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Abstract

We derive a simultaneous con!dence band for the ratio of two survival functions based on independent
right-censored data. Earlier authors have studied such bands for the di!erence of two survival functions,
but the ratio provides a more appropriate comparison in some applications, e.g., in comparing two treat-
ments in biomedical settings. Our approach is formulated in terms of empirical likelihood and allows us
to avoid the use of simulation techniques that are often needed for Wald-type con!dence bands. By the
transformation-preserving property we also obtain con!dence bands for the di"erence in the cumulative haz-
ard functions. The approach is illustrated with a real data example.
c⃝ 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In biomedical settings, it is frequently of interest to compare two survival functions Sj(t); j=1; 2,
in terms of their Kaplan–Meier estimators. The purpose of this note is to derive a computationally
simple simultaneous con!dence band for the ratio S1(t)=S2(t). This ratio furnishes a useful and
meaningful comparison between two treatments in terms of relative survival probabilities, and is
appropriate when the risks of treatment failure are moderate (otherwise the di"erence might be more
appropriate). Our approach is based on the empirical likelihood method.
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The use of empirical likelihood in survival analysis goes back to Thomas and Grunkemeier (1975)
who derived pointwise con!dence intervals for Sj(t) (see also Li, 1995; Murphy, 1995). The method
was extended by Owen (1988, 1990) to a variety of statistical problems. Hollander et al. (1997) used
the method to obtain simultaneous con!dence bands for Sj(t). In the two-sample context, Einmahl
and McKeague (1999) found con!dence bands for Q–Q plots. For noncensored data, con!dence
intervals for di"erences of treatment means and quantiles were derived by Jing (1995), Qin (1994,
1997) and Qin and Zhao (1997, 2000).
Numerous Wald-type con!dence procedures have been proposed for the comparison of two survival

functions. For example, Dabrowska et al. (1989) introduced a relative change function de!ned in
terms of cumulative hazards and found simultaneous bands for this function under the assumption
of proportional hazards. Parzen et al. (1997) constructed simultaneous con!dence bands for the
di"erence S1(t) − S2(t) using a simulation technique. A simple nonparametric con!dence interval
procedure for the di"erence or ratio of two median failure times was proposed by Su and Wei
(1993), Lin and Ying (1993) extended their results to the case of dependent data.
In the present article we focus on the ratio, and !nd two tractable likelihood-ratio based bands, one

of which does not need simulation. The proposed con!dence bands and various asymptotic results
are presented in Section 2. In Section 3 we give an illustrative example. Proofs are contained in the
appendix.

2. Main results

2.1. Preliminaries

We consider the standard two-sample framework with independent right censoring. That is, we
have two independent samples of i.i.d. observations of the form (Zji; !ji), where j=1; 2 indexes the
sample, i = 1; : : : ; nj indexes the observations within each sample, and Zji = Xji ∧ Yji; !ji = 1{Xji6Yji}.
The distribution functions of Xji and Yji are denoted Fj and Gj, respectively. The survival functions
Sj =1− Fj to be compared are assumed to be continuous. The total sample size is n= n1 + n2. We
work with independent and non-negative Xji and Yji. The empirical likelihood is given by

L(S̃1; S̃2) =
2
∏

j=1

nj
∏

i=1

{S̃j(Zji−)− S̃j(Zji)} !ji S̃j(Zji)1−!ji ; (2.1)

where S̃j belongs to ", the space of all survival functions on [0;∞). The empirical likelihood ratio
for S1(t)=S2(t) at #̃(t)¿ 0 for a given t¿ 0 is de!ned by

R(#̃(t); t) =
sup{L(S̃1; S̃2): S̃1(t)=S̃2(t) = #̃(t); (S̃1; S̃2)∈" × "}

sup{L(S̃1; S̃2): (S̃1; S̃2)∈" × "}
: (2.2)

The ordered uncensored survival times, i.e., the Xji with corresponding !ji = 1, are written
06Tj16 · · ·6TjNj ¡∞, and rji =

∑nj
k=1 1{Zjk¿Tji} denotes the size of the risk set at Tji−; dji =

∑nj
k=1 1{Zjk=Tji ;!jk=1} denotes the number of “deaths” occurring at time Tji. De!ne Kj(t)=#{i: Tji6 t}

and Dj = maxi: Tji6t(dji − rji). It can be shown using Lagrange’s method (cf. Thomas and
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Grunkemeier, 1975 or Li, 1995) that

− 2 logR(#̃(t); t) =−2
K1(t)
∑

i=1

(

(r1i − d1i) log
(

1 +
$n

r1i − d1i

)

− r1i log
(

1 +
$n

r1i

))

−2
K2(t)
∑

i=1

(

(r2i − d2i) log
(

1− $n

r2i − d2i

)

− r2i log
(

1− $n

r2i

))

; (2.3)

where the Lagrange multiplier D1¡$n ¡− D2 satis!es the equation

log
K1(t)
∏

i=1

(

1− d1i
r1i + $n

)

− log
K2(t)
∏

i=1

(

1− d2i
r2i − $n

)

= log(#̃(t)): (2.4)

Eq. (2.4) has a unique solution $n provided Dj ¡ 0; j = 1; 2, because as a function of $n the l.h.s.
of (2.4) is continuous, strictly increasing and tends to ±∞ as $n ↑ −D2 or $n ↓D1. A similar (but
more restrictive) Lagrange multiplier equation appears in (2.3) of Einmahl and McKeague (1999).
Let Hj(s) = Sj(s)(1 − Gj(s)). We assume throughout that nj=n → pj ¿ 0 as n → ∞. Let %1 be

such that Sj(%1)¡ 1 and let %2¿ %1 be such that Hj(%2)¿ 0; j = 1; 2. For future convenience, we
de!ne

&2j (t) =
∫ t

0

dFj(s)
Sj(s)Hj(s−)

; t ∈ [%1; %2] (2.5)

and &2(t) = &21(t)=p1 + &22(t)=p2. It is easy to show that

&̂2j (t) = nj

∑

i: Tji6t

dji

rji(rji − dji)
; (2.6)

is a uniformly consistent estimator of &2j (t); t ∈ [%1; %2], see Andersen et al. (1993, IV.1.3). Thus
&̂2(t)=n[&̂21(t)=n1+&̂22(t)=n2] is a uniformly consistent estimator of &

2(t); t ∈ [%1; %2]. In the uncensored
case, note that &2j (t) = Fj(t)=(1− Fj(t)).

2.2. Con"dence bands

Now we state our main result and explain how it can be used to construct simultaneous con!dence
bands for #(t) = S1(t)=S2(t) over the time span of interest [%1; %2].

Theorem 2.1. Under the above conditions, −2&̂2(t) logR(#(t); t) converges in distribution to U 2(t)
in D[%1; %2], where U (t) is a Gaussian martingale with mean zero and variance function &2(t).

Theorem 2.1 can be used to obtain the following two types of con!dence bands for #(t). First
note that

−2 logR(#(t); t) D→
(

B(&2(t))
&(t)

)2

;

in D[%1; %2], where B is a standard Wiener process. Thus

B1 = {(t; #̃(t)) : − 2 logR(#̃(t); t)6 c'[ê1; ê2]; t ∈ [%1; %2]} ; (2.7)
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is an asymptotic 100(1−')% con!dence band for #(t), where ê i= &̂2(%i) and c'[e1; e2] is the upper
'-quantile of the distribution of supt∈[e1 ;e2] |B

2(t)=t|. If the critical value above is replaced by a (21
critical value, then we obtain a pointwise band. Thus B1 has the equal precision property (cf. Nair,
1984). Simulation needs to be used to obtain c'[e1; e2], because, as far as we are aware, tables for
c'[e1; e2] are not available.
A con!dence band that does not need simulation can be obtained as follows. From Theorem 2.1,

sup
t∈[%1 ;%2]

−2&̂2(t) logR(#(t); t)
(1 + &̂2(t))2

D→ sup
x∈[d1 ; d2]

|B0(x)|2; (2.8)

by the continuous mapping theorem, where B0 is a standard Brownian bridge process and

di =
&2(%i)

1 + &2(%i)
; i = 1; 2: (2.9)

Here we have used the fact that the processes B0(&2(·)=(1 + &2(·))) and U (·)=(1 + &2(·)) have the
same distribution (cf. Hall and Wellner, 1980). Since &̂2(t) is a uniformly consistent estimator of
&2(t), t ∈ [%1; %2], we know that di is consistently estimated by d̂i = &̂2(%i)=(1 + &̂2(%i)). This result
yields the following asymptotic 100(1− ')% con!dence band for #(t):

B2 = {(t; #̃(t)): − 2 logR(#̃(t); t)6C2(t); t ∈ [%1; %2]} ; (2.10)

where

C(t) = K'[d̂1; d̂2](1 + &̂2(t))=&̂(t) (2.11)

and K'[d1; d2] is the upper '-quantile of the distribution of supx∈[d1 ;d2] |B
0(x)|. Chung (1986) gave

tables of K'[d1; d2] for general d1 and d2; see also the computer program WIENER PACK by Chung
(1987).
Implementation: We now explain how to compute the con!dence bands B1 and B2. For !xed t,

let  ($n) denote the r.h.s. of (2.3). The function  satis!es the following properties:

(1)  (·) is strictly decreasing on the interval (D1; 0] and increasing on [0;−D2), because its
derivative

 ′($n) =
K1(t)
∑

i=1

2$nd1i
(r1i − d1i + $n)(r1i + $n)

+
K2(t)
∑

i=1

2$nd2i
(r2i − d2i − $n)(r2i − $n)

is negative for $n ∈ (D1; 0), zero for $n = 0 and positive for $n ∈ (0;−D2).
(2)  ($n)→ +∞ as $n → D1, or $n → −D2, and  (0) = 0.

These properties imply that there exist exactly two roots $L¡ 0¡$U for  ($L)= ($U)=C2(t) and
that {$n:  ($n)6C2(t)} =[$L;$U]. Because #̃(t) satisfying (2.4) is an increasing function of $n, the
con!dence set for #(t) is a closed interval [#̃L; #̃U], where #̃L =

∏K1(t)
i=1 (1−d1i=(r1i+$L))=

∏K2(t)
i=1 (1−

d2i=(r2i − $L)) and #̃U is same as #̃L, but with $L replaced by $U. The roots $L and $U are readily
computed using the van Wijngaarden–Dekker–Brent algorithm (see Press et al., 1992, p. 359).
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2.3. Discussion

Our approach can be generalized beyond the classical two-sample setting to a counting process
framework in which the independence between the two samples can be relaxed. Instead of indepen-
dence between X1i and X2i, we only require P(X1i=X2i)=0, which in turn implies that the counting
processes corresponding to uncensored failures in the two samples have no simultaneous jumps.
Such an extension includes the case of left-truncated data (see, e.g., Andersen et al., 1993, III.3–4).
The accuracy of the proposed con!dence band for S1(t)=S2(t) may be improved in small samples

by using a higher order approximation to the empirical likelihood ratio. That is, retain the second
term in (A.20) along with the !rst to form a bias-corrected con!dence band; Hollander et al. (1997)
have studied such correction to con!dence bands for Sj(t). Alternatively, it may be possible to use
transformations to improve the accuracy of the proposed con!dence band (cf. Andersen et al., 1993,
IV.3.3). However, the best choice of transformation needs investigation. A similar issue arises
in connection with the con!dence band proposed by Parzen et al. (1997) for the di"erence
S1(t)− S2(t).
Our approach can be easily adapted to obtain con!dence bands for the ratio A1(t)=A2(t) of the

cumulative hazard functions Aj(t)=−logSj(t), see Zhao (2002). A closely related problem to !nding
con!dence bands for S1(t)=S2(t) is to construct con!dence bands for the di"erence in the cumulative
hazard functions A1(t)−A2(t)=−log(S1(t)=S2(t)). Our approach immediately yields such con!dence
bands by the transformation-preserving property of the empirical likelihood method.
In some applications, it may be of greater interest to consider con!dence bands for the ratio of

cdf’s F1(t)=F2(t) rather than S1(t)=S2(t). Our approach does not readily extend to that case, because
then )j :=

∏Kj(t)
i=1 (1− dji=(rji + (−1) j−1$n)) is replaced by 1− )j in (2.4), j = 1; 2, and the Taylor

expansion w.r.t. $n becomes intractable.
Next consider left-censored data. That is, two independent samples of i.i.d. observations of the

form (Zji; !ji), where j = 1; 2 indexes the sample, i = 1; : : : ; nj indexes the observations within each
sample, and Zji=Xji∨Yji; !ji=1{Xji¿Yji}. Following the same development as above, except changing
the sign of Zji (time-reversal), we obtain a con!dence band for F1(t)=F2(t).
For the ratio of survival functions based on k (¿ 3) independent samples it would be interesting

to develop simultaneous con!dence bands for all k−1 comparisons. We have been unable to extend
our present approach in that direction. However, our approach does extend when dealing with ratios
of cumulative hazard functions.

3. An illustrative example

The data come from a Mayo Clinic trial involving a treatment for primary biliary cirrhosis of
the liver, see Fleming and Harrington (1991) for discussion. A total of n=312 patients participated
in the randomized clinical trial, 158 receiving the treatment (D-penicillamine) and 154 receiving
a placebo. Censoring is heavy (187 of the 312 observations are censored). Fig. 1 displays the
proposed con!dence bands for the ratio of the survival function for placebo over that for treatment.
The corresponding ratio of the Kaplan–Meier curves is also displayed. Note that both simultaneous
bands contain the horizontal line (ratio=1), so there is no evidence of a di"erence between treatment
and placebo on the basis of this analysis. The con!dence band B1 is much narrower than B2 in
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Fig. 1. Mayo Clinic trial, 95% simultaneous con!dence bands for the ratio of survival functions (placebo/treatment),
B1 (left), B2 (right).

the right tail, but wider over most of the follow-up period. We consider B1 to be the more suitable
band in view of its equal precision property.

Appendix A. Proof of Theorem 2.1

We need the following lemma describing the order of the Lagrange multiplier $n.

Lemma A.1. Under the assumptions of Theorem 2.1, $n = $n(t) = OP(n1=2) uniformly over [%1; %2].

Proof. Let Âj(t) denote the Nelson–Aalen estimator of Aj(t). Then (
√nj(Âj(t) − Aj(t)); j = 1; 2)

D→(Uj(t); j = 1; 2), where the Uj(t) are independent Gaussian martingales with mean zero and
cov(Uj(s1); Uj(s2)) = &2j (s1 ∧ s2) (cf. Andersen et al., 1993, pp. 193–194). By nj=n → pj ¿ 0 it
follows that

√
n{[Â1(t)− A1(t)]− [Â2(t)− A2(t)]}

D→U1(t)√
p1

+
U2(t)√

p2
:

From S1(t)=S2(t) = #(t) we have A1(t)− A2(t) =−log (#(t)), so

Â1(t)− Â2(t) + log (#(t)) = OP(n−1=2) uniformly for t ∈ [%1; %2]: (A.1)

First assume $n(t)¡ 0. Then by Li (1995, pp. 101–102)

−log
K1(t)
∏

i=1

(

1− d1i
r1i + $n(t)

)

¿ Â1(t)
(

n1
n1 − |$n(t)|

)

;
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log
K2(t)
∏

i=1

(

1− d2i
r2i − $n(t)

)

¿− Â2(t)
(

n2
n2 + |$n(t)|

)

+ logS2n2(t) + Â2(t);

where Sjnj(t) is the Kaplan–Meier estimator of Sj(t). Combining the above two inequalities and (2.4)
we get

− log#(t)¿ Â1(t)
(

n1
n1 − |$n|

)

− Â2(t)
(

n2
n2 + |$n|

)

+ logS2n2(t) + Â2(t): (A.2)

If $n(t)¿ 0, a similar argument leads to

log#(t)− logS1n1(t)− Â1(t)¿− Â1(t)
(

n1
n1 + |$n|

)

+ Â2(t)
(

n2
n2 − |$n|

)

: (A.3)

Form the partition [%1; %2] = T= ∪ T¡ ∪ T¿, where T= = {t ∈ [%1; %2]: S1(t) = S2(t)} ; T¡ =
{t ∈ [%1; %2]: S1(t)¡S2(t)} ;T¿ = {t ∈ [%1; %2]: S1(t)¿S2(t)} .
Case 1. t ∈T=. First suppose $n(t)¡ 0. Then by (A.2)

|$n|(n1Â1(t) + n2Â2(t) + (n1 − n2)(logS2n2(t) + Â2(t)))

6− n1n2(Â1(t) + logS2n2(t)): (A.4)

By
√
n1(Âj(t) − Aj(t))

D→Uj(t), for any *¿ 0 and n su#ciently large, we have Âj(t)¿ 1
2Aj(t)¿

− 1
2 logSj(%1) for all t ∈ [%1; %2] with probability at least 1 − *. It then follows by (A.4) that for

any *¿ 0,

06 |$n|
−n1 logS1(%1)

4
6 n1n2(Â2(t)− Â1(t)) (A.5)

for all t ∈T= with probability 1−*, for n su#ciently large. The same argument works for $n(t)¿ 0
but with Â2(t) and Â1(t) switching places in (A.5), and using (A.3) instead of (A.2). In either case,
using nj=n → pj ¿ 0, (A.1) with #(t) = 1 and (A.5), we !nd $n =OP(n1=2) uniformly for t ∈T=.
Case 2. t ∈T¡. First suppose $n(t)¡ 0. Noting −logS2n2(t)− Â2(t)6 0, from (A.2) we obtain

a1|$n|2 + b1|$n|+ c16 0; (A.6)

where a1 = −log#(t)¿ 0; b1 = n1Â1(t) + n2Â2(t) + (n1 − n2)(log#(t) + logS2n2(t) + Â2(t)), c1 =
n1n2(Â1(t)− Â2(t)+ log#(t)+ logS2n2(t)+ Â2(t)). Along the lines of the argument leading to (A.5),
for any *¿ 0 and n su#ciently large

b1 = n1(Â1(t) + logS1(t)) + n2Â2(t)− n2 log#(t)− n1 logS2(t)

+ (n1 − n2)(logS2n2(t) + A2(t) + Â2(t)− A2(t))

¿
√
n1
√
n1(Â1(t)− A1(t)) + n2

A2(t)
2

− n2 log#(t)−
|n1 − n2|M1√

n2

¿−
√
n1M1 − n2

logS2(%1)
4

− n2 log#(t)

¿−n2 logS2(%1)
8

− n2 log#(t)¿ 0; (A.7)
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by nj=n → pj ¿ 0 uniformly in t ∈T¡ with probability at least 1− *, where M1¿ 0 is a constant.
Since

a16− logS1(t) + logS2(t)6− logS1(%2) (A.8)

and nj=n → pj ¿ 0, by (A.1) and (A.8) we obtain

b21 − 4a1c1¿
[

−n2 logS2(%1)
8

− n2 log#(t)
]2

+ n1n2n−1=2M2 logS1(%2)

¿
[

−n2 logS2(%1)
16

− n2 log#(t)
]2

¿ 0; (A.9)

uniformly in t ∈T¡ with probability at least 1 − * for n su#ciently large, where M2¿ 0 is a
constant. Thus the quadratic equation a1x2 + b1x + c1 = 0 has two distinct real roots x1¡x2 for all
t ∈T¡ with probability at least 1− * for n su#ciently large. Hence from (A.6) we have

|$n|6 x2 =
−b1 +

√

b21 − 4a1c1
2a1

=
−2c1

b1 +
√

b21 − 4a1c1
(A.10)

for all t ∈T¡ with probability at least 1−* for n su#ciently large. Second suppose $n(t)¿ 0. Then
by (A.3)

a2|$n|2 − b2|$n|+ c2¿ 0; (A.11)

where a2 = a1 =−log#(t)¿ 0; b2 = n1Â1(t) + n2Â2(t) + (n1 − n2)(log#(t)− logS1n1(t)− Â1(t)); c2 =
n1n2(Â1(t)− Â2(t) + log#(t)− logS1n1(t)− Â1(t)).
The quadratic equation a2x2− b2x+ c2 = 0 has two distinct real roots x3¡x4 for all t ∈T¡ with

probability at least 1− * for n su#ciently large. Similarly

b2¿− n2 logS2(%1)
8

− n2 log#(t)¿ 0; (A.12)

b22 − 4a2c2¿
[

−n2 logS2(%1)
16

− n2 log#(t)
]2

¿ 0 (A.13)

with probability at least 1−*. From (A.11) we know |$n|6 x3 or |$n|¿ x4 in t ∈T¡ with probability
at least 1 − * for n su#ciently large. If |$n|¿ x4, combining (A.8), (A.12) and (A.13) we get
|$n|¿ x4 = (b2 +

√

b22 − 4a2c2)=(2a2)¿n2 uniformly in t ∈T¡ with probability at least 1− * for n
su#ciently large, which contradicts |$n|6−D2 =mini: T2i6t(r2i −d2i)6 n2− 1 (dji¿ 1). Therefore

|$n|6 x3 =
b2 −

√

b22 − 4a2c2
2a2

=
2c2

b2 +
√

b22 − 4a2c2
: (A.14)

Using nj=n → pj ¿ 0, (A.1), (A.7), (A.9), (A.10), (A.12)–(A.14) we get

P{|$n(t)|6
√
nmax(M3; M4)}

¿P{for $n(t)¡ 0; |$n(t)|6
√
nM3; for $n(t)¿ 0; |$n(t)|6

√
nM4}
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=P{for $n(t)¡ 0; |$n(t)|6
√
nM3; for $n(t)¿ 0; |$n(t)|6

√
nM4 or $n(t)¿n2}

¿ 1− *:

We !nd that $n =OP(n1=2) uniformly for t ∈T¡.
Case 3. t ∈T¿. This is similar to Case 2. First suppose $n(t)¡ 0. Then from (A.2)

−a1|$n|2 − b1|$n|− c1¿ 0;

where −a1 = log#(t)¿ 0. Second suppose $n(t)¿ 0. Then by (A.3)

−a2|$n|2 + b2|$n|− c26 0;

where −a2 = log#(t)¿ 0. Following the same argument as in Case 2 we !nd that $n = OP(n1=2)
uniformly for t ∈T¿. This completes the proof.

Proof of Theorem 2.1. The key step in the proof is to show that the solution of Eq. (2.4) has the
asymptotic expansion

$n =− n
&̂2(t)

L(#; t) +
n+̂(t)
&̂6(t)

L2(#; t) + OP(n−1=2); (A.15)

uniformly in t over the interval [%1; %2], where L(#; t) = log (S1n1(t)=S2n2(t)) − log#(t) and +̂(t) =
n2[&̂211(t)=n

2
1− &̂221(t)=n

2
2], where &̂2j1(t) is de!ned as &̂2j (t) in (2.6), but with rji replaced by r2ji. Note

that +̂(t) converges uniformly in probability to +(t)=&211(t)=p
2
1−&221(t)=p

2
2 over [%1; %2], where &2j1(t)

is de!ned as &2j (t) in (2.5), but with Hj(s−) replaced by Hj(s−)2. We establish (A.15) as follows.
By an argument of Hollander et al. (1997, p. 225), for any $n =OP(n1=2) the jth term (j= 1; 2) on
the l.h.s of (2.4) has an expansion

logSjnj(t) + &̂2j0(t)
(−1) j−1$n

nj
− &̂2j1(t)

$2n
n2j
+OP(n

−3=2
j ): (A.16)

Using nj=n → pj ¿ 0, (2.4) and (A.16) we obtain

0 = L(#; t) + &̂2(t)
$n

n
− +̂(t)

$2n
n2
+ OP(n−3=2):

Solving the above equation for $n, cf. Hollander et al. (1997), gives (A.15). By the functional delta
method

(
√
nj(logSjnj − logSj); j = 1; 2) D→ (Uj; j = 1; 2); (A.17)

so by nj=n → pj ¿ 0 we get
√
nL(#; t) D→U1(t)√

p1
+

U2(t)√
p2

D=U (t): (A.18)

A Taylor expansion, nj=n → pj ¿ 0 and (2.3) imply

− 2 logR(#(t); t) = &̂2(t)
$2n
n

− 4
3
+̂(t)

$3n
n2
+ OP(n−1): (A.19)

Substituting (A.15) into (A.19), we obtain

− 2 logR(#(t); t) = nL2(#; t)
&̂2(t)

− 2
3

n+̂(t)L3(#; t)
&̂6(t)

+ OP(n−1): (A.20)
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It follows from (A.17) that

sup
s∈[%1 ;%2]

| logSjnj(s)− logSj(s)|
P→ 0; j = 1; 2: (A.21)

We have the inequality
∣

∣

∣

∣

∣

n
(

log
S1n1(t)
S2n2(t)

− log S1(t)
S2(t)

)3
∣

∣

∣

∣

∣

6 nL2(#; t)

(

sup
s∈[%1 ;%2]

|logS1n1(s)− logS1(s)|
)

+ nL2(#; t)

(

sup
s∈[%1 ;%2]

|logS2n2(s)− logS2(s)|
)

: (A.22)

Combining (A.18), (A.21) and (A.22) we have

sup
s∈[%1 ;%2]

∣

∣

∣

∣

∣

n
(

log
S1n1(s)
S2n2(s)

− log S1(s)
S2(s)

)3
∣

∣

∣

∣

∣

P→ 0: (A.23)

Combining (A.18), (A.20), (A.23) and the uniform consistency of &̂2(t) and +̂(t) completes the
proof.
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