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 The Annals of Statistics
 1990, Vol. 18, No. 3, 1172-1187

 INFERENCE FOR A NONLINEAR COUNTING PROCESS
 REGRESSION MODEL

 BY IAN W. MCKEAGUE1 AND KLAUS J. UTIKAL2

 The Florida State University and University of Kentucky

 Martingale and counting process techniques are applied to the problem

 of inference for general conditional hazard functions. This problem was
 first studied by Beran, who introduced a class of estimators for the condi-

 tional cumulative hazard and survival functions in the special case of
 time-independent covariates. Here the covariate can be time dependent; the
 classical i.i.d. assumptions are relaxed by replacing them with certain
 asymptotic stability assumptions, and models involving recurrent failures
 are included. This is done within the framework of a general nonparametric
 counting process regression model. Important examples of the model in-

 clude right-censored survival data, semi-Markov processes, an illness-death
 process with duration dependence, and age-dependent birth and death
 processes.

 1. Introduction. Suppose that the conditional hazard function

 1
 A(tlZi) = lim-P(Ti < t + ElTi > t; Zi(s), s < t)

 Eo E

 for the survival time Ti of an individual with covariate process Zi = (Zi(t)) has
 the form

 ( 1.1) A(t JlZi ) = a (t, Zi (t)), i = 1, ... ., n,

 where a is a completely general function of time t and the state of the
 covariate process at time t. Inference for this fully nonparametric model was
 initiated by Beran (1981), who introduced a class of estimators for the condi-

 tional cumulative hazard and survival functions, A(, z) = foa(s, z) ds and
 S(, z) = e-A(, z) respectively, in the special case that the covariate Z is not
 time dependent. Weak convergence results for Beran's estimators have been
 obtained by Dabrowska (1987) using a conditional version of the classical
 approach to Breslow and Crowley (1974).

 The purpose of the present paper is to show that martingale and counting
 process techniques, known to be powerful tools in survival analysis since the
 work of Aalen (1975, 1978), can also be applied successfully in the setting
 described above. There are many advantages to this approach: much simpler
 proofs can be given; more general censoring patterns can be allowed; the

 Received December 1987; revised October 1989.
 'Research supported by the Army Research Office under grant DAAL03-86-K-0094.
 2Research supported by the Air Force Office of Scientific Research under contract F49620-85-

 C-0007.

 AMS 1980 subject classifications. 62M09, 62J02, 62G05.
 Key words and phrases. Conditional hazard function, censored survival data, counting pro-

 cesses, semi-Markov processes, martingale central limit theorem.

 1172

This content downloaded from 156.145.72.10 on Thu, 01 Nov 2018 19:17:37 UTC
All use subject to https://about.jstor.org/terms



 NONLINEAR COUNTING PROCESS REGRESSION MODEL 1173

 covariate can be time dependent (the only restriction being that it is a
 predictable process); the classical i.i.d. assumptions can be relaxed by replacing
 them with certain asymptotic stability assumptions; and models involving
 recurrent failures are naturally included in the analysis by allowing the
 counting processes to have more than one jump. In addition, the martingale
 approach suggests and makes possible an elaborate statistical theory centered
 on the conditional cumulative hazard function and the doubly cumulative
 hazard function W(t, z) = f zfta(s, x) ds dx. It is natural to estimate '(t, z)
 by integrating Beran's estimator, denoted A(t, x), over the covariate state
 space to obtain

 (1.2) (t, z) =fA(t, x) dx.

 In subsequent work, based on the approach developed in the present paper, we
 shall establish a weak convergence result for v which leads to some new
 goodness-of-fit tests for various important submodels of (1.1) (e.g., Cox's
 proportional hazards model), see McKeague and Utikal (1988, 1990a, 1990b).

 The counting process formulation of the model (1.1) and several important
 examples are described in Section 2. Estimators for A(-, z), S(-, z) and a are
 introduced and their asymptotic properties are stated under various general
 conditions in Section 3. In Section 4 we check that these conditions are
 satisfied for the i.i.d. case. All proofs are contained in Section 5.

 2. Model formulation and examples. Let N(t) = (Nl(t),..., NJ(t))',
 t E [0, 1], be a multivariate counting process with respect to a right-continuous

 filtration (y(n)), i.e., N is adapted to the filtration and has components Ni
 which are right-continuous step functions, zero at time zero, with jumps of

 size + 1 such that no two components jump simultaneously. Here Ni(t)
 records the number of observed failures for the ith individual during the

 interval [0, t] over the whole study period (taken to be [0, 1]). Suppose that Ni
 has intensity

 (2.1) A i(t) = Yi (t) a (t, Zi (t)), i = 1, ... ,n ,

 i.e., Mi(t) = Ni(t) - ftAi(s) ds is a local martingale, where Yi(t) is a pre-
 dictable {0, 1}-valued process, indicating that the ith individual is at risk when
 Yi(t) = 1, and Zi(t) is a predictable covariate process.

 The problem is to carry out inference, based on observation of (Ni, Yi, Z.),
 i = 1,... , n, for a over some given region in the (t, z)-plane. In fact, rather
 than observing the whole covariate process Zi, it is sufficient to observe Zi at
 times when the individual is at risk [i.e., when Yi(t) = 1]. To be specific, the
 region of inference is taken to be the unit square [0, 1]2. Note that a may
 vanish over part of this region, as in Example 3. Some useful examples of
 model (2.1) follow.

 EXAMPLE 1 (Right-censored survival data). The observable portion of an
 individual's lifetime T is given by T = min(T, C), where C is the censoring
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 1174 I. W. MCKEAGUE AND K. J. UTIKAL

 time. Suppose that T and C are conditionally independent given a left-continu-
 ous covariate process Z, and suppose that the conditional hazard of T given
 (Z(s), s < t) is a(t, Z(t)). For each of n independent copies (Ti, Ci, Z), i =
 1, ... , n of (T, C, Z), we observe Ti, 8i = I(Ti < Ci) and Zi(t) for t < Ti. Let
 Ni(t) = I(Ti < t, Si = 1) be the counting process with a single jump at an
 uncensored survival time. Then N(t) = (NW(t),..., Nn(t))' is a multivariate
 counting process and Ni has intensity (2.1), where Yi(t) = AlTi > t) is the
 indicator that the individual is observed to be at risk at time t.

 EXAMPLE 2 (A non-Markovian pure jump process). Consider a pure jump
 process (X(t)) describing the motion of a particle on a finite state space.
 Suppose that the intensity ajk(t, Z) of transition from state j to state k
 depends on clock time t and on the time z spent in state j since the last jump.
 Then the counting process Njk(t) which registers the number of transitions
 from state j to state k up to time t has intensity Ajk(t) = Yj(t)ajk(t, L(t)),
 where Yj(t) = I(X(t - ) = j) is the indicator that the particle is in state j at
 time t - , and L(t) is length of time at t - which has elapsed since the last
 jump. In the terminology of Markov renewal processes (Pyke, 1961), L(t) is
 the backward recurrence time. Let V denote the (clock) time of the last jump
 prior to t= 0. The data needed to estimate ajk consist of n copies
 (Nzk(t),Yij(t), t E [0, 1], Vi), i = 1, ..., n of (N,k(t), Y(t) t e [0, 1], V), with
 Njk(t) = (N1jk(t),..., Nnjk(t))' required to be a multivariate counting process.
 Right censoring can be introduced into this example as well [see, e.g.,
 Andersen, Borgan, Gill and Keiding (1988), Section 3].

 If each transition intensity aJk(t, z) only depends on the clock time t, then
 X is a Markov process for which inference has been studied by Aalen and

 Johansen (1978). When each ajk(t, z) only depends on the backward recur-
 rence time, then X is a semi-Markov or Markov renewal process for which
 inference has been studied by Gill (1980) [cf. Sellke and Siegmund (1983) and
 Slud (1984)]. In McKeague and Utikal (1988a) we develop goodness-of-fit tests
 for the Markov and semi-Markov submodels within the general model (2.1),
 utilizing the doubly cumulative hazard function estimator v/ mentioned in the
 introduction.

 EXAMPLE 3 (An illness-death process with duration dependence). As a
 special case of Example 2, consider an individual who can be in any one of
 three states: healthy, diseased or dead-denoted 0, 1 and 2, respectively. The
 clock time t is the age of the individual. The individual starts in state 0 at
 t = 0 (so V 0) and subsequently makes transitions 0 -* 1 -> 2 or 0 -* 2. The
 incidence rate of the disease, aol(t), and the mortality rate of the healthy,
 a02(t), depend only on age t. However, the mortality rate of the diseased,
 a12(t, z), depends on both age t and the duration of the illness z.

 This type of model has been of interest in epidemiology at least since the
 work of Fix and Neyman (1951) [cf. Chiang (1980)]; recent discussion of the
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 model may be found in Keiding (1990) and Andersen, Borgan, Gill and Keiding
 (1988). Note that the mortality rate of the diseased, a12(t, z), vanishes for
 z > t, so it is only necessary to estimate a12(t, z) in the triangle {(t, z) E [0, 1]2:
 z < t).

 EXAMPLE 4 (Age-dependent birth and death process). This example is
 another special case of Example 2. Suppose that there are three states, 0, 1
 and 2, with possible transitions 0 -> 1 -* 2. Under the interpretation 1 = alive
 and 2 = dead, t = calendar time and z = the age of the individual, a12(t, z) is
 the calendar time x age-specific mortality rate. If the individual is alive at
 t = 0, then V = date of birth.

 This type of process, as well as an age-dependent birth process, was first
 studied by Kendall (1949) in the case of individuals having calendar time
 independent birth and death rates. Recently, Keiding, Holst and Green (1989)
 applied the model to the estimation of the calendar time x age-specific dia-
 betes incidence rate among the inhabitants of Fyn county, Denmark. Keiding,
 Holst and Green remark that the possibility of estimating calendar time x
 age-specific intensities nonparametrically seems to be new, except that Ca-
 passo (1988) has outlined some basic relevant martingales and suggested
 estimates of piecewise constant intensities.

 3. The estimators and their asymptotic properties. We begin this
 section by giving the notation used to define our versions of Beran's (1981)
 estimators for the cumulative conditional hazard function A(t, z) and the

 conditional survival function S(t, z). For fixed z, let Ni(t, z) be the counting
 process which registers the jumps of Ni(t) when ZP(t) E z4, where ,9 c [0, 1]
 is an interval of length w, containing z, so that Ni(t, z) = fJI{Zi(s) E
 ,}dNi(s), and let N ()(s,z)- E n. 1Ni (s, z) denote the aggregated counting
 process. Set

 n

 (n)(S z) - I{Z(s) e Y
 i=l

 the size of the risk set of individuals with covariate in z at risk at time s. In
 Example 4, for instance, y(n)(S z) is the size of the cohort of individuals born

 in the calendar time interval s - z and observed to be alive at time s. Note
 that z depends implicitly on n.

 Beran's estimators are defined as the Nelson-Aalen and product-limit type
 estimators,

 A(t, z) t N ( n)(ds, z)

 S(t, z) = H(i - AA(s,z)),
 s < t

 respectively, where A A(s, z) = A(s, z) - A(s - , z), and by convention 1/0 0

 (this convention is adopted throughout the paper). The bin width wn should
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 1176 I. W. MCKEAGUE AND K. J. UTIKAL

 tend to zero at a suitable rate as n -m oc. By smoothing A(ds, z) we can
 estimate a(t, z) itself [cf. Ramlau-Hansen (1983)]. For t E (0, 1), set

 a(t,z) = b|K( )A(ds,z),

 where- K is a bounded, nonnegative kernel function with support [-1, 1],

 integral 1 and bn > 0 is a bandwidth parameter, bn -? 0.
 We may regard the preceding estimators as being defined for all z E [O, 1] by

 stratifying over z: Take a partition 4,r r = 1, ... , d n of [0, 1] into intervals of
 length wn = 1/dn say, where dn is an increasing sequence of positive inte-

 gers, and set 4z = 4r when z E 4r. Then the estimator v given by (1.2) is
 fully defined. It is possible to show that '(-, z) is a uniformly consistent
 estimator of a(, z) for each fixed z. However, by smoothing a in the z
 direction, we obtain what turns out to be a uniformly consistent estimator of
 the whole function a:

 1 Z A (t X)Id-
 a(t, z) k ~- Ka)(~x x

 where K is a kernel function and bn is a bandwidth parameter; K and bn
 having the same properties as K and bn. A similar estimator has been used by
 Keiding, Holst and Green (1988) in the context of Example 4 to obtain
 three-dimensional visualizations of diabetes incidence rates plotted against

 onset year and onset age. An essentially equivalent way to define a, as is
 apparent from the Proof of Theorem 4, would be to doubly smooth V(ds, dz)
 over both s and z in the fashion of Ramlau-Hansen (1983).

 We now proceed to state the main results of the paper. It is assumed
 throughout that a is Lipschitz on its support, supp(a) = {(s, z): a(s, z) > 0}.
 The following condition is needed for Theorems 1 and 2 which give the

 asymptotic distributions of A(, z) and S(, z). We need some notation (in
 which the presence of n is implicit):

 5 = {s E [0, 1]: 4 is contained in the support of a(s, )},

 S? = {s E [0, 1]: a(s, u) > O and a(s, v) = O for some u, v E }.

 CONDITION A.

 (Al) For fixed z there exists a nonnegative bounded measurable function
 g(-, z) defined on the support of a(-, z) such that

 nwn

 y|(n)(S' Z) - g(s z) ds ->p 0.

 (A2) Leb{s E 9: y(n)(S, z) = O0 = op(l/ nw).
 (A3) Leb(Sz) = O(wn).

 Condition (Al) is an asymptotic stability condition on the normalized size of

 the risk set. In Example 4, for instance, y(n)(S z)/nwn estimates the "density"
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 of the cohort of individuals born at calendar time s - z and observed to be
 alive at time s, so it is reasonable to require that this quantity satisfy some
 sort of asymptotic stability condition [cf. condition (4.13) of Capasso (1988)].
 Condition (A2) controls the amount of time (expressed formally in terms of
 Lebesgue measure) that the risk set can be empty.

 Condition (A3) is a mild regularity assumption on the boundary of supp(a)
 used to control an "edge effect" that arises there. It is satisfied for the
 illness-death model in Example 3, for instance, since for that example supp(a)
 is the triangle {(t, z) E [0, 1]2: z < t}, so 3 = rz which has Lebesgue meas-
 ure wn .

 Let h(t, z) = a(t, z)g(t, z) if (t, z) E supp(a), zero otherwise.

 THEOREM 1. If Condition A holds, nw, -x oo and nw2 -,- 0 then

 n (A( , z) - A( , z)) -> U( , Z)

 in D[O, 1], where U(-, z) is a continuous Gaussian martingale with zero mean
 and variance function

 Var( U(t, z)) = fth(s, z) ds.
 0

 THEOREM 2. Under the hypotheses of Theorem 1,

 nWn ( X Z) - S *z)) 9 S(* Z)U(- , Z)

 in D[O, 1], where U(, z) is the continuous Gaussian martingale of Theo-
 rem 1.

 Theorems 1 and 2 can be used to derive confidence bands for the conditional
 cumulative hazard and conditional survival functions, just as in the uncondi-
 tional case [see Andersen and Borgan (1985), page 114 and Hall and Wellner
 (1980)]. To construct such bands, we would first need to estimate the function
 H(-, z) = f h(s, z) ds. It can be shown that

 N N(n )(ds, z)
 ?(y(n)(S,z)

 is a uniformly consistent estimator of H(-, z) suitable for that purpose [see
 McKeague and Utikal (1987)].

 It is possible to extend Theorem 1 to deal with a finite set of distinct
 covariate levels z1,... , zp. The asymptotic joint distribution of the normalized
 (A(-, zj))j= 1 is a p-variate Gaussian martingale having orthogonal (thus inde-
 pendent) components U(, zj). The key ingredient here is that the aggregated
 counting processes N(n)(, zj) have no common jumps when the intervals A
 are disjoint, as is the case when wn is small enough. Thus the martingale parts
 of these counting processes are asymptotically orthogonal, leading via the
 martingale central limit theorem to asymptotic independence of the A(, zj).
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 1178 I. W. MCKEAGUE AND K. J. UTIKAL

 Note that the U(, zj) can be represented as stochastic integrals
 flvh( s, z;) dWj(s), where W.. . , Wp are independent standard Wiener pro-
 cesses. Summing over j we obtain an approximation to the asymptotic distri-
 bution of the doubly cumulative hazard function estimator X'. Indeed, it can
 be shown that

 Fn X-5v 2||Vh~( s~,x)~ dW( s, x),

 where W is a standard Wiener field on [0, 1]2 [see McKeague and Utikal
 (1990a)].

 We shall use the following condition, having an interpretation similar to
 Condition A, to obtain an asymptotic distribution result for a(t, z).

 CONDITION B.

 (Bi) For fixed (t, z), 0 < t < 1, there exists a bounded measurable function
 g(, z), which is continuous at t and defined in a neighborhood of t, such that

 X- bn y(n) ( S Z ) I

 (B2) Leb{s E [t - bn, t + bn]: y(n)(S z) = O0 = op(l/ Vn ).

 THEOREM 3. Suppose that Condition B holds for a fixed (t, z), 0 < t < 1,
 such that a(t, z) > 0. If b w," , nw,2 -* oo and nw4 -O 0, then

 (nwa'(t, z) - a(t, z)) - N(O, u2(t, z)),

 where

 o2(t, z) = h(t, z)f K2(u) du.

 Pointwise confidence intervals for a(t, z) can be obtained from Theorem 3
 using

 hf(t, z) = JK( )H(d)

 to estimate h(t, z), where K is the same kernel function used to define aY(t, z);
 see McKeague and Utikal (1987) for a proof that hI is a consistent estimator
 of h.

 The following condition is needed to prove the uniform consistency of &.
 With n implicit, denote

 7= {(s, z) E [0, 1]2: X is contained in the support of a (s, ),

 S= {(s, z) E [0, 1]2: a(s, u) > 0 and a(s, v) = 0 for some u, v E )
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 CONDITION C.

 (Cl) Eff, y x(n)(s, X)] ds dx = 0(1).
 (C2) Leb2{(S, X) E : y(n)(S X) = O} = op(bnbn).
 (C3) Leb2(K)= O(Wn)

 Condition (C3) is similar to Condition (A3). It is satisfied for the
 illness-death model since S7= U dni x , which has two-dimensional
 Lebesgue measure wn.

 THEOREM 4. Suppose that ENi(1) < X for each i ? 1, Condition C holds, K
 and K are left-continuous and of bounded variation, nw b2b2 b-* oo and w =
 o(bnnb)2 (e.g., Wn n-1/2 and bn =bn n-179). If 0 < tl < t2 < 1 and 0 <
 Z1 < Z2 < 1, then

 sup sup I&(t,z) - a(t,z)I p 0.
 t E [tl, t2] Z E= [Z1, Z2]

 It is worth noting that the estimators and results of this section can be
 extended to deal with the analogous inference problem for continuous semi-
 martingales and, in particular, diffusion processes, for which a is the drift of
 the diffusion. Indeed, suppose that Ni is a continuous semimartingale having
 canonical decomposition of the form Ni(t) = ftAi(s) ds + Mi(t), where Ai sat-
 isfies (2.1) and Mj, i = 1, ... , n, are orthogonal square integrable martingales.
 If the predictable quadratic variation process of Mi has the form (M1)(t) =
 fty(s, Zi(s), Yi(s)) ds, where y is a bounded and measurable function, and we
 define h(t, z) = y(t, z, 1)g(t, z), then Theorems 1-4 continue to hold precisely
 as stated. In the diffusion process case Yi 1, the covariate process is the
 diffusion process itself, and y is the infinitesimal variance.

 4. The i.i.d. case. We have seen that the mild conditions (A3) and (C3)
 are satisfied for the illness-death model. In this section we show that the
 remaining parts of Conditions A, B and C hold in the i.i.d. case in which

 (Ni, Yj, Zi), i > 1, are independent copies of some generic triple (N, Y, Z), and
 for the illness-death model in particular. Let the subdistribution function of
 the state of the covariate process at time s when Y(s) = 1 be denoted F(s, *
 i.e., F(s, x) = P(Z(s) < x, Y(s) = 1), -ac < x < oo.

 PROPOSITION 1 (i.i.d. case). Suppose that for each s E [0, 1], F(s, ) is
 absolutely continuous on the support of a(s, * ) in [0, 1] and has density f(s, )
 such that f(., ) is continuous and bounded away from zero on supp(a).
 Define

 g(s, z) = 1/f(s, z) for (s, z) E supp(a).
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 1180 I. W. MCKEAGUE AND K. J. UTIKAL

 With this choice of g:

 (i) If nwn > cc, then Conditions (Al) and (A2) hold.
 (ii) If nwn oo and bn ? wn, then Condition B holds for each (t, z) E

 supp( a).
 (iii) If nwn b2 n 2> oc, then Conditions (Cl) and (C2) hold.

 In Proposition 1 the assumption concerning the density of F(s, ) is stronger
 than necessary for parts (i) and (ii) since we really only need such an assump-
 tion holding in the part of some neighborhood of z contained in [0, 1], and for
 (ii) we only need it in some neighborhood of t E (0, 1).

 EXAMPLE 5 (The illness-death process). To check the hypotheses of Propo-
 sition 1 for the illness-death model defined in Example 3, note that f is given
 by

 f(s, z) = exp- a2(vv - s + z) dvaol(s - z)

 exp[ f Zoi( lu) duj

 for 0 < z < s < 1, zero otherwise. If a0o is continuous and bounded away from
 zero, then the hypotheses of Proposition 1 are satisfied.

 5. Proofs.

 PROOF OF THEOREM 1. Define the processes
 n

 M(n)(t,Z) = E3ftI{Zi(s) E J } dMi(s),

 n

 a(n) (t, z) = E I{Zi(t) E } Yi (t)a (t, Zi(t)),
 i=l

 so that by (2.1),

 nwg (A(t, z) -A(t, z)) = X(n)(t) + R(n)(t),
 where

 X(n)(t) =n tM(n)(ds, z) x t)= \RWJO y(n)(S, Z)

 R (n)( t) = [r ( s, Z ) ds.

 Note that, since a is bounded, a(n) (S z) < O(l)Y(n)(s, z) uniformly in s, z and
 w E fl. Also, since a is assumed to be Lipschitz on its support,

 (5.1) a(n)(s, z) = (a(s, z) + O(wn))yn)(s, z),
 uniformly for s E Y and co E Ql. This formula will be used repeatedly. In
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 particular, since a(, z) and a(n)( z) vanish outside 9? u '5,

 s I (a(s, z) + O(Wn) )Y(n)(\s Z)

 + o( nw)Leb(,7)

 = O( nw~)Leb{s E : y(n)(S z) = 0 + o( rnw) p 0,
 by (A2), (A3) and nw' -- 0. Note that the stochastic integral X(n) is a local
 square integrable martingale with respect to (5(n)) We shall apply the version
 of Rebolledo's (1980) martingale central limit theorem stated in Andersen and
 Gill (1982). The predictable variation of X(n) is

 (X(n)), = nWn (pn( Z)2 ds

 = flwt(af(s,Z) + O(Wn))I(s , 9? ) ds + O(nWn)Leb(?)z

 by (5.1), so that

 - g(s, z)a(s, z) ds

 < 0( 1) l |y(n)( ) -g( Z) ds + 0(nwn)Leb( --)p 0,
 by (Al), (A3) and nw- 0. Next we check the Lindeberg condition

 L = nwnf (Y-I)(:))2 { y(n)( ) > E} ds ->p 0,

 for all E > 0. Using Conditions (Al) and (A3) as before,

 L = O(1)Leb(s E 5?: Y( Wn) > E + O(nw2) + op(l).

 The Lebesgue term may be written

 Lebs E Jz: y(n)(S Z) > flWn}

 <Leb{s E( 9z:Y( n<) -g(s,z) >8- nw supg(t,z4

 < Leb(s e 5z: > 2 ) y(n)(S( z) -g(s, z) 2 Wn
 2 nwn~

 nw yY~(n,)(S -g(s, z) ds
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 where the second to last inequality holds for n sufficiently large since nwn oo* 0,
 and we have used (Al) to obtain the last line. U

 PROOF OF THEOREM 2. The proof is omitted since it closely follows Gill's
 (1983) derivation of the asymptotic distribution of the product-limit estimator

 in the unconditional case, except that vn is replaced by <nwn. An alternative
 proof can be given by making direct use of Theorem 1, the Hadamard
 differentiability of the product integral (Gill and Johansen, 1990), and applying
 a functional version of the delta method (Gill, 1989). 0

 PROOF OF THEOREM 3. Note that

 nw2 ("(t, z) - a(t, z)) = X(n)(1) + R(n)
 where (defining x(n) and R(n) differently from the Proof of Theorem 1)

 X I T 1 = s l

 X -),r Vnw2 -s__K__M(n)(ds, z),

 R (n) = VFn 2 K( b ) Y ds - d (t, z) z(
 We shall apply Rebolledo's martingale central limit theorem to the local square
 integrable martingale x(n). The predictable variation of x(n) at r = 1 is

 X(n)>= b f K2( ds.

 Consider the r.h.s. of the inequality

 X(n)>1_-o2(t, Z) <(X(n))- b K2b )h(sz) ds

 + K fK2( )h(s,z)ds- o2(t,Z)

 Continuity of g(, z) and a(-, z) at t implies that the second term tends to
 zero. By (5.1) the first term is bounded above by

 1 1 2It -s\ nwn
 0(l) - JK2 )| y(n,(Sn) -g(s,z) ds

 + 0(wn) 1K2 s g(s, z) ds,

 which tends to zero in probability by Condition (B1). Thus KX (n)1 1p a 2(t, z).
 We also need to check the Lindeberg condition

 L n_2 K2( ) (sz) )2 K Wb)Y n)( lf ds -*p 0,
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 for all E > 0. Using (5.1) again, we have that, for some E' > 0,

 OM1 1 2( t -s ) nwn t(K t-s ) n
 L_ < 0(1) b1 n y(n)(S Z) I(K(b) y>)SZ ds

 < 0(1) _K2_ t _s nwn -_g(s z) ds

 0b Leb(s E [t -bn t + bn]' yn > ) Le Y(n)(s, z) )

 The first term tends in probability to zero by (Bi). Using the same argument
 employed to deal with the Lebesgue term in the Proof of Theorem 1, except

 now restricted to the interval [t - b n t + bn], we see that the second term is of
 order op(l/ vn Wn). Finally, using (5.1) again,

 R(n) = nuV4) + 4 bn 2 f1 (b)a(s, z) dsa(t,z)]

 - n b~ |f 'K( b S: Y(n)(s, z) = O}a(s, z) ds.

 The second term here tends to zero by the Lipschitz condition on a, and the
 last term tends to zero in probability by Condition (B2). o

 PROOF OF THEOREM 4. It is easily shown, using integration by parts,
 Fubini's theorem and the assumptions of a Lipschitz and K, K left-continu-
 ous with bounded support and bounded variation, that

 a(t,-z) = b I 1 .(s'x)dK b ) dK t s + o(1)
 a~t,zj - b 1b A )dK()

 a(t, z) = b JJb k X))dK( d )d + op(l)

 uniformly over (t, z) E [t1, t2j x [z1, Z2] as n -* oo. In the same sense we have
 &(t, z) - a(t, z)

 =b bA - A)(s, u) dudK( dK( b) + op(l)

 bflblfffx sfM(n)(dv, u) d ( z-x )d(t-s )
 1bn1X bn y(nV, U) bnb

 bn bn J100 [Y'n)(VU) -YvUU)]

 dvdudK(- dK(b)|
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 1184 I. W. MCKEAGUE AND K. J. UTIKAL

 Using Conditions (C2) and (C3), (5.1) and wn = o(bnbn), the last term above is
 seen to be of order op(l), cf. the treatment of R(n)(t) in the Proof of Theorem
 1. The expectation of the supremum over (t, z) E [0, 1]2 of the absolute value
 of the first term is bounded above by

 (1) j1 Esup s M (n)(dv, u) |

 which tends to zero by Doob's inequality, (5.1), Conditions (Cl) and (C3) and

 the assumptions nwnbnbn -~ oo and w,n = o(bnnb)2. Doob's inequality is appli-
 cable here since the assumption that ENj(1) < oo implies that Mi is a square
 integrable martingale by Aalen (1978), page 723. [1

 The following lemma, similar to Lemma 4.2 of Aalen (1976), is useful for
 the proof of Proposition 1.

 LEMMA 1. Let X binomial(n, p), 0 <p < 1, and define 1/X to be 0 if
 X = 0. Then, for each positive integer k,

 E (-X < -

 PROOF.

 1 k n 1 n!

 E i k ( h) pn-1
 x7k) E=1 k1 i!(n - i)! ( q

 n + (i + k(i+!) n!

 ik + k)!

 np

 < E(k i )siin1

 (k +1) kn n (n +k)!pi+kqn-i

 k + 1 k

 np J

 LEmmA 2 (i.i.d. case). Suppose that the conditions of Proposition 1 hold.
 Then

 (i) For each positive integer k,

 sup E[ y2n)S,Z] <o*
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 (ii) For each z E [0, 1]

 f_P(Y()(s, z) = 0) ds < e-mnwn,

 where m > 0 is a lower bound for f on supp(a).

 (iii) If nwn -o 0c, then for each z e [0, 1]

 nwn

 PROOF. If s E 5z, then y(n)(S, z) has a binomial distribution with parame-
 ters n and p(f)(s, z) = f, f(s, u) du ? mwn, where m is defined in (ii) above.
 Hence, by Lemma 1,

 [nw ]k((k +1) nWn
 E[y(n)(Sz i) nmwn )

 which proves (i). Also, if s E 95?, then

 p(y(n)(s z) = 0) < (1 - mwn)n < emnWn,

 which proves (ii). For s E S?, p(n))(S, z) - O(wn), so that

 (5.2) Var Y(n)(S z) =np(n)(S, z) p(n)(S, z)) = ( )
 In J ( nwn ) n -

 and, using the continuity of f on supp(a),

 (5.3) E( )f = f(s,u) du- f(s,z).
 nwn Wn Z

 Now

 E nwY n gs z) - E nw I(Y(n)(s Z) # O)g(s, Z)
 y(n)(S, z)yn)SZ

 + g(S, Z)p(y(n)(S, Z) = 0).

 The integral over 9; of the second term here tends to zero by part (ii) of
 Lemma 2. Note that g(, z) is bounded on 3z since f is assumed to be
 bounded away from zero on supp(a). The first term is bounded above by

 g( s, z) E( nwn yf(s,z) - y(n|)(S, z) which tends to zero by the Cauchy-Schwarz inequality, part (i) of Lemma 2
 with k = 2, (5.2) and (5.3). The proof of (iii) is completed by applying the
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 1186 I. W. MCKEAGUE AND K. J. UTIKAL

 dominated convergence theorem to

 |E| nwn) - - I(Yn)(S, Z) 0 O)g(s, z) ds. [

 PROOF OF PROPOSITION 1. Condition (Al) follows directly from Lemma
 2(iii). Condition (A2) is proved using Lemma 2(i):

 E[Leb(s E z: ynS z) = 0= f P(Y(s, z) = 0) ds

 ? -mnwn = 0 )

 < e<
 where we have used nwn oo* Conditions B, (C1) and (C2) are proved in a
 similar way, except that parts (ii) and (iii) of Lemma 2 need to be slightly
 modified. C
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