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 It has been over 60 years since Kolmogorov introduced a distribution-

 free omnibus test for the simple null hypothesis that a distribution
 function coincides with a given distribution function. Doob subsequently
 observed that Kolmogorov's approach could be simplified by transforming
 the empirical process to an empirical process based on uniform random
 variables. Recent use of more sophisticated transformations has led to the

 construction of asymptotically distribution-free omnibus tests when un-
 known parameters are present. The purpose of the present paper is to use
 the transformation approach to construct an asymptotically distribution-
 free omnibus test for independence of a survival time from a covariate.

 The test statistic is obtained from a certain test statistic process (indexed
 by time and covariate), which is shown to converge in distribution to a
 Brownian sheet. A simulation study is carried out to investigate the finite
 sample properties of the proposed test and an application to data from the
 British Medical Research Council's 4th myelomatosis trial is given.

 1. Introduction. A standard way of testing for independence of a sur-
 vival time from a covariate z is to fit Cox's (1972) model for the conditional

 hazard function, A(t I z) = Ao(t)exp( g0 z), and test whether the regression
 parameter I30 is zero. However, this test has limited power because of the
 restrictive (viz. parametric and multiplicative) modeling of the covariate
 effect.

 In this paper we develop an omnibus test that can detect arbitrary forms
 of dependence of a (possibly censored) survival time on a one-dimensional
 covariate, and which is asymptotically distribution-free. The latter property
 will be achieved via the transformation method of Doob (1949) and Khmal-
 adze (1981, 1993).

 We begin by giving some background to the general problem of construct-
 ing omnibus tests (i.e., tests consistent against all alternatives) which have
 the distribution-free property. First consider the simple hypothesis F = Fo,
 where Fo is specified and the lifetimes T1, .. ., Tn are completely observed iid
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 random variables having distribution function F. Let

 A 1 n
 F(t) -E I(Ti < t)

 ni=

 be the empirical distribution function of the Ti's and vn(t) = n (F(t) - FO(t))
 the empirical process. Assume that Fo is continuous. Doob (1949) trans-
 formed vn(t) to the uniform empirical process u n(x) = vn(Fo 1(x)), which is an
 empirical process based on the iid uniform random variables Fo(T), i =
 1,..., n. The distribution of un does not depend on Fo (and it converges
 weakly to a Brownian bridge), so the distribution of any test statistic that is a
 functional of un is free from Fo. In particular, the Kolmogorov-Smirnov
 statistic sup, I u(nx)I and the Cramer-von Mises statistic fu'(x) dx are distri-
 bution-free.

 Next consider the composite null hypothesis F = Fo(, 0), where 0 is an
 unknown parameter. The natural extension of the above transformation,
 ui(x) - v'(F 1(x, 0)), where i'(t) n H(At) - FO(t, 0)) is the parametric
 empirical process and 0 is an estimator of 0, is unfortunately no longer
 distribution-free or even asymptotically distribution-free [Durbin (1973)]. As
 a consequence, classical statistics such as sup Iun(x)I or fu( x) dx have limit
 distributions which depend on Fo. Thus, in order to generalize what the
 uniform empirical process does in the case of simple hypotheses, it is neces-
 sary to construct a more sophisticated transformation of i . Khmaladze
 (1981, 1993) introduced martingale methods to address this problem; see also
 Nikabadze (1987). The parametric empirical process vn converges weakly to
 some zero-mean Gaussian process v [Durbin (1973)], so Khmaladze first
 transformed the process v to an innovation martingale, which is a Gaussian
 process with independent increments and covariance function FO(s A t, 0)
 and which preserves the information in v. Then he transformed the innova-
 tion martingale to a standard Brownian motion w. Applying the transforma-
 tion v -* w to in results in a test process that converges weakly to Brownian
 motion. This leads to an asymptotically distribution-free omnibus test based
 on the supremum norm (say) of the test process. Note that there is some loss
 of information in reducing to a single test statistic, via supremum norm, but
 this does not affect the omnibus property. Also, the transformation approach
 is not designed to reveal the nature of a departure from the null hypothesis-a
 graphical inspection of the (untransformed) parametric empirical process
 might be useful for that.

 In survival analysis, one is rarely able to observe complete life histories.
 Important examples occur with right censoring and left truncation [Keiding
 and Gill (1990)]. These examples fit into the general setting of Aalen's (1978)
 multiplicative intensity model for counting processes. In that setting it is
 natural to formulate hypotheses in terms of the hazard function A(t) or the
 cumulative hazard function AW(t)= fJ A(s) ds, rather than the distribution
 function F. Andersen, Borgan, Gill and Keiding (1982,1993) studied tests of
 the simple hypothesis A = Ao in terms of functionals of Vn(A - AO), where A
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 is the Nelson-Aalen estimator. Hjort (1990) considered the composite hypoth-

 esis A = AO(*, 0), with statistics based on functionals of the process n (A(t)-
 AO(t, 0)), where 0 is the maximum likelihood estimator of 0. This process
 converges weakly to a zero-mean Gaussian process under the null hypothesis.
 An innovation martingale can be found for the limit process and used to
 construct an asymptotically distribution-free omnibus test; see Andersen,
 Borgan, Gill and Keiding [(1993), Section VI.3.3.4].

 In many applications of survival analysis it is important to consider
 whether a covariate has some effect upon survival, say through the condi-
 tional hazard function A(t I z) = A(t, z). That is, one would like to test the
 null hypothesis

 Ho: A( t, z) does not depend on the covariate z

 against the general alternative that A(t, z) depends on z. For simplicity, we
 shall restrict the domain of (t, z) to be the unit square. An omnibus test of Ho
 is feasible when the covariate is one dimensional, such as age at diagnosis,
 disease duration and so forth. Indeed, McKeague and Utikal [(1990), subse-
 quently MU] proposed such a test based on the process X(t, z) = VT( v),
 where v is an estimate of the doubly cumulative hazard function if(t, z) =
 fo loJA(s, x) dx ds and Vf(t, z) = zA(t) is the natural estimate of v under Ho.
 They showed that X converges weakly under Ho to a Gaussian random field
 of the form

 (1.1) m(t, z) =f | | dW - b(z) f lgdW,

 where W is a Brownian sheet, b(z) = z and h, g are certain nonrandom
 functions (see Section 3.1). The above stochastic integrals are defined in
 the L2-sense; see Wong and Zakai (1974). MU's test was based on the
 Kolmogorov-Smirnov statistic computed directly from X. However, while
 asymptotically omnibus, such a test is not asymptotically distribution-free
 and would require simulation of the process m to find critical values.

 We shall construct a transformation J that maps m to its innovation
 Brownian sheet. An estimated version J of J will be obtained by plugging an
 estimate of h into J (it turns out that J does not involve g). We then show
 that 7(X) converges weakly to a Brownian sheet. In this way we obtain an
 asymptotically distribution-free omnibus test for Ho, with the Kolmogorov
 -Smirnov statistic computed from J(X). No simulation technique is needed
 to find critical values. The test statistic converges weakly to suplW(t, z)I.
 Although an exact formula for the distribution function of suplW(t, z)I is not
 known [only approximations are available; see Adler (1991)], it is straightfor-
 ward to carry out a single Monte Carlo experiment to evaluate it quite
 accurately. Thus, our test avoids difficulties arising from simulating the null
 distribution for each particular problem.

 A competing procedure would be a bootstrap based test, provided it could
 be justified theoretically. However, although there is some bootstrap theory
 available in cases where censoring and covariates are present, none of it
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 applies to our specific problem. Another competing procedure would be an
 appropriately modified version of the Monte Carlo approach of Lin, Wei and
 Ying (1993), but we expect that our test would be computationally less
 demanding.

 The paper is organized as follows. In Section 2, we construct the transfor-
 mation J. In Section 3, we introduce the estimate J and define the test
 statistic. Results of a simulation study are reported in Section 4. In Section 5,
 the test is applied to a set of data from the British Medical Research
 Council's (1984) 4th myelomatosis trial. Properties of the test are proved in
 Section 6. Various lemmas needed through the paper are collected in the
 Appendix.

 2. Transformation of m to Brownian sheet. In this section we con-
 struct our transformation J of the Gaussian random field m in (1.1) to a
 Brownian sheet. Such a transformation is likely to have further applications
 in nonparametric statistics beyond our test for independence-in any setting
 where a test process converges weakly to a process of the form (1.1); for
 example, in testing whether A(t, z) is independent of t (the roles of t and z
 are reversed) or in testing. whether a pure jump process on a finite state space
 is a semi-Markov process; see MU (Section 4.2). Of course, it is usually
 necessary to estimate J and how that is done will depend on the particular
 application.

 We begin with a key proposition showing that the law of a Brownian sheet
 W is preserved under a shift by a certain functional of W.

 PROPOSITION 2.1. Let k E L2([0, 1]2) satisfy f,, k2(s, v) dv > 0 a.e. [ds] for
 u < 1, and let W be a Brownian sheet. Then

 (2.1) B(t, z) = W(t, z) - | t 1(s,x)k(s,u ) dW(s, x) du
 fu[jljk2(S vdv x)

 is a Brownian sheet on [0, 1]2.

 PROOF. Let

 k(s, x)k(s, u)I(x ? u)I(s ? t)

 a(t, u; s, x) = f, k2(s, v) dv
 Then

 B(t, z) = W(t, z) - f [1 la(t, u; s, x) dW(s, x)] du.

 Notice that B is a Gaussian random field, so we only need to inspect its
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 covariance function. For (t', z') E [0, 1]2,

 cov(B(t, z), B(t', z')) = (t A t')(z A z')

 fzjf[tf|Za(t', u'; s, x) ds dx] du'

 -fZ[f| f| a(t, u; s, x) dsdx] du

 +f |f[|1|1a(t,u;s,x)a(t',u';s,x)dsdx dudu'

 = (t A t')(z A z')

 +J|J| [ffla( t, u; s, x)a( t', u', s, x) ds dx

 -1a(t,u;s,u')I(s <t')ds

 -f1a(t',u';s,u)I(s < t) ds] du'du.

 Since

 Ja(t, u; s, x)a(t', u'; s, x) dx
 0~~~~~~~~~~~~~~~

 _k(s, u)I(s ? t)k(s, u')I(s ? t')fo k2(s, x)I(x 2 u v u') dx
 ful k2(s, v) dvfsu k2(s, v) dv

 k(s, u')k(s, u)I(u' > u)I(s ? t)I(s ? t')

 f,lk2(s, v) dv

 k(s, u')k(s, u)I(u ? u')I(s ? t)I(s ? t')
 + fjk2(s, v) dv

 = a(t, U; s, u')I(s < t') + a(t', u', s, u)I(s < t),
 for almost all (u, u', s) E [0, 1]3, we have that B is a Brownian sheet. El

 We now give the main result of this section, showing that the process m in
 (1.1) can be transformed to a Brownian sheet.

 THEOREM 2.1. Suppose that h: [0, 1]2 -- R is a bounded positive measur-
 able function which is bounded away from zero, b: [0, 1] -* DR is differentiable
 with square integrable derivative, fIz(b'(x))2 dx > 0, z E [0, 1) and g E
 L2([O, 1]2). Then

 B(t, z) = tfh-l/2 dm

 (2.2) 0 0
 - ftfl[ fAh-1/2(S U)Q(S, U, x) dx] dm(s, u)
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 is a Brownian sheet, where

 h-Qs(,sx u)b'(u)h-)I'(s, x) 2 (x)

 Q(s' ,u,x)- h1(s, v)(b'(v))2 dv

 PROOF. Notice that

 lUAZ Q(s, u, x)h-1/2(s, u)b'(u) dxdu = f h172(s, x)b'(x) dx.

 Let

 U(t) ftg dW.
 00

 Substituting m into (2.2) we get

 B(t, z) = W(t, z) - ft[f h/2(s, x)b'(x) dxjU(ds)

 -fo|f| [JUAQ(s, u, x) dx dW(s, u)

 +0 [fAQ(s, u, x) dxjh-'/2(s, u)b'(u) du U(ds)

 (2.3) = W(t, z) - 0 0g(s, y)[ h -/2(s, x)b'(x) dx] dW(s, y)

 f[ftflo Q(s, y, x) dW(s, y) dx

 +0 [gt (s, y) u Q(s, u. x)h-'/2(s, u)b'(u) dxduj

 x dW(s, y)

 = W(t, z) - f [t f Q(s, y, x) dW(s, y) dx.

 This is a Brownian sheet by Proposition 2.1 with k(s, x) = h-1/2(s, x)b'(x).
 E

 We shall use the notation J for the transformation f ? J( Q), where 6 is a
 random field and J( ) is defined by the right side of (2.2) with m replaced by
 (. The domain of J is composed of random fields f for which the stochastic

 integrals in J( 6) exist in the L2-sense. Theorem 2.1 shows that J(m) is a
 Brownian sheet.

 Notice that J does not involve the function g; phenomena like this are
 typical of the innovation approach; compare goodness-of-fit testing for para-
 metric hazard function models [Andersen, Borgan, Gill and Keiding (1993),
 formulae (6.3.16) and (6.3.27)].
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 3. The test procedure. In this section we first describe the counting
 process framework for our problem and formally define v and X. Then we
 show that the transformation J given above asymptotically transforms X =
 Fn - ) to a Brownian sheet. This is done via the continuous mapping
 theorem. Finally, we construct an estimate J of J and show that J(X)
 converges weakly to a Brownian sheet. This will complete the construction of
 our test.

 3.1. The estimators dand X. Let N(t) = (Nl(t),... , Nn(t)), t e [0,1], be a
 multivariate counting process with respect to a right-continuous filtration

 (g), that is, N is adapted to the filtration and has components Ni which are
 right-continuous step functions, zero at time zero, with jumps of size + 1 such

 that no two components jump simultaneously. Assume that Ni has intensity

 Ai (t) = Yi (t),k(t ,Zi (t)) ,

 where Yi is a predictable {O, 1}-valued process, indicating that the ith individ-
 ual is at risk when Yi(t) = 1, and Zi is a predictable [0, 1]-valued covariate
 process. The function A(t, z) represents the failure rate for an individual at
 time t with covariate Zi(t) = z. We assume throughout that (Ni, Yi, Zi),
 i = 1, .. ., n, are iid replicates of an underlying triple (N, Y, Z). Let F(s, x) =
 P(ZS < x, Y, = 1), and assume that for each s E [0, 1], F(s, * ) is absolutely
 continuous on [0, 1] with subdensity f(s, * ). The functions b, h, g in (1.1) are

 given by b(z) = z, h = A/f and g = VA f . The transformation J will only be
 used with these b and h from now on. We assume that f and A are Lipschitz,
 of bounded variation and bounded away from zero.

 Consider dn equal width covariate strata .r = [ xri, xr), r = 1,..., dn,
 where xr = rwn and wn = 1/dn is the stratum width, and let z = for
 z = J. As in MU, we estimate V by integrating the "covariate stratum-
 specific" Nelson-Aalen estimator to obtain

 A z t N(n)(ds, x)
 (3.1) V(t, z) = lo N(ds, x) d

 where N(n)(tZ) = X 1fI(Zi(s) E Jz) dNi(s) is the number of z-specific
 failures observed up to time t and y(n)(t, z) = En 1 I(Zi(t) egz)Yi(t) is the
 size of the z-specific risk set at time t. The estimator s' does not involve
 stratification of the covariate and can be obtained by setting wn = 1 in X. In
 (3.1) and throughout the paper, we use the convention 1/0 0.

 3.2. A continuous version of J. We now introduce a version J of J that is
 defined on a suitably large function space and is continuous on a subspace
 supporting m, so the continuous mapping theorem is applicable.

 Let D2 = D2([0, 1]2) be the extension of the usual Skorohod space to
 functions on [0, 1]2; see Neuhaus (1971). Let BV2 denote the subspace of
 functions ( E D2 for which (, ((O, * ), 6(-, 0) have bounded variation and let
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 C2 denote the space of continuous functions on [0, 112. Equip C2 with the
 uniform norm.

 For 5 E C2 u BV2 and (t, z) E [0,1] x [0, p], with 0 <p < 1, define

 (3.2) J( )(t, z) = f zfi(s, x) d((s, x) - 0 0 f(S, u, z) d6(s, u),

 where the integrals are considered to be weak net integrals [Hildebrandt
 (1963), Section III.8] for which integration by parts works as expected and

 f1(S, x) h- 1/2(s, X),

 f2(s, u, z) = h-'(s, U)ZAu h (s, x) d
 0fx, h-1(s, v)dvd

 The upper bound p on the domain of z is used to keep the denominator in f2
 bounded away from zero. Note that J is a well-defined map from C2 U BV2

 into D2([0, 1] x [0, pI) since Lemma 1 in the Appendix shows that h inherits
 the properties of f, A, and Lemma 2 in the Appendix ensures the existence of
 the weak net integrals when f E C2. We have included BV2 in the domain of
 J because the paths of X belong to BV2, but not to C2.

 THEOREM 3.1. Suppose that w, -- 0, nw2 -> 0 and nw,+8 - oo for some
 0 < 8 < 1. Then, under HO, J(X) converges weakly to a Brownian sheet in
 D2([0, 1] X [0, p]).

 PROOF. Properties of fl, f2 obtained via Lemmas 1 and 2 in the Appendix
 can be used to show that J is continuous as a map from C2 into D2([0, 11 x
 [0, pI). In particular, we use the property that f2(Q, *, z) has bounded varia-
 tion uniformly in z, 0 < z < p. MU (Theorem 4.1) gives that X converges
 weakly in D2 to m, where m is defined by (1.1) with b(z) = z. Thus, since the
 sample paths of m belong to C2 a.s., the continuous mapping theorem

 [Billingsley (1968)] gives J(X) J-* J(m) in D2([0, 1] x [0, p]). The processes
 J(m) and J(m) have continuous sample paths and, by Lemma 3, they agree
 a.s. at each fixed (t, z), so they are indistinguishable. Theorem 2.1 [with
 b(z) = z] implies that J(m), and hence J(m), is a Brownian sheet. O

 3.3. Estimating the transformation. In order to use the above result to
 build a test statistic, we need to estimate the unknown function in J, namely
 h. First consider the kernel estimator h suggested by MU:

 where) bK is a b w p K is dH(s, x),

 where bn is a bandwidth parameter, K is a Lipschitz nonnegative kernel
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 function with compact support and integral 1, and

 A Iz t Nwn(ds, x)
 H(t, z) = nw N(n)(dS,X)2 dx o 0 (Y(')(s, x))

 is an estimator of H(t, Z) = ftfoJ h(s, x) ds dx. Here h is a smoothed version A~~~~~~~~~~
 of H.

 We will need to apply methods from stochastic calculus to various martin-
 gale integrals involving h, which is possible provided that h(i, z) is an

 $t"-predictable process for each fixed z. Since h(, z) is continuous, it is enough
 that it be adapted to the filtration t. Thus, we shall use a kernel function K
 having nonnegative (as well as compact) support.

 The estimated transformation J is defined by inserting a truncated ver-
 sion h of h in place of h in J, where h is given by

 h(t, z) = (cj A h(t, z)) V Ca

 Cn > 0. The truncation is needed to prevent instability in J. Note that J(X)
 is well defined since the paths of X belong to BV2.

 3.4. The test statistic. If we show that J(X) converges weakly to a

 Brownian sheet, then our test for Ho can be based on the Kolmogorov-
 Smirnov statistic

 S= sup J S/ J
 O<t<1 ,0<z<p

 with P-values calculated from the distribution of

 S* = Supo<t<io0<z<p IW(t, z)I.

 For that purpose we restrict the choice of w, bn, cn as follows: wn n-a,
 ba - cn n', where the following condition holds.

 CONDITION 3.1.

 2 < a <1,

 0 <1,l3 <min{la, (1 - a)),
 0 < y< min{132,2a - 613,1 - a - 2/3).

 This condition is satisfied, for example, by a = 5/9, 13 = 1/6, y = 1/46. The
 following result implies that S converges weakly to S*. The distribution of S*
 can be found quite accurately by simulation. Bounds on the tail of the
 distribution of S* are given in Adler (1991).

 THEOREM 3.2. Under H0, J(X) converges weakly to a Brownian sheet in
 D2([0, 1] x [0, p]).

 The restriction to [0, p] is used to avoid instability in the estimate of the
 denominator in f2. The test statistic S will only be affected by the choice of p
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 when IJ(X)I attains its supremum in the small strip [0, 1] x (p, 1], and that
 is unlikely for p close to 1. In applications it is worthwhile to plot the
 transformed process over the whole of [0, 1]2, as we have done in Figure 2.

 Our final result shows that the test based on S is omnibus-consistent

 against any departure from the null hypothesis Ho,

 THEOREM 3.3. The test based on S is consistent against the general alter-
 native that A(t, z) depends on z, for (t, z) in the domain [0, 1] x [0, p].

 4. A simulation study. We carried out a simulation study to assess the
 performance of the proposed test. We considered the Kolmogorov-Smirnov
 statistic S with the supremum taken over [0, 1] x [0, 0.9], that is, p = 0.9.
 The covariate was taken to be uniformly distributed over [0, 1]. The censoring
 was simple right censoring, independent of the failure time, and exponen-
 tially distributed, with the parameter adjusted to give a prescribed propor-
 tion (moderate: 27%; heavy: 60%) of censored observations (including those
 lost to followup at time 1). The covariate strata were arranged to contain
 equal numbers of observations. For sample sizes 500 and 1000, the number of

 strata dn was taken to be 10 and 14, resulting in about 50 and 71 covariate
 values per stratum. The corresponding bandwidths bn were taken as 0.32 and
 0.18, and the kernel function K was taken to be the indicator of [0, 1].

 The survival times were generated using the Cox model A(t, z) = exp( go z),
 for go = 0 (null hypothesis) and Igo = 1, 2 (alternative hypotheses), and using
 the non-Cox model A(t, z) = 7.5 min(z, 1 - z). Table 1 gives observed levels
 and powers of the test at a nominal (asymptotic) level 5%, with each entry
 based on 1000 samples. The corresponding values for the Cox model based
 (Wald type) test of go = 0 are given in parentheses. In order to obtain the
 asymptotic 5% critical level for our test (i.e., the 95th percentile of

 supo < t 0< oz < 0.9 W(t, z)I), we generated 10,000 replicates of the Brownian

 TABLE 1

 Observed levels and powers of the proposed test. Corresponding values for the Cox model based
 test are given in parentheses. Nominal level is 5%

 Sample Censoring
 X(t, z) Size 27% 60%

 1 500 0.044 (0.060) 0.034 (0.044)
 1000 0.052 (0.056) 0.039 (0.051)

 ez 500 0.207 (1.00) 0.090 (0.983)

 1000 0.471 (1.00) 0.228 (1.00)
 e2z 500 0.455 (1.00) 0.212 (1.00)

 1000 0.819 (1.00) 0.484 (1.00)
 7.5 min(z, 1 - z) 500 0.393 (0.056) 0.187 (0.031)

 1000 0.997 (0.060) 0.794 (0.043)
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 sheet evaluated on a grid defined by 300 equally spaced points on each axis.
 The 5% critical level was found to be 2.2811.

 The observed levels of our test are close to their nominal 5% values at

 sample sizes 500 and 1000 when censoring is moderate. The test appears to
 be slightly conservative under heavy censoring. In general we recommend
 that our test only be used for sample size at least 500, and at least 1000
 under heavy censoring. Under the Cox model our test is naturally much less

 powerful (with 82% power for go = 2, n = 1000 and moderate censoring)
 than the Cox model based test (with almost 100% power, even for go = 1,
 n = 500 and heavy censoring). However, our test has adequate power away
 from the Cox model, as an omnibus test should, whereas the Cox model based
 test can have very poor power; see the last two rows of Table 1.

 Some quantile-quantile plots of the observed distribution of S against the
 distribution of S* are shown in Figure 1. Each plot refers to a combination of
 model and censoring level, and contains curves for sample sizes 500 and
 1000. Under A(t, z) = 1, the curves are close to the diagonal. This indicates
 that the observed distribution of S is close to its asymptotic null distribution.
 Under the alternatives e2Z and 7.5 min(z, 1 - z), when the sample size is
 1000, the curves lie well above the diagonal, giving some idea of the power of
 the proposed test.

 5. Application to myelomatosis data. We applied our test to a set of
 data from the British Medical Research Council's (BMRC) (1984) 4th myelo-
 matosis trial. The data set contains records for 495 patients, including
 censoring indicator, serum /2 microglobulin (at presentation) and survival
 time (in days).

 Many studies [e.g., Cuzick, Cooper and MacLennan (1985)] have suggested
 that serum P2 microglobulin has a strong effect on survival, at least in the
 first two years of followup. In our analysis of the data we ignore all covariates
 except for serum f2 microglobulin (which is taken on a log scale). We
 standardized this covariate by its sample mean and sample standard devia-
 tion, then transformed it by the standard normal distribution function. The
 resulting covariate values were then more or less uniformly distributed over
 [0, 1]. (As a general rule we recommend transforming the covariate to uni-
 form, as it helps stabilize the various estimators at points where the covari-
 ate data are sparse. Also, our simulation study provides strong support for
 the accuracy of our test when the covariates are uniform.) The end of followup
 is taken to be 2000 days, before which 3% of the observations are censored;
 81 patients were still at risk at the end of followup. Each covariate stratum
 was arranged to contain 50 covariate values except for the last stratum.

 We have plotted the test process J(X) over the whole unit square (see
 Figure 2); for comparison the untransformed process X is plotted under-
 neath. The magnitude of the negative part of J(X) suggests strong departure
 from a Brownian sheet. The statistic S was found to be 2.41, giving a P-value
 of 0.033. Thus our analysis confirms that serum I2 microglobulin has a
 significant influence on survival.
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 FIG. 1. Q-Q plots of the observed distribution of S against the distribution of S* at sample sizes
 500 (thick lines) and 1000 (thin lines).
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 FIG. 2. The test process J(X) for the BMRC data (first row) and the corresponding untrans-

 formed process X (second row). Positive parts are on the left; negative parts are on the right.

 Note that the test process achieved its supremum well away from the edge
 z = 1, so in this case S does not vary with p when p is close to 1 (although
 our results require p < 1). Nevertheless, the transformation J seems to have
 its greatest effect around z = 1 since the bump in the positive part of X is
 missing from J(X).

 6. Proofs. In this section we prove Theorems 3.2 and 3.3. We begin by

 introducing some notation. Let Mi denote the i.t-martingale Mi(t) = Ni(t) -
 f10 Ai(s) ds and set

 n

 M(n)(t, z) = E tI(Zi(s) E.z) dMi(s),

 n

 A(n)(t, Z) = EI(Zi(s) E>z)Yj(t)A(t, Zj(t)).
 i=l1

 For a process 6(t, z), set er(t) = 6(t, xr), where xr = rwn, r = 1,.n. .,d.
 We shall have frequent use for the following bounds from MU (Lemma 1):

 (6.1) supE[ y(n(s )] <x for any positive integer k,

 (6.2) supP(Y(n)(s, x) = 0) < exp( -Cnwn) for some C > 0.
 s, x
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 PROOF OF THEOREM 3.2. By Theorem 3.1, it is sufficient to show that
 under H0,

 A)( -J(X) __ *p 0,

 where H I/is the supremum norm on D2([0, 1] x [0, p]). This will be done in
 the following two steps:

 (6.3) f f1dX -4p 0,

 (6.4) ff1f2(s9 u,) dX(s, u) -|| O,

 where ti = f - fi and fi is obtained by inserting' h in place of h in f1,
 i = 1,2.

 Step 1. By the decomposition of X given in MU (proof of Theorem 4.1),

 [t(Zf dX = ; f|f| (s x) y(n)(dS) dx
 0 0 YM(n)(s,)

 V7nTfft(s x) dM (s) d
 (6.5) 0 0 Y( )(s)

 + f |f X) ( yA(n)(S X) - A( s, x) dx ds 00 ( x)ny(n)(S X)/

 ?Viftt fi(s, x)s)I(Y(n)(s) = 0) dxds,

 where M(n), y(n) are defined by setting z = [0, 1] in M(), y(n), respectively.
 We denote the four terms in the above decomposition by Il, I2, I3 and I4,
 respectively. Since K is continuous and has nonnegative support, we have

 h(, x), and therefore fi(, x), is 4,-predictable. Thus the stochastic integrals
 involved in I, and I2 are square integrable martingales. Now I,ll is bounded
 by

 (6.6) supq(t) + Fsup z tA M )(ds) dx

 where

 r7(t) = sup | E (t,r) and ((t,r) = 1n t ff dx y(n)(S)
 1?j?dn r=1 rfJ ,Y()s

 Since 71(t) is a positive submartingale, Doob's inequality gives E supt q2(t) <
 4E-q2(1). Also, since E4(1, r) = 0, and E(1, j)6(1, k) = 0 for all 1 < j f k <
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 d we can apply Menchoffs inequality [see, e.g., Shorack and Wellner (1986)]
 here to get

 E 2 l(log 4d \2n 2 ( \ 2 nA(,n)(s)

 Er21 ? log2 Jn)E EJ [(i f1 ( s, x ) dx ) (y ( n)( ))] ds

 < O(logd)2 E f E[f fi(s x ) dx ( ) j ds

 (6.7) <O?(log d2) f iE(j| f2(s, x ) dx) ds]

 < O(log dn)2dn/3[ E JIE(wi/2f | (s x)| dx) dsj

 O(og d )2[11EIf13 d d 12/3

 The second term in (6.6) is bounded by

 r;sp t pItM( )(ds) dx

 which has second moment bounded by

 nwsP | Md<sup ]f fi(n)() d f Esud(np d dx

 (6.8) ? (1)JoILIE[fi y(^)(8 x) j]sd

 ? 0(1) [d f EEI f 13 ds dx]d

 where Doob's inequality, H6lder's inequality and (6.1) are used. Therefore,

 (6.9) E1 2E1E2?2O(log dn)2[f1f|Ef1i3 dsdx] d
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 From (6.9) with wn = 1,

 (6.10) EIJI2112 = O(14) |fElfiI3 dsdxj

 Next,

 EIJI1132 < supE vn( A(n)( ) A(s, x) Efi
 (6.11) 3 t, z L y(n)( S, X)[fE 2dsx

 = o(M)flflElfil2 dsdx,

 by Lemma 6. Using (6.1) once more,

 (6.12) Ell 4112 = o(1) 1 lEI f 12 ds dx.

 It can be checked that

 Ifil < O(Cn)Ih - hII(c - ? c) + /2)I(h < c-1 or >n

 uniformly in t, z. Thus,

 ElfI3 ? O(cn)E h i3 + O(c/2 )P(h < cj 1 or h > c

 so, from Lemmas 4 and 5,

 (6.13) ffEfl fl3ds dx = O(1)c4bn + wbn9 + (nWn b2)3/2]

 Combining the bounds (6.9)-(6.13), we find that the second moment of the lhs
 of (6.3) is of order O(lXlog d )2C2[ b2/3 + w 2 bn6 + (nw b2)-1'], which tends
 to zero by Condition 3.1. This establishes (6.3).

 Step 2. We now prove (6.4). Let

 h1-(s u)h-1/2(S, X) h-1(s, u)h-/2(S, X)
 (6.14) 8(s,u,x) = Jfl h-(s,v)dv fx h (s,v)dv
 By the arguments of Step 1, the second moment of the lhs of (6.4) is bounded
 by

 2

 fE sup f | f(s, u, x) dX(s, u) dx
 0 t O

 < [ El (s, u, x) 13 ds du] dx

 < [JPJ1J1El 8(s, u, x) 13 ds du dx]

 -O(1)c5[b2/3 + w2b-6 + (nw b)2 -1 0,

 where the bound on the triple integral is from Lemma 7. C
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 PROOF OF THEOREM 3.3. Define

 '9*(t, z) = zftflA(s, x)f(s, x) dxds,

 to which j'(t, z) converges in probability under the general alternative. From
 the definition of J in (3.2), it is easily checked that

 dt2J(_ = h-/2(t Z)A(t Jz) fzl h1(t, u)A(t, u) du 1
 dtdz - 12(,Z[t )- flh-1 (t, v) dv P

 Suppose that J(CV - X*) = 0. Then the expression inside the square brackets
 above vanishes, so that

 A(t, z)lh-l(t, v) dv = f1h-'(t, u)A(t, u) du.

 Taking partial derivatives wrt z both sides gives that dA(t, z)/dz = 0 for

 (t, z) E [0, 1] x [0, p], so that Ho holds, contrary to the premise of the
 theorem. Thus, J(CV - X,*) : 0. From arguments in the proof of Theorem 3.2,
 it can be seen that II(J - J)W v-.V*)Il p 0. Hence,

 (6.15) IJV -.V*)I jIIJ(v-W*) 1I > ?
 Along the lines of the proof of Theorem 3.2, it can be shown that n(N(V -
 V*)) converges weakly in D2([O, 11 x [0, p]), although not necessarily to a
 Brownian sheet; compare the proof of Proposition 4.3 of MU. Similarly, using

 MU (Proposition 3.2), it can be shown that A(n(V - V)) converges in the
 same sense. The triangle inequality gives

 IIei(v-*)II ?I(/(s-w))I + S +I (VV*))I = S + Op(1),
 the equality holding by the continuous mapping theorem, so that S -,p so by
 (6.15). Thus the test is consistent. Z:

 APPENDIX

 The following lemma is routine.

 LEMMA 1. Let h, hl, h2 be functions on [O, 1]2 that have bounded variation
 and are Lipschitz, with h nonnegative and bounded away from zero. Then
 l/h, '/7 and h1h2 have bounded variation and are Lipschitz.

 The next two lemmas collect some properties of weak net integrals in the
 plane. The first is a version of the integration by parts formula. Let 4: -IT-- R,
 where 9-= [ a, a'] x [ b, b'].
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 LEMMA 2. If (: 5--* R; is continuous and 4, 4(a,) and 0(, b) have
 bounded variation, then the weak net integral ff, 4 d4 exists and is equal to

 ffd(4(s, x)(Os, x)) + ff (s, x) d4(s, x)

 _ 6(s, b') d4(s, b')
 (A.1) a

 +f 6(s, b) do(s, b) - fb((a', x) d<p(a', x)

 +| b((a, x) do(a, x).

 PROOF. Theorem III.9.3 of Hildebrandt (1963) gives that the weak net
 integral

 (A.2) ff( (s, x) - ((s, b) - ((a, x) + ((a, b)) dk(s, x)

 exists, and coincides with the weak net integral

 (A.3) ||(O(s, x) - 0(s, b') - 0(a', x) + 4)(a', b')) d((s, x),

 which exists by Theorem III.8.8 of Hildebrandt. Theorem III.5.8 of Hilde-
 brandt shows that 4(., x) and 4(s, ) are of bounded variation for fixed s, x.
 (A.1) can then be obtained by rearranging the terms in (A.2) and (A.3). El

 LEMMA 3. Let 6 be a stochastic process on S' If the weak integral Jf1 4 d (
 exists a.s., and the stochastic integral ffl 4 df, exists in the L2-sense, then they
 coincide a.s.

 PROOF. The result follows immediately from the definitions of the stochas-
 tic integral and the weak net integral, and the fact that an L2-limit agrees
 almost surely with an a.s. limit. El

 The next lemma is a refined version of Proposition 3.3 of MU, giving a rate
 of convergence of h to h.

 LEMMA 4.

 f1fEE|h(t, z) - h(t, z) dtdz = O(1)[bn + wb -9 + (nwnbn)3/2].

 PROOF. We shall use much of the notation of MU (proof of Proposition
 3.3), without redefining it here. As in MU,

 Ih - hi3 ? O(1)[Ih - hi3 + Ih - ho13
 (A.4) h 3 +3 + 3
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 For the first term,

 sup h(t, z) -h(t, z)
 t, z

 (A.5) < suP[A K(t i) b K(b ) -Xr fK( )d X ]

 = O(w3bj 9)H3(11 1).

 Also,

 [1. '~~~~~~~~~3
 13( ~~~~~~~~11N(n)(ds, x)

 EH (1,S1) = 2EnWn | , 2 dx

 -3

 (A 6) [ ~~~~~~1 1 n) (Si X) 1

 3 iM(n)(ds, x) 3
 + 8(nwn)3E | dx

 00(y(n)(SI,X))2

 The first term in (A.6) can be shown to be bounded using (6.1). The expecta-
 tion in the second term in (A.6) is bounded by

 1 1 M(n)(ds, x)3 (A.7) JE I 2 dx <? (EM4(1))3 dX,

 where

 MAO M(n:dS X)2
 0(y(n)(S, X))

 and we have suppressed the dependence of M1(t) on x. Let [M1] and KM1) be
 the quadratic variation and the predictable quadratic variation of martingale
 M1, respectively. We shall use the Burkholder-Davis-Gundy inequality
 [Dellacherie and Meyer (1982), page 287]

 (A.8) E sup M4(v) < CE[M1],.
 v E [0, t]

 Since the square integrable martingale M1 is of integrable variation, it has
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 no continuous part. Hence [M1]t = t <t(AM1(v))2. The process

 t M( )(ds, x)

 00) = [Milt - (Ml) 1O (y(n)(s, x))4

 is a martingale, so E[M?]2 < 2EKM1)2 + 2Ef2(1) = 2E(M1J2 + 2E(<)1.
 However, by (6.1)

 E<M~ =2 E[f k (n)(:S X) ds] ?( 1 )

 E(M)1 =Ef1 A x) ds 0
 0 (Y(n)(S, X)) w

 It then follows from (A.7) and (A.8) that the second term in (A.6) is of order

 ( 1 )6(3/4)

 0(nWn) 30t- 0O

 so EjH3(1, 1) < oo, and from (A.5),

 (A.9) E sup |h(t, z)-h(t )1 O(w3b-9
 t, z

 Since SUPt, z > b Ih(t, z) - h?(t, z)l = 0(bn), by the Lipschitz condition on h,

 (A.10) | 'I |h(t, z)- ho(t, Z) 1 dtdz= 0(bn).

 For the third term in (A.4),

 suplh0(t, z) - ht(t, z)I
 t, z

 tsup KJ1 (df1K( h(s,x)dx

 f r

 dn K )h(sXr)l ds dn r=1 bn ~ J

 (h.(bnb 1) + 0(wx) b )h(s,x)-
 bn su KP ?rE h(s x tb ) -K K r |h(s, Xr) dx] (n
 <bn O(S b-, Z b(n) bn(nb-

 dn
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 For the fourth term in (A.4),

 supEWh(t, z) -h*(t, z) 13
 t, z

 =supE b-d F' K br t,z bndn r=l bn

 x | K ( b ) ( h(s, Xr) nWn (y(n)(S )2) ds

 < ( sb u ) 5:pl| L#K3/2 ( r)]

 XE[rn i )) ds ]

 ?0 ?( b )3(bndn)2s1fE[rl f |K( b s)
 dn t - S k(n) ( s~~~~A(~( s

 x nWn - 2) ds

 ?0(~l3(rdn) 2~ t, n r11K3(tsn)
 r)n (ns) 3

 XEh( dn)lWnt ds

 < b2d ) (bndn) supE h(s, Xr) K Wn s) 2

 Using the Lipschitz property of A and (6.1), the supremum term above is
 bounded by

 0(w,n) + 0(1) supEn t - f(s Xr) n+ 0(1) supP(Yr( )(s) = 0)

 s,r s,~~xh(, r)nn rs d

 ? 0(w,?) + 0(1)[0(_)] + 0(exp(-Cnwn)) = O-

 where we have used the Lipschitz property of f and the fact that Y(n)(s) is a
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 binomial r.v. with mean of order O(nwn) to bound its fourth central moment.
 Therefore,

 supElht(t, z) - h*(t, z)13 - b3 1 nw
 (A.12) t,z n W

 1 3/2

 =Onw bn2

 Finally, for the fifth term in (A.4),

 (A.13) supEIR(t,z)3<spE4tz] .
 t, z t, z

 Let

 dn__ __ _ _ _n ~ d )(S)

 R(t,z,') = b2dc2 E K( b )J ( J( nYf)(s))2

 Then R(t, z, ) is a martingale. Using the same arguments that were applied
 to M1,

 ER4(t,z) < E sup R4(t,z,u) < CE[R(t,z,)]2
 (A.14) O<u<1

 < O(l)(EKR(t, Z, *))2 +E(2(1))

 where ((u) = [R(t, z, u - (R(t, z, )\, is a martingale. Since no two of the
 counting processes N(n), r = 1, 2, .. ., d jump simultaneously,

 [R(t,z, )]u= E (AR(t,z,v))
 v < u

 n_ 2 Xr 2 " r) v

 usr!z r=1 bndn ) (bn ) bn )(yr( n)(V))4
 = (fb2dn2 (dN(Xn'C2(t b\)V'f)(S)

 It follows that

 (A_ 2 d 2 (Z Xr\ru 2(t-S dM(n)(S)
 (A. 15) u) d 2 E K b K b (~~~y(n)( S))4
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 The last two terms in (A.14) can be bounded above as follows:

 supE(R(t,z, )sp E = (bj)suP E K2( Xr)
 t, z bndnjt, zLri= b n

 x K2( ) r () ds]2

 (A.16) (bnwdn t,z r,1=K ( ZX ) (bnl)
 xflflK (bK2(b) ds dv

 lo lo (bn ( bn )

 <( b 2d2 (nw) 6 b2(b d )2

 0 (1)(n 2b4)

 supEe2(1) - supE( )
 t, z t, z

 = b2d24) t,zdKb K dS)

 (A.17) o(b2d2) SUP K( X)f ( b (y( s)(S)) s n n , r 1n

 FrOm (A.13)-(A.17), We get

 t, z

 Finally combining the bounds for the five terms in (A.4), we have

 f1EIh(t Z) - h(t z)13 dtdz

 o~~~ n

 = (|nn9+ bn + wn3bn6 + (wb)3 + (b)32

 0O(l)[b +6w,buj+(fwnb))3/2I.
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 LEMMA 5.

 f'f'P(h(t, z) <nc- or h(t, z) > c,) dtdz

 O(1)bn + w3b-9 + (nWn bn) /]

 PROOF. Let 0 < c < C < co be lower and upper bounds for h,

 P(h(t, z) < c,1 or h(t, z) > cn)

 - P(h(t, z) ?n ') + P(h(t, z) ? Cn)

 < P(h(t, z) - h(t, z) < - c) + P(h(t, z) - h(t, z) ? c,n - C)

 =P(h(t, z)_-h(t, z) 2 c- cn 1) + P(h(t, z) -h(t, z) 2 Cn -C)
 Elh(t, z) - h(t, z)13 EIh(t, z) -h(t, Z)13

 (ccj3 + (-C3 _ ~~n (C
 so the result follows by Lemma 4. a

 LEMMA 6.

 supEn |L Yn)(t, z) A(t,z) 2

 PROOF. The expression on the lhs above is bounded by

 supE[V4O(wn)I(Y(n)(t, z) = 0) + O(Vn)I(Y(n)(t, z) =
 t, z

 < ( nw + O(n) SUpP(Y()(t, z) = 0)
 t, z

 < O(n (12/2 ) + O(nexp(-Cn a)) 0,

 where the last inequality comes from (6.2). a

 LEMMA 7. For 8(s, u, x) defined by (6.14),

 ff|f El8(s, u, x)13 dsdudx = n(1)c75[bn + w3b-9 + (nb Wnb n)3/ I.
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 PROOF.

 1$(s, u, x)I = O(c) (h-'(s, u)-h -(s, u))h-l/2(s, x) h-(s, u) dv

 +h(it1f2( s x) - h-'2(S, x))h-1(s, u)f h-1(s, v) dv

 +h-112(s, x)h-1(s, u)f (h-1(s, v) - h-'(s, v)) dv

 = O(Cn) [C/2I h(- `(s u)-h - (s, u)

 +Ih1-/2(S, X) - h1/2(s X)I

 +f th-1(s, v) - h-1(s, v)l dvj

 = 0(Cn) [C2 h(s, u) - h(s, u)

 nc5h21(A(s, u) <cr1 or h(s, u) > Cn)

 +cnfh(s, x) -h(s, x)d

 +cnfI(h(s, x) < cK1 or h(s, x) > cn)

 +cnJ h(s v)f-Eh(s, v) - dv

 _ A A

 where we have used the fact that h = h when cr -<h <c, hs

 El6S ,X) 13 < O(C3)[c9/2E|( A )h( 3)

 +c41P(h(s, u) < c1 or h(s, v) > cn)

 +cnE| h(s, x) -h(s, x) I

 nC1E h(s, v) -h(s,v|d

 C31 Ph(s, v) < cn 1 or h(s, v) n). dv]

 Now apply Lemmas 4 and 5 to complete the proof. 0
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