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Hall et al. [Phys. Rev. X 4 (2014) 041013] recently proposed that quantum theory can be understood as the
continuum limit of a deterministic theory in which there is a large, but finite, number of classical “worlds.”
A resulting Gaussian limit theorem for particle positions in the ground state, agreeing with quantum theory,
was conjectured in Hall et al. [Phys. Rev. X 4 (2014) 041013] and proven by McKeague and Levin [Ann.
Appl. Probab. 26 (2016) 2540–2555] using Stein’s method. In this article we show how quantum position
probability densities for higher energy levels beyond the ground state may arise as distributional fixed points
in a new generalization of Stein’s method. These are then used to obtain a rate of distributional convergence
for conjectured particle positions in the first energy level above the ground state to the (two-sided) Maxwell
distribution; new techniques must be developed for this setting where the usual “density approach” Stein
solution (see Chatterjee and Shao [Ann. Appl. Probab. 21 (2011) 464–483] has a singularity.
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1. Introduction

Hall et al. [8] proposed a many interacting worlds (MIW) theory for interpreting quantum me-
chanics in terms of a large but finite number of classical “worlds.” In the case of the MIW
harmonic oscillator, an energy minimization argument was used to derive a recursion giving the
location of the oscillating particle as viewed in each of the worlds. Hall et al. conjectured that
the empirical distribution of these locations converges to Gaussian as the total number of worlds
N increases. McKeague and Levin [10] recently proved such a result and provided a rate of
convergence. More specifically, McKeague and Levin showed that if x1, . . . , xN is a decreasing,
zero-mean sequence of real numbers satisfying the recursion relation

xn+1 = xn − 1
x1 + · · · + xn

, (1)

then the empirical distribution of the xn tends to standard Gaussian when N → ∞. Here xn rep-
resents the location of the oscillating particle in the nth world, and the Gaussian limit distribution
agrees with quantum theory for a particle in the lowest energy (ground) state.
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The hypothesized correspondence with quantum theory suggests that stable configurations
should also exist at higher energies in the MIW theory. Moreover, the empirical distributions of
these configurations should converge to distributions with densities of the form

pk(x) = (Hek(x))2

k! ϕ(x), x ∈ R, (2)

where ϕ(x) is the standard normal density,

Hek(x) = (−1)kex2/2 dk

dxk
e−x2/2

is the (probabilist’s) kth Hermite polynomial, and k is a non-negative integer. The ground state
discussed above corresponds to k = 0 and has the standard Gaussian limit. However, the question
of how to characterize higher energy MIW states corresponding to k ≥ 1 is still unresolved as far
as we know.

The energy minimization approach of Hall et al. [8] starts with an analysis of the Hamiltonian
for the MIW harmonic oscillator:

H0(x,p) = E(p) + V (x) + U0(x),

where the locations of particles (having unit mass) in the N worlds are specified by x =
(x1, . . . , xN) with x1 > x2 > · · · > xN , and their momenta by p = (p1, . . . , pN). Here E(p) =∑N

n=1 p2
n/2 is the kinetic energy, V (x) = ∑N

n=1 x2
n is the potential energy (for the parabolic trap),

and

U0(x) =
N∑

n=1

(
1

xn+1 − xn
− 1

xn − xn−1

)2

is called the “interworld” potential, where x0 = ∞ and xN+1 = −∞. In the ground state, there is
no movement because all the momenta pn have to vanish for the total energy to be minimized. In
this case, as mentioned above, Hall et al. [8] showed that the particle locations xn satisfy (1) and
McKeague and Levin [10] showed that the empirical distribution tends to a standard Gaussian
distribution.

Our contribution in the present article is to derive an interworld potential for the second energy
state (k = 1) and show that the empirical distribution of the configuration that minimizes the
corresponding Hamiltonian has a limit distribution that again agrees with quantum theory. The
interworld potential in this case is shown to be

U1(x) = 9
N∑

n=1

(
1

x3
n+1 − x3

n

− 1

x3
n − x3

n−1

)2

x4
n (3)

and the minimizer of the corresponding Hamiltonian H1(x,p) = E(p) + V (x) + U1(x) is shown
to satisfy the recursion

x3
n+1 = x3

n − 3

(
n∑

i=1

1
xi

)−1

. (4)
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Further, we show that if x1, . . . , xN is a decreasing, zero-mean solution, then the empiri-
cal distribution of the xn converges to the (two-sided) Maxwell distribution having density
p1(x) = x2e−x2/2/

√
2π . The entire sequence x1, . . . , xN should be viewed as indexed by N ,

though we suppress notation for this dependence and write x1, . . . , xN instead of x1,N , . . . , xN,N .
We also give a rate of convergence using a new extension of Stein’s method. Our approach is
generalizable to recursions that converge to the distributions of other higher energy states of the
quantum harmonic oscillator, although we do not pursue such extensions here.

We initially thought that the MIW interpretation could be based on a “universal” interworld
potential function U0 that applies to all energy levels, with the densities pk(x) then arising as
limits of local minima of H0. However, this idea turned out to be analytically unworkable. Here
we propose an alternative approach in terms of adapting the interworld potential to each higher
energy level. Minimizing the resulting Hamiltonian is then tractable and the solution can be
shown to converge to pk(x), at least in the case k = 1. Hall et al. [8] derived their interworld
potential U0 as a discretization of Bohm’s quantum potential summed over the particle ensem-
ble, see Bohm [1]. The challenge in general is to extend this derivation to higher-energy wave
functions in a way that leads to an explicit recursion minimizing the resulting Hamiltonian, and
to show that it agrees with pk(x) in the limit. A major contribution here, in addition to providing
a rate of convergence, is a general method for finding such interworld potential functions and
their associated particle recursions.

Stein’s method (see Stein [17], Chen et al. [5] and Ross [16]) is a well-established technique
for obtaining explicit error bounds for distributional limit theorems. However, the usual “density
approach” (see Chatterjee and Shao [4]) for applying Stein’s method does not seem to work in
cases where the density function vanishes at a point in the interior of the support of the target
distribution (here we have p1(0) = 0 and the support is the whole real line). As we elaborate
later, in this case the solution to the Stein equation will have a singularity and also unbounded
derivatives. This motivates the new technique we will develop to handle such distributions. While
there are plenty of examples of Stein’s method applied to distributions with a density having a
zero on the boundary of the support (the gamma and beta distributions, for example), there have
been no examples (that we know of) with a zero in the interior of the support; the higher energy
distributions pk(x), for k ≥ 1, appear to be the first such distributions considered. The price one
has to pay with our approach for handling these zeros is more complicated estimates involving
couplings. In our case, however, analytical properties of the recursion (4) can fortunately be
exploited to establish such estimates.

In Section 2, we generalize the argument of Hall et al. [8] to derive the interworld potential,
and show how it leads to the solution (4). In Section 3, we introduce the notion of a generalized
zero-bias transformation, and show that the distributional properties of eigenstates of the quan-
tum harmonic oscillator can be characterized in terms of fixed points of this transformation. Also,
we derive the generalized zero-bias distribution for the empirical distribution of general config-
urations. Section 4 develops our results based on the new extension of Stein’s method to show
convergence of the configuration that minimizes the Hamiltonian of the second energy state.
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2. Interworld potentials for higher energy states

Hall et al. [8] introduced their MIW theory from the perspective of the de Broglie–Bohm inter-
pretation of quantum mechanics, which is mathematically equivalent to standard quantum theory.
They used this approach to construct an ansatz for the conjectured interworld potential U0 gov-
erning the ground state wave function of the quantum harmonic oscillator. In this section, we
introduce an extended version of this ansatz aimed at providing a MIW characterization of the
higher energy eigenstates.

Our argument follows along the lines of Section IIIA of Hall et al. [8] with the major difference
being that we now need to introduce a more general way of approximating the density of particle
location for a stationary wave function ψ(x), namely for a density of the form p(x) = |ψ(x)|2 =
b(x)ϕ(x), where b(x) is a non-negative, even, smooth function having finitely many zeros. Here
b represents a “baseline” that varies more rapidly than ϕ(x). Let x1 > x2 > · · · > xN . Bohm’s
quantum potential summed over the ensemble {xn} is defined by

Uψ (x) =
N∑

n=1

[
p′(xn)/p(xn)

]2
, (5)

where we are using dimensionless units. An approximation to p(xn) based on ignoring ϕ(x) is
given (up to a normalizing constant) by

p̃(xn) = b(xn)

B(xn) − B(xn+1)
,

where B(x) =
∫ x

0 b(t) dt is the cumulative baseline function. This suggests

p′(xn)

p(xn)
≈ p̃(xn) − p̃(xn−1)

(xn − xn−1)p̃(xn)
≈

[
1

B(xn) − B(xn+1)
− 1

B(xn−1) − B(xn)

]
b(xn),

where we set B(x0) = ∞ and B(xN+1) = −∞. Our proposed ansatz for the interworld potential
is then based on inserting the above expression into (5) to obtain

Ub(x) =
N∑

n=1

[
1

B(xn+1) − B(xn)
− 1

B(xn) − B(xn−1)

]2

b(xn)
2. (6)

Note that our earlier assumptions about b imply that B is strictly increasing, so Ub is well-
defined. In the simplest cases b(x) = 1 and b(x) = x2 the above expression for Ub agrees with
the interworld potentials U0 and U1 defined in the Introduction. We conjecture that the interworld
potential Ub is suitable for obtaining MIW approximations to the class of target distributions of
the form pk(x). Indeed, there may be a natural affinity between our new version of Stein’s method
and the densities pk(x) for all the energy levels of the quantum harmonic oscillator.

Specializing to the case b(x) = x2, the following argument characterizes the minimizer of
the Hamiltonian H1 (i.e., the ground state when the interworld potential is U1) in terms of a
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solution to the recursion (4). In any ground state the particles do not move, so the kinetic energy
E vanishes. Then, adapting the argument of Hall et al. [8] to apply to H1, we have

9(N − 1)2 = 9

[
N−1∑

n=1

x3
n+1 − x3

n

x3
n+1 − x3

n

]2

= 9

[
N∑

n=1

(
1

x3
n+1 − x3

n

− 1

x3
n − x3

n−1

)
x2
n

(
xn − x3

N/x2
n

)
]2

≤ 9

[
N∑

n=1

(
1

x3
n+1 − x3

n

− 1

x3
n − x3

n−1

)2

x4
n

][
N∑

n=1

(
xn − x3

N/x2
n

)2

]

≤ U1(x)V (x),

where the first inequality is Cauchy–Schwarz. So U1 ≥ 9(N − 1)2/V , leading to

H1 = U1 + V ≥ 9(N − 1)2/V + V ≥ 6(N − 1)

with the last inequality being equality for V = 3(N − 1). It follows that H1 is minimized when
V = 3(N − 1), the mean x3

N of {x3
n, n = 1, . . . ,N} vanishes, and

1
xn

= α

[
1

x3
n+1 − x3

n

− 1

x3
n − x3

n−1

]

for some constant α. The sum of the right of the above display telescopes, leading to the recursion
(4) by rearranging and noting that α = −V/(N − 1) = −3.

The following lemma provides the basic properties we need to ensure the existence of a solu-
tion of the Maxwell recursion (4) that minimizes the Hamiltonian H1, as well as ensuring that the
solution is unique. This result is analogous to Lemma 1 of McKeague and Levin [10] concern-
ing solutions of (1), but the difference here is that the variance is 3, agreeing with the Maxwell
distribution (rather than close to standard normal in the case of (1)).

Lemma 2.1. Suppose N is even. Every zero-median solution x1, . . . , xN of (4) satisfies:

(P1) Zero-mean: x1 + · · · + xN = 0.
(P2) Maxwell variance: x2

1 + · · · + x2
N = 3(N − 1).

(P3) Symmetry: xn = −xN+1−n for n = 1, . . . ,N .

Further, there exists a unique solution x1, . . . , xN such that (P1) and

(P4) Strictly decreasing: x1 > · · · > xN

hold. This solution has the zero-median property, and thus also satisfies (P2) and (P3).

Proof. The proof follows identical steps to the proof of Lemma 1 of McKeague and Levin [10],
apart from the variance property (P2), which is proved using (P1) and (P3) as follows. Denote
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Figure 1. Example with b(x) = x2, N = 22, showing the piecewise constant density having mass
1/(N − 1) uniformly distributed over the intervals between successive xn compared with the Maxwell
density, where the breaks in the histogram are the successive xn satisfying the recursion (4).

Sn = ∑n
i=1 x−1

i for n = 1, . . . ,N , and set S0 = 0. Using (4), we can write

3(N − 1) = 3
N−1∑

n=1

SnS
−1
n =

N−1∑

n=1

Sn

(
x3
n − x3

n+1
)
=

N−1∑

n=1

[(
Sn−1 + x−1

n

)
x3
n − Snx

3
n+1

]

=
N−1∑

n=1

[
Sn−1x

3
n − Snx

3
n+1 + x2

n

]

= x2
1 + · · · + x2

N−1 − SN−1x
3
N,

where we used the recursion in the second equality, and the last equality is from a telescoping
sum. (P3) implies SN = 0, so −SN−1 = 1/xN , and (P2) follows. !

Although in the sequel we concentrate on the case k = 1 (see Figure 1), to conclude this
section we briefly discuss general densities of the form pk given in (2). The above argument
for b(x) = x2 can be extended to general Ub under the condition that B(x) is proportional to
xb(x), which is the case when b(x) is proportional to xr for some even non-negative integer r

(but not for the square of the kth Hermite polynomial unless k = 0 or 1). Under this condition, it
can be shown that the minimizer of the Hamiltonian based on Ub is a symmetric solution of the
recursion

B(xn+1) = B(xn) −
(

n∑

i=1

xi

b(xi)

)−1

. (7)
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Figure 2. Example with b(x) = Hek(x)2/k! for k = 2, N = 41, where the breaks in the histogram are the
successive xn satisfying the recursion (7) and the red curve is pk(x).

We have not been able to show that this recursion minimizes the Hamiltonian for general b, but
our numerical results suggest that it is very close if not identical to a minimizer. With k = 2
we have b(x) = (x2 − 1)2/2, B(x) = x5/10 − x3/3 + x/2, and the symmetric solution of the
resulting recursion produces a remarkably good agreement with pk , see Figure 2.

3. Generalized zero-bias transformations

Let W be a symmetric random variable and b : R → R a non-negative function such that σ 2 =
E[W 2/b(W)] < ∞. Goldstein and Reinert [7] gives a distributional fixed point characterization
of the Gaussian distribution, which we generalize in the definition below.

Definition 3.1. If there is a random variable W ⋆ such that

σ 2E
[
f ′(W ⋆)

b(W ⋆)

]
= E

[
Wf (W)

b(W)

]

for all absolutely continuous functions f : R → R such that E|Wf (W)/b(W)| < ∞, we say that
W ⋆ has the b-generalized-zero-bias distribution of W .

Remark 3.2. Goldstein and Reinert [7] study the case b(x) = 1 and show that W ⋆ has the same
distribution as W if and only if W has a Gaussian distribution. Distributional fixed point charac-
terizations for exponential, gamma and other nonnegative distributions and the connection with
Stein’s method have been studied in Peköz and Röllin [13], Peköz et al. [14,15].
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Remark 3.3. By a routine extension of the proof of Proposition 2.1 of Chen et al. [5], it can be
shown that there exists a unique distribution for W ⋆, and it is absolutely continuous with density

p⋆(x) ∝ b(x)E
[

W

b(W)
1W≥x

]
.

We note in passing that the σ 2 should be on the other side of the equality in the first display of
Chen et al.’s proposition, which corresponds to b(x) = 1, the usual zero-bias distribution of W .
The composition of the b-generalized-zero-bias transformation with the (1/b)-generalized-zero-
bias transformation is the usual zero-bias transformation.

Remark 3.4. With ϕ the standard normal density and b a ϕ-integrable function, if W has density

p(x) = b(x)ϕ(x), (8)

then its distribution is a fixed point for the b-generalized-zero-bias transformation since

p⋆(x) = b(x)

∫ ∞

x

t

b(t)
p(t) dt = b(x)

∫ ∞

x
tϕ(t) dt = p(x).

The following result gives the b-generalized-zero-bias distribution of the uniform distribution
on N points.

Proposition 3.5. Given an integer N > 1, let x1 > x2 > · · · > xN be such that b(xn) > 0 for
all n. Let PN be the empirical distribution of the xn:

PN(A) = #{n : xn ∈ A}
N

for any Borel set A ⊂ R. Under the symmetry condition xn = xN−n+1 for n = 1, . . . ,N , the
b-generalized-zero-bias distribution P⋆

N of PN is defined, and has density

p⋆(x) ∝ b(x)

[
n∑

i=1

xi

b(xi)

]

for xn+1 < x ≤ xn (n = 1, . . . ,N − 1), and p⋆(x) = 0 if x > x1 or x ≤ xN .

Proof. Immediate from Remark 3.3. !

Recall the following distances between distribution functions F and G. The Kolmogorov dis-
tance is

dK(F,G) = sup
x∈R

∣∣F(x) − G(x)
∣∣,
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and the Wasserstein distance is

dW(F,G) = sup
h∈H

∣∣∣∣

∫

R
hdF −

∫

R
hdG

∣∣∣∣,

where

H =
{
h : R → R Lipschitz with

∥∥h′∥∥ ≤ 1
}

and ∥ · ∥ is the supremum norm. Using Proposition 1.2 in Ross [16], these two metrics are seen
to be related by

dK(F,G) ≤
√

2C dW(F,G)

if G has density bounded by C.
Restricting attention to the special case b(x) = x2, we can now state our main result, along

with an important corollary.

Theorem 3.6. Suppose W ⋆ is constructed on the same probability space as the zero-mean ran-
dom variable W and is distributed according to the x2-generalized-zero-bias distribution of W .
Let M have the two-sided Maxwell density x2e−x2/2/

√
2π . Then there exist positive finite con-

stants λ1,λ2,λ3 and λ4 such that

dW
(
L (W),L (M)

)
≤ λ1E

∣∣W − W ⋆
∣∣ + λ2E

[
|W |

∣∣W − W ⋆
∣∣]

(9)

+ λ3E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣ + λ4E
∣∣∣∣1 − W ⋆

W

∣∣∣∣.

Proof. The inequality follows immediately from Theorem 4.4. Finiteness of the constants (along
with explicit upper bounds) is detailed in Proposition 4.5. !

The following corollary gives a rate of convergence of the solution to (4) to the two-sided
Maxwell distribution in terms of the Wasserstein distance; we postpone the proof until Sec-
tion 4.3.

Corollary 3.7. Suppose x1, . . . , xN is a monotonic, zero-mean, finite sequence of real numbers
satisfying (4), let PN be the empirical distribution of these values, and let M be as in Theorem 3.6.
Then there is a constant C > 0 such that

dW
(
PN,L (M)

)
≤ C

√
logN

N
.
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4. The Stein equation and its solutions

4.1. General considerations on Stein’s method and the problem with
Stein’s density approach

Let F and G be two cumulative distribution functions which one wishes to compare. Denote
L1(F ) (resp., L1(G)) the class of Borel measurable functions h : R → R such that

∫
|h|dF < ∞

(resp.,
∫

|h|dG < ∞). A discrepancy measure between F and G is an integral probability metric
if it can be written in the form

dH(F,G) := sup
h∈H

∣∣∣∣

∫
|h|dF −

∫
|h|dG

∣∣∣∣

for some class of test functions H ⊂ L1(F ) ∩ L1(G). The aforementioned Kolmogorov and
Wasserstein distances are two important examples of integral probability metrics.

Suppose that F is absolutely continuous with density p on the real line, and introduce the
operator h → fh which, to each h ∈ L1(F ), assigns the function

fh(x) = 1
p(x)

∫ ∞

x

(
h(u) − F(h)

)
p(u)du, (10)

where F(h) =
∫

hdF . The integrability condition h ∈ L1(F ) guarantees that fh is the unique
absolutely continuous solution to the differential equation

f ′
h(x) + p′(x)

p(x)
fh(x) = h(x) − F(h)

to also satisfy the boundary conditions limx→± ∞ p(x)fh(x) = 0. Under the assumption that
H ⊂ L1(G), we can integrate with respect to G on both sides of the differential equation (known,
in the Stein community argot, as a “Stein equation”) to get

dH(F,G) = sup
h∈H

∣∣∣∣E
[
f ′

h(W) + p′(W)

p(W)
fh(W)

]∣∣∣∣, (11)

with W a random variable distributed according to G. This last expression provides a means of
bounding integral probability metrics (and thus in particular the Kolmogorov and Wasserstein
distances) in terms of the action of a differential operator over a class of functions.

The steps outlined above form the basis of what is known as the “density approach” to
Stein’s method (see, e.g., Chatterjee and Shao [4]), which is the most intuitive extension of
Stein’s method of normal approximation (as described in Chen et al. [5]) to arbitrary contin-
uous target distributions. In order for (11) to be of practical use, however, it is crucial that
the functions p′/p, fh and f ′

h be amenable to computations; it is particularly important that
fh and its first derivatives be bounded. Such conditions are not met in the case of the two-
sided Maxwell distribution p(x) = x2ϕ(x) with which we are concerned in this paper. Indeed,
for such a density, we have on the one hand p′(x)/p(x) = 2/x − x and, on the other hand,
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fh(x) = x−2ex2/2 ∫ ∞
x (h(u) − F(h))u2e−u2/2 du, both of which have a singularity at x = 0. Be-

cause of this, applying the classical Stein’s method toolkit to the right-hand side of (11) will
ultimately lead to trivial upper bounds and more elaborate methods need to be devised. This will
be performed in the coming sections.

Before proceeding to the description of our proposal, we stress that the classical version of
the “density approach” to Stein’s method that we have just described actually breaks down for
any target density p such that p(x0) = 0 at some x0 not on the edges of the support. Indeed, in
general, the Stein solution (10) is the product of two terms: one term with a singularity wherever
the density has a zero, and a second term that vanishes at the endpoints of the range of the
target random variable. This results in the peculiar behavior of singularities inside the range of
the random variable when the density has a zero there. Note that for the one-sided Maxwell
distribution the solution fh(x) has the same form as for its two-sided counterpart, though it is
now only defined for x ≥ 0; since in this one-sided case when x = 0 the second term

∫ ∞
0 (h(u)−

F(h))u2e−u2/2 du vanishes, we would have fh(0) = 0. This term doesn’t vanish (unless h is an
even function) for the two-sided Maxwell case, thus giving rise to the singularity at x = 0.

4.2. Coupling based Stein’s method for densities of the form (8)

Let X be a random variable with probability density function p which we assume to be of the
form (8). Let W be a symmetric random variable whose distribution we want to compare with
that of X. First, we introduce the random variable W ⋆ proposed in Definition 3.1 and write

E
[
h(W)

]
− E

[
h(X)

]
= E

[
f ′(W)

b(W)
− W

f (W)

b(W)

]

= E
[
f ′(W)

b(W)
− f ′(W ⋆)

b(W ⋆)

] (12)

for f = fh solutions to the differential equation

f ′(w)

b(w)
− w

f (w)

b(w)
= h(w) − E

[
h(X)

]
. (13)

Taking suprema over all h ∈ H, we deduce

dH
(
L(W),L(X)

)
= sup

h∈H

∣∣∣∣E
[
f ′(W)

b(W)
− f ′(W ⋆)

b(W ⋆)

]∣∣∣∣ (14)

for all H such that the solutions to (13) are well-defined. Expression (14) provides an alternative
to (11) which we will now prove to be useful to our purpose.

At this stage, the next typical “Stein-method” step is to write W ⋆ = W + (W ⋆ − W) and Tay-
lor expand the integrand in (14) around W to deduce a bound on dH(L(W),L(X)) expressed
in terms of the difference between W ⋆ and W . Unfortunately, for similar reasons as those de-
scribed in Section 4.1, the solutions to (13) also have singularities which make this intuition un-
exploitable directly. We propose to bypass this difficulty by introducing intermediate functions
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τX and g – to be defined later on in the text – for which

E
[
h(W)

]
− E

[
h(X)

]
= E

[
f ′(W)

b(W)
− f ′(W ⋆)

b(W ⋆)

]

= E
[
W

(
τX(W) − 1

)
g(W) − W ⋆

(
τX

(
W ⋆

)
− 1

)
g
(
W ⋆

)]
(15)

+ E
[
τX(W)g′(W) − τX

(
W ⋆

)
g′(W ⋆

)]
.

Bounding integral probability metrics dH(·, ·) between L(W) and L(X) then boils down to find-
ing bounds on the four terms provided in (15). Obviously this will only lead to reasonable results
if the intermediate functions τX and g are chosen wisely.

4.3. The Stein kernel equation for densities of the form (8)

We start by introducing the integral operator

h − )(h) -→ T −1
ϕ

(
h − )(h)

)
(w) := 1

ϕ(w)

∫ ∞

w

(
h(u) − )(h)

)
ϕ(u) du (16)

with )(h) =
∫

hd) and ) the standard Gaussian cumulative distribution function. (The notation
T −1

ϕ is taken from Ley, Reinert and Swan [9].) We also introduce the function

τX(x) = 1
p(x)

∫ ∞

x
up(u)du,

which is called the “Stein kernel” of X (or, equivalently, of p) – again we refer to Ley, Reinert
and Swan [9] for intuition and first properties.

Remark 4.1. Stein kernels were introduced in Stein [17], Cacoullos and Papathanasiou [2],
and have proven to be of great use in Gaussian analysis, see, for example, Nourdin and Peccati
[11] and Chatterjee [3]. Their importance in the abstract approach to Stein’s method has been
investigated in Döbler [6], where it is shown that they have a regularizing effect on the solutions
to general Stein equations.

Lemma 4.2. Let x -→ b(x) be a nonnegative even function with support a subset of (−∞,∞)

and such that limx→± ∞ b(x)ϕ(x) = 0. Suppose furthermore that b is absolutely continuous and
integrable w.r.t. ϕ with integral

∫ ∞
−∞ b(x)ϕ(x) dx = 1. Let X be a random variable with density

x -→ b(x)ϕ(x). Then

τX(x) = 1 +
T −1

ϕ b′(x)

b(x)
(17)

under the convention that the ratio is set to zero at all points x such that b(x) = 0 and
T −1

ϕ b′(x) ≠ 0. Let h : R → R be a Borel function such that E|h(X)| < ∞, and set h̃ =
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h − E[h(X)]. Then

gh(x) =
∫ ∞
x b(u)h̃(u)ϕ(u) du

b(x)ϕ(x) +
∫ ∞
x b′(u)ϕ(u) du

(18)

is the unique solution g of the ODE

τX(x)g′(x) − xg(x) = h̃(x), (19)

which satisfies the asymptotic property limx→± ∞ τ (x)ϕ(x)b(x)g(x) = 0.

Proof. Integrating by parts in the definition of the Stein kernel for p = bϕ we get (assuming that
limx→± ∞ b(x)ϕ(x) = 0)

∫ +∞

x
yp(y)dy =

∫ ∞

x
b(y)

(
−ϕ′(y)

)
dy

= b(x)ϕ(x) +
∫ ∞

x
b′(y)ϕ(y) dy

so that (17) follows by definition (16) of the inverse Stein operator. For the second claim, we
follow Nourdin and Peccati [12], Proposition 3.2.2, and note how

τX(x)g′(x) − xg(x) = (τX(x)g(x)p(x))′

p(x)

so that any solution to (19) has the form

g(x) = 1
τ (x)p(x)

∫ x

−∞
h̃(u)p(u)du + d

τ (x)p(x)
, (20)

where d ∈ R. By dominated convergence, one infers that

lim
x→± ∞

∫ x

−∞
h̃(y)b(y)ϕ(y) dy = 0,

so that the first summand in (20) has the announced form (18) and the asymptotic property is
satisfied if and only if d = 0. !

Our next result provides the connection between the Stein equations (13) and (19).

Lemma 4.3. Suppose that b only has isolated zeros. Let all notations be as above and introduce
the function g = gf defined at all x such that b(x) > 0 through

f ′(x) − xf (x)

b(x)
= τX(x)g′(x) − xg(x).
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Then

E
[
f ′(W)

b(W)
− f ′(W ⋆)

b(W ⋆)

]
= E

[
W

(
τX(W) − 1

)
g(W) − W ⋆

(
τX

(
W ⋆

)
− 1

)
g
(
W ⋆

)]

+ E
[
τX(W)g′(W) − τX

(
W ⋆

)
g′(W ⋆

)]
.

(21)

Proof. Since

f ′(x) − xf (x)

b(x)
= (f (x)ϕ(x))′

b(x)ϕ(x)

and

τX(x)g′(x) − xg(x) = (b(x)τX(x)g(x)ϕ(x))′

b(x)ϕ(x)

at all x for which b(x) ≠ 0, we deduce that f and g are mutually defined by f = (bτX)g. This
in turn gives

f ′(x)

b(x)
=

(
b′(x)

b(x)
τX(x) + τ ′

X(x)

)
g(x) + τX(x)g′(x) =: ψ(x)g(x) + τX(x)g′(x),

which, combined with ψ(x) = x(τX(x) − 1) (that is easily derived using the various definitions
involved), leads to the useful identity

f ′(x)

b(x)
= x

(
τX(x) − 1

)
g(x) + τX(x)g′(x) (22)

from which (21) is directly derived. !

Combining identities (12) and (21) we get (15), as promised. As already mentioned in the
Introduction, the price to pay for circumventing the singularities is the necessity to bound several
additional quantities concerning the couplings we obtain. The explicit nature of the recursion
described in Section 2 nevertheless allows us to compute the resulting quantities satisfactorily,
leading to the bounds claimed in Theorem 3.6 and Corollary 3.7. This we perform in the Maxwell
case in the next sections.

4.4. Approximating the two-sided Maxwell distribution

Theorem 4.4. Let p(x) = x2ϕ(x), and take f a solution to the Stein equation

f ′(w)/w2 − wf (w)/w2 = h̃(w), (23)

where h̃ is a function having bounded first derivative and zero-mean under p. Set c = ∥h̃′∥. Then
for any coupling of W and W ∗ on a joint probability space such that W ∗ has the x2-generalized
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zero biased distribution for W ,
∣∣∣∣E

[
f ′(W)

(W)2 − f ′(W ⋆)

(W ⋆)2

]∣∣∣∣ ≤ λ1E
∣∣W − W ⋆

∣∣ + λ2E
[
|W |

∣∣W − W ⋆
∣∣]

+ λ3E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣ + λ4E
∣∣∣∣1 − W ⋆

W

∣∣∣∣

(24)

with

λ1 ≤ 6c, λ2 ≤ 7c, λ3 ≤ 18c and λ4 ≤ 22c. (25)

Proof. With b(x) = x2 we have τX(x) = 1 + 2/x2 and ψ(x) = 2/x, so that (21) becomes

= E
[

2
W ⋆

g
(
W ⋆

)
− 2

W
g(W)

]
+ E

[(
1 + 2

(W ⋆)2

)
g′(W ⋆

)
−

(
1 + 2

(W)2

)
g′(W)

]

= 2E
[(

1
W ⋆

− 1
W

)
g
(
W ⋆

)]
+ 2E

[
1
W

(
g
(
W ⋆

)
− g(W)

)]

+ E
[
g′(W ⋆

)
− g′(W)

]
+ 2E

[
1

(W ⋆)2 g′(W ⋆
)
− 1

(W)2 g′(W)

]
.

The first two terms are dealt with easily to get

2
∣∣∣∣E

[(
1

W ⋆
− 1

W

)
g
(
W ⋆

)]
+ 2E

[
1
W

(
g
(
W ⋆

)
− g(W)

)]∣∣∣∣

≤ 2∥g∥E
[∣∣∣∣

1
W ⋆

− 1
W

∣∣∣∣

]
+ 2

∥∥g′∥∥E
[

1
|W |

∣∣W ⋆ − W
∣∣
]
.

For the last two terms, we introduce the function

χ(x) = g′(x)/x

to get on the one hand

E
[
g′(W ⋆

)
− g′(W)

]

= E
[
W ⋆ g′(W ⋆)

W ⋆
− W

g′(W)

W

]

= E
[(

W ⋆ − W
)
χ

(
W ⋆

)]
+ E

[
W

(
χ

(
W ⋆

)
− χ(W)

)]

so that

∣∣E
[
g′(W ⋆

)
− g′(W)

]∣∣ ≤ ∥χ∥E
[∣∣W ⋆ − W

∣∣] +
∥∥χ ′∥∥E

[∣∣W
(
W ⋆ − W

)∣∣]
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and, on the other hand

E
[

1
(W ⋆)2 g′(W ⋆

)
− 1

(W)2 g′(W)

]

= E
[

1
W ⋆

χ
(
W ⋆

)
− 1

W
χ(W)

]

= E
[(

1
W ⋆

− 1
W

)
χ

(
W ⋆

)]
+ E

[
1
W

(
χ

(
W ⋆

)
− χ(W)

)]

so that

2
∣∣∣∣E

[
1

(W ⋆)2 g′(W ⋆
)
− 1

(W)2 g′(W)

]∣∣∣∣ ≤ 2∥χ∥E
[∣∣∣∣

1
W ⋆

− 1
W

∣∣∣∣

]
+ 2

∥∥χ ′∥∥E
[

1
|W |

∣∣W ⋆ − W
∣∣
]
.

Combining these different estimates we obtain (24), with λ1,λ2,λ3 and λ4 expressed in terms of
∥χ∥,∥χ ′∥,∥g∥ and ∥g′∥ as follows:

λ1 = ∥χ∥, λ2 =
∥∥χ ′∥∥, λ3 = 2

(
∥g∥ + ∥χ∥

)
and λ4 = 2

(∥∥g′∥∥ +
∥∥χ ′∥∥)

.

The inequalities in (25) are proved in the Proposition 4.5 below. !

The next step is to bound ∥χ∥,∥χ ′∥,∥g∥ and ∥g′∥ in a non trivial way; this we achieve in the
next proposition.

Proposition 4.5. Let h : R → R be absolutely continuous and integrable with respect to p(x) =
x2ϕ(x). Set c = ∥h′∥ which we suppose to be finite. Let X ∼ p, define

g0(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ex2/2
∫ ∞

x
y2(h(y) − E

[
h(X)

])
e−y2/2 dy if x > 0,

ex2/2
∫ x

−∞
y2(h(y) − E

[
h(X)

])
e−y2/2 dy if x ≤ 0,

(26)

and set

g(x) = g0(x)

x2 + 2
and χ(x) = g′(x)

x
. (27)

Then

∥g∥ ≤ 3c,
∥∥g′∥∥ ≤ 4c, ∥χ∥ ≤ 6c and

∥∥χ ′∥∥ ≤ 7c.

Remark 4.6. The function g0 defined in (26) satisfies

g′
0(x) − xg0(x) = x2(h(x) − E

[
Z2h(Z)

])
(28)

with Z ∼ ϕ a standard Gaussian random variable.
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Remark 4.7. The function g defined in (27) satisfies

(g(x)τ (x)p(x))′

p(x)
= h(x) − E

[
h(X)

]

with X ∼ p and τ (x) = 1 + 2/x2.

Proof. In order to simplify future notations, we introduce )(x) =
∫ x
−∞ ϕ(t) dt , )̄(x) =

∫ ∞
x ϕ(t) dt , ϒ(x) = ex2/2 ∫ ∞

x t2e−t2/2 dt and ϒ̄(x) = ex2/2 ∫ x
−∞ t2e−t2/2 dt . Using the identity

∫ b

a
t2e−t2/2 dt = ae−a2/2 − be−b2/2 +

∫ b

a
e−t2/2 dt, −∞ ≤ a < b ≤ ∞, (29)

we deduce that ϒ(x) = x + ex2/2 ∫ ∞
x e−t2/2 dt and ϒ̄(x) = −x + ex2/2 ∫ x

−∞ e−t2/2 dt and thus

ϒ(x), ϒ̄(x) ≤ |x| +
√

π

2
at all x ∈ R and lim

x→∞
ϒ(x)

x
= lim

x→−∞
ϒ̄(x)

x
= 1. (30)

The proof is now broken down into several steps.
Step 1: rewrite the solutions. Following Chen et al. [5], page 39, we rewrite the test functions

in term of their derivatives (still with Z a standard normal random variable)

h(y) − E
[
h(X)

]
= h(y) − E

[
Z2h(Z)

]

=
∫ ∞

−∞
z2(h(y) − h(z)

)
ϕ(z) dz

=
∫ y

−∞
z2

(∫ y

z
h′(t) dt

)
ϕ(z) dz −

∫ ∞

y
z2

(∫ z

y
h′(t) dt

)
ϕ(z) dz.

Changing the order of integration then using (29) leads to the rhs becoming

∫ y

−∞
h′(t)

[∫ t

−∞
z2ϕ(z) dz

]
du −

∫ ∞

y
h′(t)

[∫ ∞

t
z2ϕ(z) dz

]
dt

=
∫ y

−∞
h′(t)

[
−tϕ(t) +

∫ t

−∞
ϕ(z) dz

]
dt −

∫ ∞

y
h′(t)

[
tϕ(t) +

∫ ∞

t
ϕ(z) dz

]
dt

= −
∫ ∞

−∞
h′(t)tϕ(t) dt +

∫ y

−∞
h′(t))(t) dt −

∫ ∞

y
h′(t))̄(t) dt,

and thus

h(y) − E
[
h(X)

]
=

∫ y

−∞
h′(t))(t) dt −

∫ ∞

y
h′(t))̄(t) dt − E

[
Zh′(Z)

]
. (31)
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We deduce the following useful bound

h(x) − E[h(X)]
x2 + 2

≤ c
2(x + 1/

√
2π) + √

2/π

x2 + 2
≤ 2c. (32)

Plugging (31) in (26) leads to (we restrict the discussion to x > 0, the other case following by
symmetry)

g0(x) = −E
[
Zh′(Z)

]
ϒ(x) =: I (x)

+ ex2/2
∫ ∞

x

∫ y

−∞
y2e−y2/2h′(t))(t) dt dy =: II(x)

− ex2/2
∫ ∞

x

∫ ∞

y
y2e−y2/2h′(t))̄(t) dt dy =: III(x).

To deal with the quantities II(x) and III(x), we again interchange integrations to get

II(x) = ex2/2
∫ x

−∞

(∫ ∞

x
y2e−y2/2 dy

)
h′(t))(t) dt

+ ex2/2
∫ ∞

x

(∫ ∞

t
y2e−y2/2 dy

)
h′(t))(t) dt

= ϒ(x)

∫ x

−∞
h′(t))(t) dt + ex2/2

∫ ∞

x
e−t2/2ϒ(t)h′(t))(t) dt

and

III(x) = ex2/2
∫ ∞

x

(∫ t

x
y2e−y2/2 dy

)
h′(t))̄(t) dt

= ex2/2
∫ ∞

x

(
e−x2/2ϒ(x) − e−t2/2ϒ(t)

)
h′(t))̄(t) dt

= ϒ(x)

∫ ∞

x
h′(t))̄(t) dt − ex2/2

∫ ∞

x
e−t2/2ϒ(t)h′(t))̄(t) dt

and thus if x ≥ 0 we have

g0(x) = −E
[
Zh′(Z)

]
ϒ(x) + ϒ(x)

∫ x

−∞
h′(t))(t) dt

− ϒ(x)

∫ ∞

x
h′(t))̄(t) dt + ex2/2

∫ ∞

x
e−t2/2ϒ(t)h′(t) dt.

(33)
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By a similar argument we deduce that if x < 0 then

g0(x) = −E
[
Zh′(Z)

]
ϒ(x) + ϒ(x)

∫ x

−∞
h′(t))̄(t) dt

− ϒ(x)

∫ ∞

x
h′(t))(t) dt + ex2/2

∫ x

−∞
e−t2/2ϒ(t)h′(t) dt.

(34)

Step 2: a bound on ∥g∥. Supposing ∥h′∥ ≤ c we can use (33) and the first claim in (30) to
deduce that for x ≥ 0:

∣∣g0(x)
∣∣ ≤ cE|Z|(x +

√
π/2) + c(x +

√
π/2)

∫ x

−∞
)(t) dt

+ c(x +
√

π/2)

∫ ∞

x
)̄(t) dt + cex2/2

∫ ∞

x
e−t2/2(t +

√
π/2) dt.

The last two terms decrease strictly to 0 as x → ∞, with maximum value c/2 and c(1 + π/2),
respectively. The first term is equal to c(

√
2/πx + 1) and the second one is equal to

c(x +
√

π/2)

∫ x

−∞
)(t) dt = c(x +

√
π/2)

(
x)(x) + ϕ(x)

)

≤ c
(
x2 + (

√
π/2 + 1/

√
2π)x + 1/2

)
.

Similar (symmetric) bounds hold for x ≤ 0 and thus, collecting all these estimates, we may
conclude:

∣∣g(x)
∣∣ = |g0(x)|

x2 + 2
≤ 3c. (35)

Step 3: a bound on ∥g′∥. Here we start by rewriting the derivative as

g′(x) = g′
0(x)

x2 + 2
− 2x

(x2 + 2)2 g0(x). (36)

Using (35), the second summand is easily seen to be uniformly bounded (by 3c). We are left with
the first summand for which we start by rewriting the numerator, for x ≥ 0, using (33):

g′
0(x) = −ϒ ′(x)E

[
Zh′(Z)

]
+ ϒ ′(x)

∫ x

−∞
h′(t))(t) dt

− ϒ ′(x)

∫ ∞

x
h′(t))̄(t) dt

+ ϒ(x)
(
h′(x))(x) + h′(x))̄(x)

)

+ xex2/2
∫ ∞

x
ϒ(t)h′(t)e−t2/2 dt − ex2/2ϒ(x)h′(x)e−x2/2,
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which leads to

g′
0(x) = −ϒ ′(x)E

[
Zh′(Z)

]

+ ϒ ′(x)

∫ x

−∞
h′(t))(t) dt − ϒ ′(x)

∫ ∞

x
h′(t))̄(t) dt (37)

+ xex2/2
∫ ∞

x
ϒ(t)h′(t)e−t2/2 dt.

Now we can use the fact that ϒ ′(x) = xex2/2 ∫ ∞
x e−t2/2 dt ≤ 1 for all x ≥ 0 as well as all the

arguments outlined at the previous step to deduce the bound: |g′
0(x)| ≤ c(

√
2
π +2(x +1/

√
2π)+

1√
2π

) ≤ 2c(x + 1) whence

|g′
0(x)|

x2 + 2
≤ c

2x + 2
x2 + 2

≤ c. (38)

Similar (symmetric) arguments hold also for negative x and thus |g′(x)| ≤ 4c.
Step 4: a bound on χ(x) = g′(x)/x. Using (36), we know that

χ(x) = g′
0(x)

x(x2 + 2)
− 1

(x2 + 2)2 g0(x). (39)

The second summand in (39) is bounded using (34) to get

1
(x2 + 2)2

∣∣g0(x)
∣∣ ≤ 3c. (40)

For the first summand, we use (37) to deduce

g′
0(x)

x
= −ϒ ′(x)

x
E

[
Zh′(Z)

]

+ ϒ ′(x)

x

∫ x

−∞
h′(t))(t) dt − ϒ ′(x)

x

∫ ∞

x
h′(t))̄(t) dt

+ ex2/2
∫ ∞

x
ϒ(t)h′(t)e−t2/2 dt.

At this stage it is useful to remark that, for x ≥ 0, the function ϒ ′(x)/x is strictly decreasing

with maximal value
√

π/2 and hence | g′
0(x)

x | ≤ c(1 + 2(x + 1√
2π

) + 1√
2π

) ≤ c(2x + 3) and thus

| g′
0(x)

x(x2+2)
| ≤ 3c which, combined with (40), leads (after applying the symmetric arguments for

x ≤ 0) to |χ(x)| ≤ 6c.
Step 5: a bound on ∥χ ′∥. Direct computations using (28)

χ(x) = 1
x2 + 2

(
1 − 1

x2 + 2

)
g0(x) − x

x2 + 2

(
h(x) − E

[
Z2h(Z)

])
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and thus

χ ′(x) = − 2x3

(x2 + 2)2

g0(x)

x2 + 2
+

(
1 − 2

x2 + 2

)
g′

0(x)

x2 + 2

− 2 − x2

x2 + 2
h(x) − E[Z2h(Z)]

x2 + 2
− x

x2 + 2
h′(x).

Using the bounds |2x3/(x2 + 2)2| ≤ 1, |1 − 2/(x2 + 2)| ≤ 1, |(2 − x2)/(x2 + 2)| ≤ 1 and
|x/(x2 + 2)| ≤ 1 as well as (35), (38) and (32) we conclude (after applying the symmetric ar-
guments for x ≤ 0) |χ ′(x)| ≤ 7c. !

4.5. Verifying bounds on expectations

In this section, we find bounds on the expectations in Theorem 3.6 in order to prove Corollary 3.7.
We will make use of the following lemma.

Lemma 4.8. If x1, . . . , xN is the unique strictly decreasing zero-mean solution of (4), then x1 =
O(

√
logN).

Proof. To simplify the notation, note that it suffices to consider the rescaled recursion x3
n+1 =

x3
n −S−1

n , where Sn is defined in the proof of Lemma 2.1. By expressing x3
1 as a telescoping sum,

x3
1 =

m−1∑

n=1

(
x3
n − x3

n+1
)
+ x3

m =
m−1∑

n=1

S−1
n + x3

m ≤
m−1∑

n=1

(n/x1)
−1 + x3

m ≤ x1(1 + logm) + x3
m,

where we have used Euler’s approximation to the harmonic sum for the last inequality. By the
variance property (P2) (in this rescaled case x2

1 + · · ·+ x2
N = N − 1), we have that x1 is bounded

away from zero (as a sequence indexed by N ) and xm is bounded, so x2
m/x1 is bounded. Dividing

the above display by x1, we then obtain x1 = O(
√

logN). !

Proof of Corollary 3.7. From Proposition 3.5 and the recursion (4), note that p⋆(x) puts mass
1/(N − 1) on each interval between successive xn, so it is easy to create a coupling of W ∼ PN

with W ⋆ ∼ p⋆(x) such that
∣∣W − W ⋆

∣∣ ≤ |xn − xn+1|
when W ∈ [xn+1, xn]. For a detailed proof of such a coupling, see the construction given in
McKeague and Levin [10]. From (P3) (see Lemma 2.1) and Lemma 4.8 we then have

E
∣∣W − W ⋆

∣∣ ≤ 1
N − 1

N−1∑

n=1

(xn − xn+1) = 2x1

N − 1
= O

(√
logN

N

)
. (41)
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Second, using |W | ≤ x1 = O(
√

logN) it follows immediately that

E
[
|W |

∣∣W − W ⋆
∣∣] = O

(
logN

N

)
.

Third, the zero-median property gives

2x3
m = x3

m − x3
m+1 = S−1

m ≥ (m/xm)−1 = xm/m,

where m = N/2 + 1, so xm ≥ 1/
√

N . By symmetry

E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣ = E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣1W ⋆∈(xm+1,xm] + 2
m−1∑

n=1

E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣1W ⋆∈(xn+1,xn].

From Proposition 3.5, note that p⋆(x) ∝ x2 for x ∈ (xm+1, xm]. Also using the fact that p⋆(x)

puts mass 1/(N − 1) on this interval, the first term above can be written

6
x3
m(N − 1)

∫ xm

0

(
1
x

− 1
xm

)
x2 dx ≤ 3

xm(N − 1)
= O

(
1√
N

)
.

The second term is bounded above by the telescoping sum

2
N − 1

m−1∑

n=1

(
1

xn+1
− 1

xn

)
= 2

N − 1

(
1
xm

− 1
x1

)
= O

(
1√
N

)
,

so we have

E
∣∣∣∣

1
W

− 1
W ⋆

∣∣∣∣ = O

(
1√
N

)
.

Fourth,

E
∣∣∣∣1 − W ⋆

W

∣∣∣∣ ≤
√

NE
∣∣W − W ⋆

∣∣ = O

(√
logN

N

)

using |W | ≥ xm ≥ 1/
√

N and (41). The corollary now follows from Theorem 3.6. !
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