curve is relatively simple, and leads directly to an efficient estimator via standard
estimating equation technology, without the need for the artificial reduced data model.
Our approach, on the other hand, provides an understanding of the role of nonparametric
maximum likelihood through the link to the bivariate censoring model. Moreover, the
reduced data NPMLE has the attractive property that it ‘solves’ the efficient estimating
equation at every m, and a consistent estimator of 7 is not required. Our reduced data
model plays a similar role to the data reduction inherent in the kernel estimator p used
in the Robins—Rotnitzky approach.

5 Numerical results

We now report the results of a small simulation study comparing the performance of the
proposed estimator with that of Lo’s (1991) estimator. The comparison is made in terms
of mean integrated squared error (MISE).

The survival time 7" and the censoring time C' are taken to be exponentially distributed
with parameters 1.4 and 0.6 for 30% censoring, and 0.6 and 1.4 for 70% censoring, respec-
tively. The sample size is set at n = 100. The coarsening mechanism is MCAR (required
for Lo’s estimator to be consistent), and the probability 7(z) = 7 that a failure indicator
is non-missing is taken as 0.1,0.2 or 0.3. The partition consists of k& points on a regular
grid, with £ = 10, 30 or 50.

Two artificial points are used in each region R; having no complete observations: (z;,0)
and (z;,1), where z; is the midpoint of the interval (a;, a;;1]. The mass redistributed to
these points is divided according to the proportions of censored and uncensored observa-
tions in the complete data, respectively.

The results are given in Table 1. The proposed estimator improves considerably upon
Lo’s estimator, the greatest gains being obtained when the proportion of missing failure
indicators is high (7 = 0.1). This was to be expected, of course, since the strength of our
approach comes from the way it handles the missing data. Note also that although the
performance of Sy is relatively insensitive to the choice of the partition when k& > 30, it is
significantly degraded under the coarsest grid (k = 10). The best performance is obtained
using the finest grid, irrespective of the degree of censorship.

The effect of the partition is also readily seen by comparing Figures 1-3, which give
plots of Sy based on simulated data, for different values of k. The closest fit to the
underlying survival function (exponential with parameter 1.4) clearly corresponds to the
finest partition. Figure 1 illustrates how the proposed estimator can adapt more efficiently
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to the missing data than Lo’s estimator; see especially the region between ¢ = 0.1 and
t = 0.5. Figures 2 and 3 show how St deteriorates as the partition becomes coarser.

Table 1. Mean integrated squared error of the proposed estimator Sz and of Lo’s esti-

mator under the MCAR model P((6 =1| X,A) = 7.

30% Censoring 70% Censoring
=01 7#=02 7=0.3 =01 7=02 w=0.3
Sy (k=50) 1.105 0.620 0.469 1.659 0.918 0.695
ST (k=30) 1.194 0.623 0.478 1.647 0.972 0.747
Sy (k=10) 1.215 0.705 0.515 2.007 1.200 0.866
Lo 1.932 0.916 0.621 2.482 1.253 0.849
Ratio 1.75 1.48 1.32 1.50 1.36 1.22

NOTE: The MISE is expressed in units of 0.01 and is calculated over the interval [0,1]. “Lo” refers to
the second estimator of Lo (1991). “Ratio” refers to the ratio of the MISE of Lo’s estimator to the MISE
of S’T (k = 50). Each MISE is based on 10,000 samples.

[Insert Figures 1-3 about here]

Figure 1. The estimator Sy compared with Lo’s estimator for simulated data. The data
were generated using the MCAR model in Table 1 with 30% censoring and m = 0.2. The
partition uses k = 100 equispaced points over the interval [0,2]. Sample size n = 100.
The data points with missing failure indicators are represented by X and the remaining
data points by +.

Figure 2. The estimator Sy based on k = 60 grid points over the interval [0,2]. See the
caption for Figure 1.

Figure 3. The estimator Sy based on k = 20 grid points over the interval [0,2]. Same
data as in Figure 1.

Appendix

Proof of Proposition 4.1. The main step of the proof is find the canonical gradient
of p in the submodel M(F') in which only F' is unknown (7 known). This submodel has
tangent space

T(F) = sp{E(h(X, A)|[Y): Eh(X, A) = 0}

formed as the closed linear span of the conditional expectations of all complete data scores
h(X,A) given the observed data Y. Also, the orthogonal complement of T(F') is given
by

T(m) = sp{o(Y): E(¢(Y)|X, A) = 0},
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which is the tangent space in the submodel in which only 7 is unknown (F known), see
Robins and Rotnitzky (1992) and Gill, van der Laan and Robins (1997).
Note that a gradient for g in the submodel M(F) is

IC

W(Y) = (I(X <z,A=06)—p).

(X)

To see this, consider a SOD submodel {P™} C M(F) with score function k(Y) =
E(h(X,A)|Y), where h is a bounded complete data score function and F.(du,d) =
(1 + eh(u,6))F(du, ). Then

lim (u(F,) — u(F) /e

e—~0

E(h(X,A)[(X < z,A = 0))
E(h(X,A)IC,(Y))
= <[Cl“ k>7

where the second equality above uses E(IC,(Y)|X,A) = [(X < z,A = 6) — p, which is
a consequence of the CAR assumption.

The canonical gradient of 4 in the submodel M(F) is the projection of IC,, on T(F'),
which can be expressed as IC,, —1I1,,,(IC},), where II,,, is the projection on the ‘nuisance’
tangent space T(r), the orthogonal complement of T(F). For any function ¥(Y) € LZ(P)
we have

(9) = E@Y)[§X)-E@Y)]X). (17)

Indeed, the right hand side is a function of Y with conditional mean zero, given the
complete data, so it belongs to T (7). Also, ¢ — I1,,,(¢) is orthogonal to T(r), which can
be seen by first taking the conditional expectation given (X, ¢) and then the conditional
expectation given X, establishing (17). The application of (17) to IC,, is straightforward,
resulting in the expression given by ICj.

The final step is to show that the canonical gradient of y in the submodel M (F) is
also a gradient for x in the full model. Let k € LZ(P) be bounded and consider the SOD
submodel P¢(dy) = P (dy) = (1+¢k(y))P(dy). The score k can be expressed uniquely
in the form k = ky + ko, where ky € T(F) and ky € T(n). Then {F.} defines a SOD
submodel for M(F') having score ky, because k; does not depend on {7} and ks does not
depend on {F.}. Thus, using the fact that p does not depend on 7, we have
lim (u(P) = p(P)) Je = Tim (u(Fe) — p(F)) [e = (1C, k) = (IC, k),

e—0

as required.
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