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 SUMMARY

 Aalen's additive risk model allows the influence of each covariate to vary separately
 over time. Although allowing greater flexibility of temporal structure than a Cox model,
 Aalen's model is more limited in the number of covariates it can handle. We introduce a
 partly parametric version of Aalen's model in which the influence of only a few covariates
 varies nonparametrically over time, and that of the remaining covariates is constant.
 Efficient procedures for fitting this new model are developed and studied. The approach
 is applied to data from the Medical Research Council's myelomatosis trials.

 Some key words: Aalen's linear hazards model; Counting process; Efficient estimation; Right-censored data;
 Semiparametric; Survival analysis.

 1. INTRODUCTION

 The additive hazards model of Aalen (1980) has received relatively little attention.

 Judged in terms of achieving a reasonable fit to data, this model should perform well since
 it is the first step of a Taylor series expansion of a general hazard function about the zero
 of the covariate vector. However, in estimating the unknown functions in such a general
 model there is a variance-bias trade-off that may be critical in small and medium samples.
 Also, after fitting the model one does not have parameters or formulae that are easily
 reported. We propose a model that takes the additive structure of Aalen's model and

 imposes parametric constraints to obtain a semiparametric submodel, which may be more

 appropriate in some applications.
 The model will be illustrated with data from clinical trials on myelomatosis. Covariates

 include treatment, sex and four age strata, which will be treated parametrically, together

 with serum levels of haemoglobin and f32-microglobulin, whose effects will be investigated
 nonparametrically. The additive form can be interpreted loosely in terms of unobserved

 competing risks since the hazard function for the minimum of independent random vari-
 ables is the sum of the hazard functions for the individual variables. Microglobulin levels
 are related to kidney function and tumour mass, whereas haemoglobin is unaffected by
 kidney function. Hence one might anticipate that the hazard function associated with each
 covariate represents a different cause of death.

 We model the hazard at time t by

 A(tIx, z) = 6(t)'x + /'z, (1.1)

 where x and z are q and p dimensional covariates respectively, and oc(.) and B are unknown.
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 The influence of the covariates in x can vary with time, but that of z is restricted to be

 constant. By defining a new time dependent covariate, z*(t) = z exp (- t) say, nonconstant
 time effects could be included. The first component of x may be set to 1 to allow for a

 general baseline hazard. We are interested in estimating fi, the vector of 'cumulative
 hazards'

 A(.)= j'c(s)ds,

 and the conditional survival function for given values of the covariates.

 Recent work on estimation in Aalen's (1980) model A(t I x) = o(t)'x has been carried out
 by Huffer & McKeague (1991) and McKeague (1988a, b). Greenwood & Wefelmeyer
 (1990, 1991) and Sasieni (1992) have shown that the Huffer-McKeague estimator is
 asymptotically efficient and that it is an approximate maximum likelihood type estimator.
 The 'full Aalen' model has had only limited use in data analysis, primarily in data sets

 with just a few covariates. Examples are given by Aalen (1989, 1993), Mau (1986, 1988)
 and Henderson & Milner (1991). Lin & Ying (1994), among others, have considered an
 additive analogue of Cox's (1972) proportional hazards model:

 )(tjz) = ?co(t) + ,B'z, (1.2)

 which is considerably less versatile than (1F1).
 In ? 2 we derive estimators for ,B and A and discuss their practical implementation.

 Section 3 considers model selection and gives an influence function diagnostic residual.
 The application to finding prognostic factors for survival among myelomatosis patients
 is discussed in ? 4. Some general discussion, comparing the new approach with the standard

 Cox model approach, is provided in ? 5. FORTRAN computer code can be obtained from
 the authors.

 2. SEMIPARAMETRIC ESTIMATORS

 2 1. General

 If ft were known one could use Aalen's least squares estimator for A(.). Similarly, if o(.)
 were known one could estimate ,B by maximum likelihood. Intuitively, iterating between
 estimation of f and oc should work. Here we use the score equation for ft to derive a set
 of pseudo-normal equations. There are similarities with the approach used by Sasieni
 (1992) to motivate estimators for the full Aalen model. The first step is to derive ordinary

 least squares estimators. If ease of calculation is important, these are the most appropriate
 estimators. They are unbiased, consistent and asymptotically normal. Efficient estimators
 can be obtained via weighted least squares, which requires smoothing of a preliminary
 estimate of A to obtain the weights.

 2 2. Ordinary least squares estimators

 Denote by (xi, zi, Ti, bi) the observed covariates xi and zi, possibly censored failure time
 Ti, and censoring indicator bi, for the ith of n individuals, from independent and identically
 distributed copies of a generic (x, z, T, 6); bi = 1 if Ti is uncensored. Recall that a density
 f is related to its hazard A by
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 Thus, in the usual survival set-up with noninformative and conditionally independent

 censoring, the log-likelihood for A is

 E bi log MiTi)- X [Tj>,t]Aj(t) dt} (2 1)

 where the range of integration extends over the follow-up period and Ai (t) = A(tI xi, zi)
 (Kalbfleisch & Prentice, 1980, eqn (5 2)). Assume that A(. I x, z) is bounded away from zero.

 Differentiate (2 1) with respect to ,B to obtain the parametric score function:

 {( i[Ti Ai(t) dt}
 MT) Ai~)(t) at

 =z , i j T)- J 1[Tiat] il. /3 dt - J [Ti>,t] tA(t) (t) dtj

 Setting l1 =0 yields

 fl = ( f Z'WZ dt>(f Z'WddN Z'WX dA) (22)

 where Z = Z(t) = (z1 1[Tjkt], *... , zn i[Tn-t]), X is defined like Z, the n x n matrix W is given
 by W(t) = diag {1/i(t)}, N(t) = (Nl(t), . . . , Nn(t))' and Ni(t) = I[Ti t,j=1] is the process
 that counts an uncensored failure of individual i.

 Next consider a submodel, oc(t) = oc(t; ,j) = oco(t) + ijb(t), in which ij is a one-dimensional
 parameter and b is a given q-vector of functions. Differentiating (2 1) with respect to ,j
 gives

 l,= lab= J'b'X'WdN- f b'X'WZJ dt - { b'X'WX dA.

 We are not only interested in the particular submodel, but in all such models. More
 rigorously, consider a family of regular parametric submodels whose closure is the semipar-
 ametric model. Since the parametric models are special cases of (141), an estimator for the
 general model should work on all submodels. Setting iab = 0 for all vector valued functions
 b implies that

 t

 A(t)= (X'WX)<(X'WdN -X'WZ/3ds). (2-3)
 so

 Substituting the right-hand side of (2 3) into (2 2) and solving for ,B gives

 : = (TZ'HZ dt>' Z'H dN, (2 4)

 where H = W - WX(X'WX)1X' W. But / is not an estimator since it depends on the
 unknown A. However, replacing W in H by the identity matrix I yields an estimator /3 of
 /3 which is analogous to Aalen's (1980) least squares estimator. It is exactly unbiased,

 In-consistent and asymptotically normal. Replacing /3 in (2'3) by /3 and using I in place
 of W gives an unbiased, In-consistent and asymptotically Gaussian estimator of A. To
 calculate the estimators, assume that X and Z are constant between failure times, so that
 integration can be replaced by summation, and replace the terms 'ds' by T(i)-7 - 1), where
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 the T(i) are the ordered failure times. Integration with respect to the counting process is
 by definition simply summation.

 2 3. Weighted least squares estimators

 We now construct efficient estimators for ,B and A. In parametric models with a param-
 eter of interest 0 and a nuisance parameter f, the efficient score for 0 is

 1* = io- E[io)i'] {E[i4,i]} -'1,,

 which is a function of 0 and f in general. If 0 and f are consistent estimators of 0 and f
 satisfying l0 (6, 0) =0, then 0 is asymptotically efficient. The same ideas carry over to
 semiparametric models. In our model, ,B solves 1p = 0, where 1p is an approximate efficient
 score for ,B, as shown in Appendix 2. An estimator based on (2 4), but with a consistent
 estimate of A replacing the unknown function, turns out to be efficient for the semipara-
 metric model (Bickel et al., 1993, ? 3.4).

 We propose two methods of constructing efficient estimators by replacing W by W=

 diag {1/1(.)}, where Ai is some estimate of Ai. The second is more appropriate when the
 dimension of , is large.

 Method 1

 (i) Fit the Aalen model, A(t I x, z) = oc(t)'x + /3(t)'z, and obtain W, from a predictable
 kernel smoother, following Huffer & McKeague (1991).

 (ii) Find an estimate ,B of /3 by (2A4), using W in place of W.
 (iii) Estimate A from (2 3) using W'- and /3 in place of W and /3.

 Method 2

 (i) Obtain initial estimates of /3 and A by ordinary least squares, as in ? 2 2.
 (ii) Use a predictable kernel smoother to estimate a.

 (iii) Obtain W using the estimates /of , and a from (i) and (ii).
 (iv) Obtain final estimates A and ,B using (2 3) and (2A4) with W in place of W.

 A

 We have used Method 2 with a Ai explicitly defined in ? 26. Notice that Z and X are
 functions of t and the same estimating equations (23) and (24) could be used with
 predictable time-dependent covariates.

 The gain in efficiency using W'- compared to I will depend on the heterogeneity of the
 hazards in the sample. If all individuals are at equal risk, so that none of the covariates
 are related to survival, there is no efficiency gain. In general, however, there will be a
 small gain. Huffer & McKeague (1991) investigated by simulation the asymptotic relative
 efficiency of the ordinary least squares estimator in the Aalen model and found it to be

 between 72% and 98% depending on the distribution of the covariates and the magnitude
 of the risk associated with them. The situation is more complicated here because /3 depends
 on the weights for all individuals at risk at each failure time. For a given data set, the
 efficiency gain can be examined by comparing the estimated asymptotic covariance
 matrices, or by a bootstrap simulation.

 2A4. Estimating the asymptotic covariance matrix

 The asymptotic distribution of / and A is the same for Methods 1 and 2. Counting
 process techniques (Appendix 1) can be used to show that n2(/3- /) converges in distri-
 bution to a p-variate normal with mean zero and with covariance matrix which can be
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 consistently estimated by z -1, where z = n- f Z'HZ dt. Here H is obtained by replacing
 W by a consistent estimate iW in H. Further, n?(A - A) converges in distribution to a
 q-variate Gaussian process with mean zero and covariance function which, as a function
 of s and t, can be consistently estimated by

 n ZU SA. A'UA + f(s) f(t), (25)

 where Au is the jump in A at time u and 0(t) = fO (X'WX)-'X'Z ds. The first term in
 (2 5) is a consistent estimate of the covariance function for the model having only nonpara-
 metric terms; the second represents the contribution from the parametric part.

 2 5. Grouped data version

 One may wish to fit a grouped data version of (1-1) in the exploratory stage of model
 building. For most purposes grouping the time axis into ten intervals would be adequate
 and greatly reduce computation. The grouped model may be written

 K

 A(t IX, Z) = E 2j) xl"j(t) + #'Z,
 j=1

 where the intervals are Jj = [T-c, j), for j = 1, . .. , K, and z- = 0. One approach treats
 this as a parametric linear model with Kq + p parameters, but it makes sense to take into

 account the orthogonality of the dummy covariate blocks xl_,fj(t) for j = 1, . .. , K. Let
 k(u) denote the index such that u E fk(u) Using the same argument as was used to derive
 (2 2) and (2 3), one has

 k(u) -1

 A(u) = E X(j)(-j-1) + ak(U)(U-{k(u)-1})9
 j=l

 cX(j) ' X'WXdt) { (X'WdN-X'WZf3du).

 Thus, instead of having to solve a system of q linear equations at each failure time, one
 only has to solve such a system for each of the K intervals.

 2 6. The choice of weights

 For the asymptotic theory Ai need only be consistent, but in practice the choice of Ai
 requires some care. It is a good idea to compare the weighted with the unweighted esti-
 mates of , and A, since both are consistent at the model, and disagreement may indicate
 that the model or the weights are inappropriate.

 We calculated Ai as follows. Let T(i) denote the ith ordered failure time, and set T(o)=
 0. Given the initial estimate A of A, estimate oc(t) for t > T(d) by

 A(T(i)) - A(T(i_d))

 T(i) -T(i -d)

 when T(i) < t < T(i+1). Taking d between n2 and 4n+ works well for n between 100 and
 1000. Notice that Ai(t) = 6c(t)'xi + f3'zi estimates Ai(t), but it may be nonpositive and it is
 undefined for t < T(d. Instead, we use

 A { 8 |max {18(t), ii(t)} for t > T(d), AP t) for 1
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 where A(t) is the average of i( VT(d + 1)) over all individuals i at risk at time t -. We
 recommend taking ? between 0 15 and 0 35. In our examples, d = 50 and e = 0 25. Strictly

 speaking, Ai departs from Methods 1 and 2 for t < Td), but this will have negligible effect
 provided that d is small compared to the total number of observed failures. Many vari-
 ations on this recipe for Ai are possible. For instance, the 'bandwidth' for estimating a
 could be taken to be a fixed length of time or a fixed number of uncensored failures.

 3. MODEL REFINEMENT AND DIAGNOSTICS

 When should a covariate be treated nonparametrically? There may be strong scientific
 reasons to do so with some covariates, but initially it is advisable to treat at most a few
 that way. Yet a factor may not be significant when modelled parametrically even though
 it has a strong effect on survival, e.g. a drug that is strongly toxic, but which helps those
 patients who survive the initial period of toxicity. It is generally sensible to include a
 nonparametric baseline. By centring the covariates, the baseline can have a meaningful
 interpretation as the hazard for an 'average' individual. To examine whether the influence
 of the parametric covariates varies with time, treat each nonparametrically and look at

 the plot of Aj(t) along with the corresponding straight line estimate tf3j. These plots
 together with pointwise confidence intervals will give some indication of the validity of
 the parametric assumptions and how they are violated when they fail. This approach is
 illustrated in ? 4.

 Other approaches are possible. One might fit a separate Aalen model for each covariate,
 to get an initial idea of the variation of the hazard with time, before attempting multivariate
 modelling. Alternatively, after selecting a partly parametric model, one might check to see
 if any of the variables not included make a significant nonparametric contribution.

 Influence residuals approximate the change in estimates when an observation is
 removed. For fixed W, ,B as defined in (2 3) is an explicit functional of the empirical
 distribution. Differentiating this functional and evaluating the derivative at the empirical
 distribution gives the empirical influence curve (Cook & Weisberg, 1982, pp. 104-8).
 Straightforward differentiation and a little algebra yields

 A= (fZ'HZ dt) f {z- Z'WX(X'WX) xix}Wii dJ$Im

 as the influence of the ith individual on f,. Here

 Mi(t) = Ni(t) - 1[Ti.s](xidA + /'zi ds)
 0

 is the ith martingale residual. The effect of estimating W on the influence curve for ft is
 asymptotically negligible whenever the assumed model holds. That is, if the influence curve
 is evaluated at a probability measure for a partly additive Aalen model (1 1) then the
 above expression for the @fhi's will be correct to first order. Henderson & Oman (1993)
 study influence curves for the full Aalen model.

 The basic diagnostic building block is the counting process martingale residual Mi(.);
 see Barlow & Prentice (1988), Therneau, Grambsch & Fleming (1990) and compare with
 Aalen (1993). A plot of j iMi(t) against t can be used to check for lack of fit due to
 components not being allowed to vary freely in time, as in (1 2). To investigate the role
 of individual covariates, partition the time axis into about ten intervals [j-c -1' z) and plot

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 17:24:02 UTC
All use subject to https://about.jstor.org/terms



 Partly parametric additive risk model 507

 the increments MA7i(rj) - MA?I(rj -1) against covariates for individuals at risk at Tpj. Such
 'partial residual plots' may detect the need to transform a covariate. To check whether

 the additive risk associated with a given covariate varies in time, compare the plots for

 that covariate, after rescaling each by Tj- Tj-1.

 4. EXAMPLE

 Here the partly parametric additive risk model is applied to data from the Medical
 Research Council's (1984) fourth and fifth myelomatosis trials. We begin by analyzing
 data from the fourth trial using just two covariates, one of which is treated nonpara-

 metrically. The full Aalen model could be applied with just two covariates, but our model

 fits the data adequately. For the fifth trial we used seven covariates, only one of which
 entered nonparametrically. The full Aalen model would be less suitable in that case.

 From the fourth trial we analyzed survival data on 495 myelomatosis patients for whom
 presentation measurements included serum fl2-microglobulin (s-f32m) in mg/l and serum
 haemoglobin (Hb) in g/l. Percentiles of these measurements are given in Table 1. In fitting
 the regression models, s-fl2m was transformed by log10 (.), to compensate for its skewness,
 and then centred by 0 6. Haemoglobin was centred by 100.

 Table 1. Percentiles of serum /32-microglobin (s-fl2m)
 and haemoglobin (Hb)

 Covariate min 10 25 50 75 90 max

 s-fl2m 03 23 33 57 9 22 767
 Hb 25 71 90 106 122 136 167

 Several studies have indicated that s-fl2m is of primary importance in predicting survival
 in myelomatosis patients. However, Cuzick et al. (1990) suggest that its value is confined

 to the first two years of follow-up. This claim was based on an analysis using separate
 proportional hazards models for different follow-up intervals. Such an approach has lim-

 ited ability to model covariate effects that vary in their influence over time. It is more
 appropriate to use a partly parametric additive risk model when searching for such
 variations.

 We initially treated both covariates parametrically and the baseline nonparametrically,
 as in (1 2). The Wald statistics were 2 25 for s-fl2m and - 3 24 for haemoglobin, strongly
 suggesting that both covariates are influential. Next we treated haemoglobin para-

 metrically, and the baseline hazard and s-fl2m nonparametrically. This was our final model.
 Figure 1 shows plots of the cumulative risks for the two nonparametric terms; Fig. l(b)
 also contains the straight line estimate of the cumulative risk for s-fl2m based on model
 (1-2). Note that in the first three years the straight line falls outside the 95% pointwise
 confidence limits, strongly suggesting that the influence of s-fl2m varies with time. The
 plateau in cumulative risk after two years in Fig. l(b) is consistent with the claim of
 Cuzick et al. (1990) that s-f32m is of primary importance in predicting survival only within
 the first two years of follow-up. Haemoglobin treated parametrically has significant influ-
 ence: Wald = - 313. Figure 2 shows that its influence does not vary appreciably since the
 straight line estimate of cumulative risk is almost completely within the 95% pointwise
 confidence limits around the Aalen model estimate.

 The confidence intervals inevitably become wider with time. Consider survival beyond
 2 years, that is A(t) -A(2) for t > 2. The intervals would then have zero width at 2 years
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 (a) Baseline (b) s-fl2m

 .10 048

 _ _ _ _ _ _0_6_ 0 0 _ _e_l_ _ _ _ _ _ _ _ _ _ _ _

 0 1 2 3 4 5 0 1 2 3 4 5

 Time (years) Time (years)

 Fig. 1. Estimate of (a) the baseline cumulative risk and (b) the cumulative risk for sfi2m, both shown by
 solid lines, with corresponding 95% pointwise confidence limits (dotted lines) based on the final model. The
 straight line estimate in (b) is obtained from the model in which Hb and s-f2m are treated parametrically,

 and the baseline treated nonparametrically.

 0.0

 ,4 -0-005-

 0-0015

 0 1 2 3 4 5

 Time (years)

 Fig. 2. Estimate of the cumulative risk for Hb (solid line)
 with corresponding 95% pointwise confidence limits
 (dotted lines) based on the 'full' Aalen model. The straight
 line estimate is obtained from the model with Hb treated
 parametrically, and s-fl2m and the baseline treated non-

 parametrically.

 and would be narrower at 5 years. There would be a second set of bands, identical to the
 ones in Fig. 1 (b), for 0 to 2 years. The two sets of intervals should be made wider to allow
 for the implicit multiple testing that is taking place:

 (i) A(t) = tb for O < t < 2,
 (ii) A(t)-A(2) = (t-2)b for 2 < t < 6.
 To predict survival from our model, one can use the estimate

 S(tIx, z) = exp {- (x' dA + z' ds)}

 of pr (T> t I x, z) at given values of the covariates. Figure 3 shows the average predicted
 survival probabilities for groups defined in terms of the lower/upper quartiles of the
 covariates. Patients with low haemoglobin and high s-fl2m are at the highest risk.

 Each curve in Fig. 3 is an average of estimated survival functions. They could be made
 monotone by isotonically regressing S(t I x, z) against t. We have not done that here, to
 show that the lack of monotonicity is oniy very slight. Indeed, an estimated survival curve
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 High Hb, low s-f32m

 o . .' -

 Do 0 6 | ;"- '* ,,high s-fl2M ,
 0-6-~~~~~~~~~~~~~I

 0O4-

 Low Hb, high s- f2m - -- . -

 I.. II-- - I I

 0 1 2 3 4 5

 Time (years)

 Fig. 3. Average predicted survival probabilities for four risk groups.

 with significantly increasing sections would indicate a lack of fit, since on the model the
 estimate is consistent for the true survival function.

 In Fig. 4 we plot the local Kaplan-Meier estimate for the high haemoglobin and low

 s-fl2m group (Hb > 122, s-fl2m < 3 3) and compare it with the average survival probabilit-
 ies predicted by the different models as a rough check of goodness of fit. From this and
 similar plots for other groups, it appears that our model offers a better fit than either the

 Cox or the Lin-Ying model (1-2).
 The estimated relative efficiencies of the weighted least squares estimators compared to

 the ordinary least squares estimators were 114% and 120% for the baseline and s-/J2m
 cumulative hazard functions at four years, and 112% for the parameter corresponding to

 haemoglobin.

 We also analyzed data on 559 patients from the fifth trial with five additional covariates:
 indicators for treatment, sex and four age strata. These were included parametrically. The
 treatment, a trial drug regimen, was compared to conventional chemotherapy. The baseline

 and s-fl2m were handled nonparametrically. Haemoglobin was tried parametrically, but
 was not significant and was dropped. The shape of the s-fJ2m cumulative hazard curve,
 in Fig. 5(a), is similar to that in the fourth trial, in Fig. 1(b): a plateau after about 2 5 years.

 The curve is plotted only up to 3 5 years due to shorter follow-up in the fifth trial. From
 Fig. 5(b) the treatment effect appears to be constant, so it is handled parametrically.

 The Wald statistic for the treatment effect was -2 99, suggesting that patients on the

 drug regimen had significantly better survival (MacLennan et al., 1992). The predicted
 effect of treatment is to increase to probability of survival at two years by approxi-
 mately 30%.

 Our model gives a new interpretation to the data in keeping with scientific knowledge
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 10 - McKeague-Sasieni

 0-8-

 Local Kaplan-Meier

 Lin-Ying - ........

 04_

 02-

 0 1 2 3 4 5

 Time (years)

 Fig. 4. Local Kaplan-Meier estimate of survival probability for the high Hb/low s-f2m risk
 group, compared with various model-based estimates averaged over this group.

 (a) s-132m (b) Treatment

 -. 0 6"

 00 10 2-0 30 00 10 20 30

 Time (years) Time (years)

 Fig. 5. Fifth myelomatosis trial based estimates of the cumulative risk (a) for s-32m, and (b) for the treatment
 effect. Compare Fig. 5(a) with Fig. l(a).

 of the course of disease. Although it is a model of convenience, and not based on some
 prior scientific theory, it yields insights that might have been missed by conventional

 analysis. A simple proportional hazards model does not adequately fit the data. A reason-
 able fit can be obtained by using a separate proportional hazards models for each year
 of survival (Cuzick et al., 1990), but such an approach is rather arbitrary and does not
 make efficient use of the data.

 5. DiSCUSSION

 The standard method for regression analysis of survival data is the proportional hazards
 model with exponential link (Cox, 1972). Comparisons with the present model are in order.
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 Consider first a single binary covariate representing two samples. The nonparametric
 additive model permits nonparametric estimation of the survival function in each sample
 separately. The Cox model permits a single nonparametric hazard function and assumes

 that the hazard in one sample is at all times a constant multiple of the hazard in the
 other. An additive model with a nonparametric baseline and parametric covariate effect

 is similar to the Cox model, except that the difference between the two hazard functions,
 rather than their ratio, is constant over time (Table 2).

 Table 2. Model assumptions for the
 two-sample problem

 Aalen: l1, A unspecified
 Cox: 2(t) = 021(t), Al unspecified
 New: 22(t) = A1 (t) + 0, Al unspecified

 The flexibility of our approach can be seen by comparing it to a stratified Cox model

 A(tlx, z) =- (tlx) exp (f'z), where x is stratum membership. In (14) we would take x to
 be the vector of indicators for membership in each stratum, so that each component of oc
 represents a different stratum.

 It is possible to generalize the Cox model so that it is directly comparable to (11).
 Consider

 A(tlx, z) = 2O(t) exp {oc(t)'x + fB'z},

 with unknown 4(.) and /B. This is a partly parametric version of a model studied by Zucker
 & Karr (1990). A histogram sieve approach can be used to fit this model: treat oc as a
 step function, constant on each of K intervals fj that partition the follow-up period, and

 compare with the grouped data version of our model. This gives a standard Cox model
 problem with Kq + p covariates defined by the Kq components of the xlj and the p

 components of z. Asymptotic theory, with K as well as n tending to infinity, can be

 developed along the lines of Murphy & Sen (1991).

 APPENDIX 1

 Asymptotic distributions

 The asymptotic distributions of ,B and A are obtained under conditions stated by McKeague
 (1988a) or Huffer & McKeague (1991). In particular, assume that the covariates are bounded and

 A( I x, z) is bounded away from zero. The follow-up period is taken to be a fixed finite interval. Let
 M = (M1,.. , MO)' where

 rt

 Mi(t) =Ni(t) - lhT, ks.1i(s) ds

 is the martingale associated with the counting process Ni.
 We begin by noting that

 {Z'HdM= JZ'HdN J-Z'HXdA- Z'HZZdtf

 = J'Z'H dN- J'Z'HZ dt ,
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 since H is orthogonal to X. Hence

 n(-,) (n-1 JZ'HZdt) n-l 2Z'H dM,(ll
 provided the inverse matrix exists. This will allow us to obtain the asymptotic distribution of ,B

 for any predictable W that is a uniformly consistent estimate of W, via the martingale central limit
 theorem. The weights computed via Method 1 are predictable. Those from Method 2 are not
 predictable since they depend on the initial estimate of /B, both explicitly and through the initial
 estimate of a. An additional argument at the end of this appendix justifies replacement of the initial
 estimate ,B by ,B.

 Let Y =(X, Z). As a consequence of the independent and identically distributed replicates,
 n- 1 Y'WY converges in probability to a nonrandom matrix function uniformly over bounded time
 intervals. This function is assumed to be nonsingular and smooth. The martingale central limit
 theorem can be applied to n Z 'H dM, where the integral is over the range (0, .), which has
 predictable variation

 K n J Z'H dM) = n Z H'Z ds

 Routine matrix algebra gives HW- H' = R. Also,

 n-'Z'H(W- - W- )HfZ

 converges uniformly in probability to zero (McKeague, 1988b, Lemma 4.3). Let I denote the limit

 in probability of n - 1 f Z'HZ dt. By uniform consistency of H and boundedness of the covariates,
 the matrix n -fZ'HfZ dt also converges in probability to E. It follows from (AM l) that n_(f -
 converges in distribution to a mean zero multivariate normal with variance Y.

 From (2.3) and the definition of A,

 W(A -A) = n4 f (X'WX)-lX'VWdM-f (X'WX)-'X'WZ dt n4(j-,/), (A12)
 o o

 provided the inverse matrix exists at all t; if not, an additional term of order op(l) is required.
 Once again we can apply the martingale central limit theorem. The covariation between

 n To (X'WX)-lX'WdM
 0

 and

 n-X ZHdM

 is

 T (X',WX)-'X'WW-H'Z dt,

 which converges in probability to a matrix of zeros, by the uniform consistency of W and the
 orthogonality of H and X. Thus the two terms on the right-hand side of (A12) are asymptotically
 independent. Let V denote the limit in probability of n 'X'WX. The first term in (A1 2) is simply
 the limit of n(A - A) in the usual additive risk model in which /3=0. It converges in distribution
 to a Gaussian martingale m with covariation process f V-1 dt, where the integral is over (0, .). It
 follows that n(A - A) converges in distribution to m + /(.)c, where m and 4 are independent, 4 is
 mean zero multivariate normal with variance E - 1, and t(t) = f V- U ds where the integral is over
 the range (0, t), and where U is the limit in probability of in 'X'WZ.
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 It remains to modify the above argument to allow for the nonpredictability of WP when the
 weights are computed via Method 2. First consider the last part of (Al11), n- f Z'H dM, each
 component of which can be written in the form

 n|
 n-EJ Gi(p) dMi, (Al13)

 where Gi(fl) = Gi(fl, t) is predictable, twice differentiable in ,B, and ,B is the initial estimate of ,B.
 Taylor expanding Gi about the true ,B, we can express (A13) as

 n-2E XGi (p) dMi + n2I (p f)'n- E X i(#) dMi

 +n-{n (/fn )}'{n-1Z Gi(/3*)dMi} {in(/ -)},

 where /3* lies on the line segment between /3 and /3, and the dependence of /3* on t and i has been
 suppressed. The first term, having predictable integrands, can be treated using the martingale
 central limit theorem as before. The second term is easily shown to converge to zero in probability
 since P is n2-consistent and the integrand is predictable and uniformly bounded. The third term is
 also asymptotically negligible since Gi is uniformly bounded in a neighbourhood of /3. A similar
 argument applies to the first term on the right-hand side of (Al 2). We conclude that the asymptotic
 distribution of ,B and A is the same for Methods 1 and 2.

 APPENDIX 2

 The efficient scorefor /3

 The efficient score for /3 is obtained by projecting the score il onto the orthogonal complement
 of the tangent space spanned by the range of the score operator i,. When n= 1, it will be given
 by

 0 z - b*(t)'x
 1i= it z dM(tlx,z) J 4t I x, z)

 for some b* such that 1* is orthogonal to iab for all b such that

 E[6{b(T)'x/X(TIx, z)}2] < oo.

 That is, for all such b,

 O=E{ z-b(tlx()x dM(t) J-(tlx,) dM(t)J

 =E 1, (z - b*(T)'x) b(T)'x
 - A(Tlx,z) X(Tlx,z4'

 see, for example, Sasieni (1992, Lemma A.1). Hence

 b*(t) = E {;2(t y Z) T= tX 5 = 1} LE {;2(t Z) T= t, =1

 E E (t I , z) 1[T t]} LE (t X Z) 1[T>t]}

 (Sasieni, 1992, ? 3). The variance bound (Ely lp*') -' is attained by the asymptotic variance of ,B.
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 For a sample of size n, the efficient score for ,B is approximately

 1*= {Z'WdN- (Z'WX)(X'WX)-'X'WdN- Z'WXdA

 + j(Z'WX)(X'WX)-'X'WX dA-{ Z'WZ dt / + f (Z'WX)(X'WX)-'X'WZ dt

 fZ'HdN- Z'HZdtI3.

 Solving l* = 0 for ,B gives (2 4). Thus the estimators ft and A discussed in this paper are asymptoti-
 cally efficient for the semiparametric model (Bickel et al., 1993).
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