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Summary. Assessing the statistical significance of risk factors when screening large numbers of 2 × 2 tables that cross-classify
disease status with each type of exposure poses a challenging multiple testing problem. The problem is especially acute in
large-scale genomic case-control studies. We develop a potentially more powerful and computationally efficient approach
(compared with existing methods, including Bonferroni and permutation testing) by taking into account the presence of
complex dependencies between the 2 × 2 tables. Our approach gains its power by exploiting Monte Carlo simulation from the
estimated null distribution of a maximally selected log-odds ratio. We apply the method to case-control data from a study of
a large collection of genetic variants related to the risk of early onset stroke.
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1. Introduction

Assessing statistical significance when screening large num-
bers of 2 × 2 tables arising in case-control studies is a
challenging multiple testing problem. The problem becomes
especially acute in large-scale genomic studies; see Dudoit
and van der Laan (2008) and Sham and Purcell (2014) for
comprehensive reviews. One standard approach is to search
for significant associations by controlling the family-wise
error rate (FWER) using Bonferroni corrections for marginal
Fisher’s exact or chi-squared tests, but that can be highly
conservative, especially when the tables are far from inde-
pendent. Another standard approach is to use permutation
testing: case and control labels are reshuffled at random in
order to estimate the “overal” null distribution of observed
marginal p-values across the tables, see Churchill and Doerge
(1994). However, there is a heavy computational burden with
permutation testing.

In this article, we develop a potentially more powerful and
computationally efficient approach for detecting the presence
of associations by taking into account dependence between the
2 × 2 tables. Our proposed approach is based on estimating a
standardized version of the maximal absolute log-odds ratio,
and we develop a method to calibrate such a test statistic
using Monte Carlo simulation from its estimated null dis-
tribution. We show that this approach leads to substantial
computational savings over permutation testing, and superior
power to all competing methods. Our approach is especially
relevant to genome-wide association studies (GWAS), which
attempt to establish associations of genetic variants with
disease outcome. As described by Wu et al. (2010), stan-
dard GWAS involves genotyping a large number of SNPs,
for large numbers of individuals with the disease (cases)
as well as healthy controls, in order to identify individual
loci that are associated with the outcome. Breast cancer,

prostate cancer, and type 2 diabetes have been studied using
this design.

There is an extensive literature on methods of testing
for the association between a binary exposure variable and
a binary outcome from case-control data. For an accessible
introduction and references we refer the reader to Chapter 2
of Keogh and Cox (2014). The most thorough study of the
asymptotic properties of tests of binary associations based on
a single log-odds ratio is due to Kou and Ying (1996), and
we will rely on their results extensively in the sequel. We also
mention in passing that the problems of testing for homo-
geneity of odds ratios and estimating a common odds ratio
from sequences of dependent 2 × 2 tables have been studied
by Reis et al. (1999) and Kou and Ying (2006).

Typically in high-dimensional genomic screening it is the
marginal association between a genotype and a phenotype
that is of interest. Beyond the permutation testing and
Bonferroni-correction methods mentioned earlier, marginal
associations can be assessed using, among many other
multiple testing procedures, higher criticism (Donoho and
Jin, 2015), and sequential goodness-of-fit testing (Carvajal-
Rodriguez et al., 2009), both of which are based on test
statistics constructed from a set of (almost independent)
p-values. For background on the marginal screening approach
relevant to the present article, we refer the interested reader to
McKeague and Qian (2015a), in which an adaptive resampling
test (ART) was developed for screening multiple predictors for
an association with a continuous response in the standard lin-
ear regression setting. Here, we develop a parallel screening
test that is specific to the case-control setting with multiple
binary predictors and a binary response. In the sequel, we
refer to our proposed new screening procedure as the binary
screening test (BST). The test statistic used in ART
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has non-regular limiting behavior at the null hypothe-
sis of no association, and the calibration of the test
was designed to adapt to this non-regularity, albeit at a
high computational cost. We show that the BST statis-
tic has the same type of non-regularity, but the simpler
form of its limiting distribution allows the direct use
of Monte Carlo simulation, making the approach much
more tractable and appealing for application in large-scale
genomic studies.

The knockoff approach recently developed by Candès et
al. (2018), a variation of the knockoff filter of Barber and
Candès (2015), provides rigorous control of false discovery
rate (FDR) in the setting of high-dimensional logistic regres-
sion models, and is applicable to case-control data. However,
this approach has not been developed for FWER control. FDR
control is most useful in situations where large numbers of
predictors are known to be active, as with the Crohn’s dis-
ease SNP data set analyzed by these authors, rather than
testing for the presence of a single active predictor. FWER
control is more stringent than FDR control, as noted by Efron
(2010) (Section 4.4). Moreover, the knockoff method involves
the selection of active predictors conditionally on all other
predictors, which, as mentioned above, is not a central concern
in high-dimensional genomic screening. Another approach
that is potentially relevant in our case-control setting is
the method of conditional post-selection inference for �1–
penalized likelihood models studied by Taylor and Tibshirani
(2018), but a theoretical justification of this approach is only
available in the linear model case, and the logistic regression
case is only understood at a heuristic level.

The article is organized as follows. Background on multiple
2 × 2 tables and the sampling design of case-control studies
is given in Section 2.1. The proposed binary screening test
is developed in Section 2.2, along with an asymptotic result
used to validate the approach. Robust confidence intervals
for the maximal log-odds ratio are described in Section 2.3.
Numerical examples based on simulated data are studied in
Section 3.1, and in Section 3.2, we provide an application
to SNP data from the Risk Assessment of Cerebrovascu-
lar Events Study (RACE, 2017). Various extensions of our
approach are discussed in Section 4. Technical assumptions
are placed in the Appendix and proofs in Section 2 of the
Supplementary Materials.

2. Marginal Screening and Odds Ratios

2.1. Background

Let disease status be indicated by D ∈ {0, 1} and consider
a p-dimensional vector of {0, 1}-valued risk factors W =
(W1, . . . , Wp)

T. We are interested in testing whether at least
one of the risk factors is marginally associated with D.
The sampling design is assumed to be that of a standard
unmatched case-control study: independent random sam-
ples of M1 cases and M2 controls, and total sample size
N = M1 + M2.

Throughout we use the notation N1k and N2k for the num-
bers of subjects observed to be exposed or unexposed to
the kth risk factor, respectively, and Xk for the number of
exposed cases. It is convenient to display the resulting data as

2 × 2 tables cross-classifying the exposure status of the cases
and controls:

Cases Controls

Exposed Xk N1k − Xk N1k

Unexposed M1 − Xk Xk + N2k − M1 N2k

M1 M2 N

The conditional distribution of Xk given fixed margins
in the above table is noncentral hypergeometric, with non-
centrality parameter given by the odds ratio of disease
probability for exposed (Wk = 1) versus non-exposed (Wk =
0), namely θk = [p11k/p01k]/[p10k/p00k], where plmk = P(D =
l|Wk = m). As is well-known, the conditioning can be reversed
in each probability in the definition of θk without chang-
ing its value, so it is estimable from the case-control data.
The maximum likelihood estimator of θk when only the mar-
gin (M1, M2) is fixed (as with the actual data) is given
by the empirical odds ratio θ̂k = [Xk(Xk + N2k − M1)]/[(N1k −
Xk)(M1 − Xk)], k = 1, . . . , p.

When both margins are fixed, the MLE of θk does not have a
closed form expression, so our focus is naturally on the compu-
tationally simple estimator θ̂k. To develop asymptotic theory
for θ̂k, however, it is more tractable initially to study the
MLE when the data are generated with both margins fixed,
by exploiting the noncentral hypergeometric structure men-
tioned above. As mentioned in Section 1, a thorough study
based on this approach for a single 2 × 2 table was carried
out by Kou and Ying (1996); we will make use of several of
their results.

2.2. Binary Screening Test

In this section, we introduce the proposed test for detecting
whether any of the risk factors are associated with the disease.
Formally this means designing a test of the null of whether
all θk = 1 against the alternative that at least one θk �= 1. The
standard approach is to break such a test down into multiple
Bonferroni-adjusted tests, but a potentially much more pow-
erful approach is to recast the problem so its implicit variable
selection features emerge clearly. That is, we reformulate the
problem as testing

H0 : θ0 = 1 versus Ha : θ0 �= 1, (1)

where θ0 = θk0 with k0 ∈ arg maxk | log θk|/σk and σk > 0 is
a prescribed sequence of normalizing constants (defined in
(A.1)). The parameter θ0 represents the odds ratio of the risk
factor k0 having maximal marginal effect (if there is an effect)
in terms of standardized units.

The inclusion of the normalizing constants σk is technically
redundant in the sense that neither hypothesis depends on
them, but they provide the flexibility to balance the vary-
ing precision in estimating the marginal log-odds of each risk
factor. Accordingly, a reasonable strategy is to arrange for
σ2

k to be proportional to the asymptotic variance of log θ̂k,
as we do in the sequel. An analogous situation arises in the
marginal screening of predictors in linear regression, where
pre-standardization of all predictors (to have zero mean and
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unit variance) is used to ensure scale-invariance and equal
precision of the marginal slope parameter estimates, see
McKeague and Qian (2015b) for discussion.

The proposed test statistic is TN = log θ̂N , where θ̂N = θ̂k̂N

is the sample version of θ0 with k̂N ∈ arg maxk | log θ̂k|/τ̂k esti-
mating k0, and the normalizer τ̂k taken as the standard error
of log θ̂k given (in terms of variance) by

τ̂2
k = 1

Xk

+ 1

Xk + N2k − M1

+ 1

N1k − Xk

+ 1

M1 − Xk

.

The normalization by τ̂k has the same asymptotic effect on
the test statistic as normalization by σk, since σ̂2

k = Nτ̂2
k can

be shown to be a consistent estimator of σ2
k .

Calibration of the test is challenging since TN is
non-regular—its asymptotic distribution is non-Gaussian
and discontinuous at the null, as we now show by analyzing
the local asymptotic behavior of TN . The local model spec-
ifies the vector of marginal odds ratios θ = (θ1, . . . , θp)

T

in the neighborhood of some limiting value θ(0) by
log θ = log θ(0) + b/

√
N, where b = (b1, . . . , bp)

T ∈ Rp is

a vector of local parameters. Here θ = θ(N) is indexed by the
total sample size N = M1 + M2, although we will suppress
N in the notation. The hypotheses (1) now also depend on
sample size: H0 : θN = 1 versus Ha : θN �= 1, where θN = θkN

,
kN ∈ arg maxk | log θk|/τk, and

τ2
k = 1

E(Xk)
+ 1

E(Xk + N2k − M1)
+ 1

E(N1k − Xk)
+ 1

E(M1 − Xk)
,

with the expectations being conditional on M1, M2, N1k, N2k.
The following result provides a theoretical basis for the
procedures introduced in the sequel.

Theorem 1. Suppose Conditions (C1)–(C3) in the

Appendix hold, the index k0 = arg maxk | log θ
(0)
k |/σk is unique

when θ(0) �= 1, and k̃ = arg maxk |bk|/σk is unique when θ(0) =
1 and b �= 0. Then, under the sequence of local models,

√
N(log θ̂N − log θN)

d→
{

σk0Zk0 if θ(0) �= 1,

σKZK + bK − bk̃ if θ(0) = 1,

where (Z1, . . . , Zp)
T is a normally distributed random vec-

tor with mean-zero variance-one marginal distributions
and correlation matrix CX defined in Condition (C2),
K = arg maxk=1,...,p(Zk + bk/σk)

2, and (σ1, . . . , σp)
T is defined

in (A.1).

The presence of the local parameters in the limiting distri-
bution in Theorem 1 establishes the non-regularity property
mentioned earlier. The cause of this non-regularity is post-
selection of the empirical odds-ratio: replacing the maximally
associated risk factor k0 by an estimate distorts the limiting
behavior of log θ̂N .

BST procedure

1. Obtain Monte Carlo draws from the estimated limiting
null distribution of

√
N log θ̂N by plugging-in empirical

estimates of CX and σk (see Appendix, Remarks 1 and
2), and setting b = 0, θ(0) = 1 in Theorem 1.

2. Calibrate the test at level α by using critical values cl

and cu given by the lower and upper α/2-quantiles of
10,000 draws obtained in step 1.

3. Reject the null hypothesis and conclude that there is at
least one significant risk factor if

√
N log θ̂N falls outside

the interval [cl, cu].

2.3. Robust Confidence Intervals

Another useful application of Theorem 1 is in obtaining
Wald-type confidence intervals for log θ0 (or for θ0, by trans-
formation) that are robust to the non-regularity at θ0 = 1,
that is, taking the post-selection into account. To make use
of the limiting distribution in Theorem 1, we need to make a
sensible choice of the local parameter b, which can be viewed
as a tuning parameter determining proximity to H0.

We discuss four types of 100(1 − α)% confidence inter-
vals based on the critical values cl and cu given in step 2
of the BST procedure, except now the k̂N -th local param-
eter, bk̂N

, is allowed to vary (rather than being set to zero
like all the other components of b). Each CI takes the form
(log θ̂N − cu/

√
N, log θ̂N − cl/

√
N), where cl and cu depend on

a choice of the value of bk̂N
, and are found using Monte Carlo

simulation of the corresponding limiting distribution given in
Theorem 1 (after plugging-in estimates of CX and σk).

The first method (CI0) is simply to use the same Monte
Carlo calibration as BST (i.e., setting bk̂N

= 0); this method
should perform well close to the null, but may have poor per-
formance away from the null. The second method (CImax) is
to use the most conservative critical values cl and cu. That is,
cu is taken as the maximal upper α/2-quantile over all values
of bk̂N

, and cl is the minimal lower α/2-quantile. The Monte
Carlo simulations now need to be carried out over a fine grid
of values of bk̂N

, but in practice this grid can be confined to
an interval that contains the bulk of the mass of N(0, σ̂2

k̂N
),

so when bk̂N
is at the boundary of such an interval there is

close agreement with the critical values given by the (regu-
lar) Gaussian limit under the non-local alternative. That is,
CImax adapts to the non-regularity, yet agrees with the usual
Wald-type confidence interval sufficiently far away from the
null hypothesis of no association.

The third method (CIboot) aims at a compromise between
CI0 that takes bk̂N

= 0 and the highly conservative CImax

that uses the most extreme critical values cl and cu. This
is done using bootstrap resampling to select a value of bk̂N

that furnishes the most accurate values of cl and cu in terms
of providing nominal coverage. Our fourth and recommended
method (CIbag) adapts the well-known technique of bagging
to stabilize the behavior of CIboot.

Procedure for CIboot and CIbag

1. Find bootstrap estimates log θ∗
N of log θ0 from B boot-

strap samples that are formed by combining separate
bootstrap samples from cases and controls.

2. Select the value of bk̂N
on the grid for which (log θ̂N −

cu/
√

N, log θ̂N − cl/
√

N) contains closest to 100(1 − α)%
of the B bootstrap estimates log θ∗

N in step 1.
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3. CIboot is the interval based on the value of bk̂N
selected

in step 2.
4. CIbag is the interval formed by averaging the endpoints

of a number of independent replications (say 5 or 10) of
CIboot.

3. Numerical Examples

In this section, we study the performance of BST and the cor-
responding robust confidence intervals using simulated data,
and give a real data example.

3.1. Simulation Study

We compare the performance of BST to four competing
methods:

1) Bonferroni correction (Bonf): Marginal chi-squared tests
with Bonferroni correction to the smallest p-value
(equivalent to Bonferroni–Holm method in this case).

2) Higher criticism (HC): Donoho and Jin (2004, 2015)
3) Sequential goodness-of-fit metatest (SGoF): Carvajal-

Rodriguez et al. (2009)
4) Permutation test (Perm): The smallest observed p-value

among the p marginal chi-squared tests, denoted pmin,
is used as a test statistic. To estimate its null dis-
tribution, the disease status D is randomly permuted
R times, resulting in an empirically adjusted p-value

p∗ = (r + 1)/(R + 1), where r is the number of values
of pmin based on the reshuffled data that are smaller
than the observed value of pmin, see Davison and Hinkley
(1997), Section 4.3. We take R = 1000.

Simulation Models

A) Wk ∼ Ber(0.5) for k = 1, . . . , p;
B) Wk ∼ Ber(0.6), k = 1, . . . , p/2, Wk ∼ Ber(0.55), k =

p/2 + 1, . . . , p for cases, and Wk ∼ Ber(0.5), k =
1, . . . , p/2, Wk ∼ Ber(0.6), k = p/2 + 1, . . . , p for
controls;

C) W1 ∼ Ber(0.65), W2 ∼ Ber(0.6), and W3 ∼ Ber(0.55) for
cases, Wk ∼ Ber(0.4), k = 1, 2, 3 for controls, and Wk ∼
Ber(0.5), k = 4, . . . , p.

Model A represents the null, whereas B and C represent two
types of alternatives. To specify the joint distributions of the
risk factors Wk we will consider three scenarios: independent
Wk, exchangeable correlation Corr(Wj, Wk) = 0.5 for j �= k,
and AR(1) correlation Corr(Wj, Wk) = 0.5|j−k|. The total sam-
ple size is taken as N = 200 or 400, with a balanced design
comprised of M1 = N/2 cases and M2 = N/2 controls. The
number of risk factors p varies from 50 to 2000.

Histograms of log θ̂N in each of the simulation models under
the independent Wk scenario are displayed in Figure 1, where
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Figure 1. Histograms of log θ̂N in each simulation model for independent risk factors, with log θ0 indicated by the vertical
dashed line, N = 200, p = 50, 400, and 2000. The odds ratios of the most active risk factors are θ0 = 1, 1.5, and 2.79 in models
A (first column), B (second column), and C (third column), respectively.
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we used 1000 Monte Carlo replications for each histogram.
The symmetric bimodal behavior of log θ̂N under the (null)
model A is consistent with the result of Theorem 1 (with the
local parameter set to 0). For model C, the chance of misiden-
tifying the most active variable (W1) increases with p, so the
histogram is close to normal with mean log θ0 for small p (as
suggested by Theorem 1) but becomes increasingly bimodal
for large p due to more inactive variables having (spuriously)
negative estimates of log θk, thus causing a smaller peak to
emerge on the left. Model B violates the uniqueness condition
of Theorem 1 (that θ0 correspond to a unique risk factor as
indexed by k0), causing the lack of centering of the right peak
around log θ0; this lack of centering becomes more extreme as
p increases. The pronounced left peak in this case is due to
the less active variables (Wk, k = p/2, . . . , p) having negative
log θk. Note, however, the violation of the uniqueness condi-
tion in model B does not affect the calibration of the BST
(which is done under the null).

Empirical rejection rates for H0 at the nominal 5% signifi-
cance level (again based on 1000 Monte Carlo replications)
are reported in Tables 1–3. For Model A, the tables pro-
vide type I error rates, or FWER in the case of Bonferroni,
which should be compared with the 5% nominal rate; for
Models B and C, the tables provide the power of each test.
Model B represents a dense signal; note that the number of
active predictors increases with p, so we expect the power to
increase with p. Model C represents a relatively sparse sig-
nal, and the number of active predictors is fixed at 3, so we
expect the power to decrease with p. BST has good control of
type I error in all cases, although it is slightly anti-
conservative for N = 200 and p = 1000 and 2000; note that
this anti-conservativeness disappears for N = 400. Bonferroni
is highly conservative and has low power, although it is less
conservative in the case of independent covariates. HC and
SGoF are both highly conservative in the independent and
AR(1) cases (Tables 1 and 2), and fail to control type I
error in the exchangeable correlation case (Table 3). BST is
designed for detecting relatively sparse signals (as in Model
C), and does not perform as well in terms of power as HC
and SGoF for the dense signal in Model B, in the settings of
Tables 1 and 2. The permutation method has good control of
type I error throughout, but slightly lower power than BST
in both the dense and sparse cases. The advantage of BST
over permutation testing and Bonferroni is most evident in
the exchangeable correlation case with large p.

Table 3 also presents the runtime (in seconds) of each
method. Bonferroni, HC and SGoF have similar speed. BST
is 10–50 times slower, but this is to be expected due to the
computationally intensive simulation step. The permutation
method is 10–80 times slower than BST, and becomes markely
slower with larger N; the runtime of BST does vary apprecia-
bly with N.

Coverage rates and average widths of the 95% confidence
intervals for log θ0 based on 1000 Monte Carlo replications for
exchangeable correlation structure are reported in Table 4,
along with runtime. As expected, CI0 performs well in model
A (the null model), but fails to provide the nominal coverage
rate under alternative. On the other hand, confidence intervals
produced by CImax are much too conservative to provide use-
ful information. CIboot (based on B = 1000) achieves nominal

Table 1
Empirical rejection rates (%) of H0 based on 1000 samples
generated from models A, B, and C as the number of risk

factors p ranges from 50 to 2000, for N = 200, and
independent risk factors.

Model p BST Bonf HC SGoF Perm

A 50 6.4 2.7 1.3 4.6 5.1
100 5.5 3.0 1.6 1.7 5.1
200 5.9 2.6 1.6 2.2 5.2
400 5.8 1.4 0.8 0.7 4.3
1000 7.4 2.5 0.8 0.2 3.5
2000 7.0 1.5 0.4 0.0 3.8

B 50 65.3 48.9 95.8 96.2 63.1
100 70.4 52.7 99.9 99.6 67.6
200 81.5 63.3 100 100 77.2
400 86.4 67.1 100 100 81.2
1000 94.4 72.4 100 100 90.3
2000 96.7 80.6 100 100 94.7

C 50 78.7 66.5 10.5 31.5 76.2
100 68.2 57.9 11.2 11.4 66.4
200 64.5 54.4 7.6 5.9 61.9
400 55.3 40.8 4.2 2.1 50.5
1000 49.7 33.7 3.7 0.1 42.9
2000 42.7 29.3 3.0 0.0 35.8

coverage rates in models A and C, but suffers from under-
coverage in the dense signal case (model B) when p is large.
This is not surprising since the maximal signal is not unique
in model B, which causes instability in the calibration. CIbag

(averaging the endpoints of 10 copies of CIboot with B = 200)
improved on CIboot in all cases by furnishing higher coverage
without increasing the average width of the interval.

Table 2
Empirical rejection rates (%) as in Table 1, N = 200, except

for risk factors having AR(1) correlation structure
Corr(Wj, Wk) = 0.5|j−k|.

Model p BST Bonf HC SGoF Perm

A 50 5.8 2.1 2.5 6.4 4.2
100 6.4 2.9 3.0 3.8 5.6
200 6.6 3.5 3.1 3.2 5.6
400 5.7 2.0 1.5 2.0 4.9
1000 6.6 2.3 1.0 0.0 3.8
2000 7.9 2.8 1.0 0.2 5.2

B 50 57.2 40.0 87.1 89.3 53.8
100 65.7 50.7 97.9 96.8 62.8
200 73.9 57.3 100 99.9 69.0
400 86.3 64.9 100 100 81.7
1000 92.8 73.0 100 100 89.0
2000 96.2 77.6 100 100 92.0

C 50 76.2 61.7 15.1 38.0 73.2
100 65.2 55.5 17.5 15.0 62.8
200 58.7 49.4 14.3 10.0 56.3
400 51.8 37.9 9.5 4.5 48.7
1000 45.6 31.0 6.5 1.2 39.9
2000 41.7 27.4 4.2 0.0 33.9
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Table 3
Empirical rejection rates (%) as in Table 1 except with exchangeable correlation structure Corr(Wj, Wk) = 0.5 for j �= k, and

N = 200 and N = 400. The average runtime (seconds) to conduct a single test is given in parentheses.

N p BST Bonf HC SGoF Perm

200 A 50 5.9 (1.1) 1.7 (0.1) 13.8 (0.1) 11.3 (0.1) 4.9 (54)
100 6.0 (1.3) 1.2 (0.1) 18.1 (0.1) 12.6 (0.1) 4.9 (104)
200 5.0 (1.8) 1.1 (0.2) 18.8 (0.2) 12.9 (0.2) 4.5 (201)
400 6.4 (3.5) 1.4 (0.4) 24.2 (0.5) 15.2 (0.4) 4.8 (394)
1000 7.0 (16) 1.5 (1.0) 26.7 (1.0) 18.0 (1.0) 5.4 (969)
2000 8.4 (82) 1.4 (1.9) 29.6 (1.9) 19.9 (1.9) 6.5 (1889)

B 50 46.9 (0.8) 24.4 (0.1) 8.4 (0.1) 74.9 (0.1) 43.6 (50)
100 50.4 (1.2) 25.4 (0.1) 96.1 (0.1) 79.5 (0.1) 45.3 (97)
200 50.6 (1.6) 23.5 (0.2) 99.7 (0.2) 88.2 (0.2) 45.2 (199)
400 54.6 (3.3) 26.1 (0.4) 100 (0.5) 94.9 (0.4) 48.3 (374)
1000 58.0 (16) 23.6 (1.0) 100 (1.0) 97.2 (1.0) 49.7 (935)
2000 64.6 (80) 22.7 (1.9) 100 (1.9) 98.8 (1.9) 56.1 (1848)

C 50 78.1 (0.8) 59.3 (0.1) 17.7 (0.1) 21.3 (0.1) 75.6 (51)
100 72.6 (1.2) 52.7 (0.1) 21.2 (0.1) 16.2 (0.1) 68.9 (96)
200 66.3 (1.6) 45.7 (0.2) 20.1 (0.2) 15.0 (0.2) 62.6 (186)
400 61.7 (3.3) 36.6 (0.5) 24.3 (0.4) 16.4 (0.4) 57.4 (368)
1000 56.0 (16) 30.6 (0.9) 26.8 (0.9) 18.4 (0.9) 50.9 (920)
2000 53.8 (79) 24.9 (1.8) 29.8 (1.8) 20.4 (1.8) 47.4 (1830)

400 A 50 5.9 (0.9) 2.5 (0.1) 15.6 (0.1) 12.7 (0.1) 5.8 (69)
100 5.9 (1.0) 1.9 (0.1) 20.8 (0.1) 14.4 (0.1) 5.2 (132)
200 5.8 (1.5) 1.2 (0.3) 22.9 (0.3) 15.6 (0.3) 5.8 (258)
400 6.5 (3.4) 1.9 (0.5) 24.6 (0.5) 16.6 (0.5) 5.1 (511)
1000 5.7 (16) 1.8 (1.3) 26.0 (1.3) 17.4 (1.3) 5.6 (1278)
2000 5.7 (80) 1.2 (2.6) 27.3 (2.6) 17.3 (2.6) 4.8 (2563)

B 50 76.5 (0.8) 59.5 (0.1) 100 (0.1) 99.5 (0.1) 74.9 (70)
100 82.6 (1.0) 59.9 (0.1) 100 (0.1) 100 (0.1) 80.2 (137)
200 85.1 (1.6) 60.3 (0.3) 100 (0.3) 100 (0.3) 83.7 (268)
400 87.9 (3.5) 58.3 (0.5) 100 (0.5) 100 (0.5) 85.1 (520)
1000 89.1 (16) 59.6 (1.3) 100 (1.3) 100 (1.3) 86.3 (1277)
2000 91.2 (85) 56.0 (2.6) 100 (2.6) 100 (2.6) 87.3 (2612)

C 50 99.0 (0.9) 97.7 (0.1) 26.8 (0.1) 29.4 (0.1) 99.1 (70)
100 98.5 (1.0) 96.0 (0.1) 24.0 (0.1) 20.4 (0.1) 98.2 (135)
200 97.7 (1.5) 94.0 (0.3) 26.3 (0.3) 18.6 (0.3) 97.7 (262)
400 97.1 (3.4) 89.4 (0.5) 25.7 (0.5) 18.5 (0.5) 96.8 (516)
1000 94.9 (16) 83.8 (1.3) 26.3 (1.3) 17.8 (1.3) 93.7 (1272)
2000 94.0 (81) 81.5 (2.5) 27.3 (2.5) 17.7 (2.5) 93.4 (2538)

3.2. Example with Genomic Data

In this section, we analyze SNP data from the ongoing Risk
Assessment of Cerebrovascular Events Study (RACE, 2017).
This is a case-control study involving over 5000 imaging-
confirmed cases of stroke and 5000 controls, recruited from
seven medical centers in Pakistan. The study is aimed at
investigating the genetic, biomarker, and lifestyle determi-
nants of stroke and its subtypes. We consider the 1,220 cases
of early onset stroke (stroke before age 60) and 1,273 controls
for whom both genotypic and phenotypic data are available.
We restrict to the first 2000 loci on chromosome 5. Genetic
variants by nature have three categories, but we follow the
common practice of grouping them into two categories, so the
data are represented by 2000 2 × 2 tables.

The left panel of Figure 2 shows the histogram of all the
marginal log-odds ratio estimates log θ̂k along with the rejec-
tion region for BST; two SNPs appear to be significant,

but the critical region only refers to the most active one.
For results on forward-stepwise BST with Mantel–Haenszel
adjustment at each step, see the right panel of Figure 2. Five
active SNPs are identified in all, each having a highly sig-
nificant association with the risk of early onset stroke. To
obtain a CI for the odds-ratio, we constructed five CIboot

intervals, each based on 200 bootstrap samples, and averaged
their endpoints to form CIbag. Only two of the five active
SNPs identified in forward-stepwise BST are significant in
the initial run of BST (left panel of Figure 2). Note, how-
ever, that forward-stepwise BST is an ad hoc way of removing
the effect of previously detected active SNPs, and should
not be compared to a single run of BST, which is designed
to detect the most active SNP (in this case rs275430) and
can be unduly conservative for detecting additional SNPs.

Bonferroni agrees with the initial BST result (left panel of
Figure 2) which identified only rs275430 and rs1909745 as
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Table 4
Coverage rates (%) and average widths (in brackets) of 95% confidence intervals for log θ0, under the same exchangeable
correlation structure as in Table 3. The average runtime (seconds) to construct a single confidence interval is given in

parentheses.

N p CI0 CImax CIboot CIbag

200 A 50 94.0 [1.8](0.8) 100 [4.2](37) 97.7 [2.4](38) 99.8 [2.3](38)
100 94.1 [1.9](0.8) 100 [4.4](38) 95.1 [2.5](40) 99.7 [2.4](42)
200 94.9 [1.9](1.7) 100 [4.6](40) 96.5 [2.6](45) 99.8 [2.5](49)
400 93.6 [2.0](3.4) 100 [4.7](46) 95.4 [2.7](60) 99.8 [2.6](74)
1000 92.8 [2.1](17) 100 [4.9](78) 95.2 [2.7](158) 99.9 [2.7](238)
2000 91.6 [2.2](79) 100 [5.1](169) 94.4 [2.8](475) 99.9 [2.7](780)

B 50 65.8 [1.8](0.8) 100 [4.3](37) 93.6 [2.5](38) 96.3 [2.5](40)
100 64.6 [1.9](1.1) 100 [4.5](38) 93.0 [2.6](40) 96.0 [2.6](41)
200 65.7 [2.0](1.6) 100 [4.6](40) 92.3 [2.7](44) 95.8 [2.6](48)
400 65.3 [2.1](3.3) 100 [4.8](46) 91.2 [2.7](60) 94.8 [2.7](74)
1000 64.1 [2.1](17) 100 [5.0](78) 88.7 [2.7](157) 92.7 [2.7](237)
2000 64.3 [2.2](78) 100 [5.2](167) 86.7 [2.7](473) 91.2 [2.7](776)

C 50 91.2 [1.8](0.8) 99.8 [4.3](37) 97.6 [2.3](38) 98.3 [2.3](38)
100 87.7 [1.9](1.0) 99.9 [4.4](38) 96.9 [2.4](39) 97.5 [2.4](41)
200 86.3 [1.9](1.5) 100 [4.6](39) 96.6 [2.6](44) 96.8 [2.6](48)
400 85.4 [2.0](3.3) 100 [4.8](46) 95.8 [2.7](60) 96.3 [2.7](74)
1000 82.5 [2.1](17) 100 [5.0](79) 93.7 [2.8](158) 94.2 [2.8](238)
2000 80.1 [2.2](77) 100 [5.1](166) 92.0 [2.9](472) 91.6 [2.9](777)

400 A 50 94.0 [1.3](0.6) 100 [3.0](37) 98.0 [1.7](38) 99.9 [1.6](39)
100 94.2 [1.3](0.8) 100 [3.1](38) 96.9 [1.7](40) 99.9 [1.7](43)
200 94.1 [1.4](1.4) 100 [3.2](40) 97.0 [1.8](47) 100 [1.7](55)
400 93.6 [1.4](3.3) 100 [3.3](47) 96.5 [1.9](72) 100 [1.8](98)
1000 94.4 [1.5](17) 100 [3.5](79) 98.1 [1.9](223) 99.9 [1.9](369)
2000 94.3 [1.6](78) 100 [3.6](168) 98.3 [2.0](739) 99.9 [1.9](1292)

B 50 72.5 [1.3](0.6) 100 [3.0](36) 92.4 [1.6](37) 94.3 [1.6](38)
100 72.0 [1.3](0.8) 100 [3.1](38) 89.7 [1.7](40) 91.9 [1.7](43)
200 73.8 [1.4](1.4) 100 [3.3](40) 89.9 [1.6](48) 90.8 [1.6](55)
400 70.8 [1.5](3.3) 100 [3.4](48) 86.0 [1.7](73) 87.5 [1.7](99)
1000 74.0 [1.5](16) 100 [3.5](79) 83.8 [1.7](222) 85.6 [1.7](365)
2000 73.7 [1.6](84) 100 [3.7](185) 81.4 [1.7](766) 82.9 [1.7](1353)

C 50 99.0 [1.3](0.6) 99.0 [3.0](36) 95.6 [1.2](37) 97.3 [1.2](38)
100 98.4 [1.3](0.8) 98.5 [3.1](37) 95.9 [1.3](40) 97.0 [1.3](42)
200 98.0 [1.4](1.4) 98.1 [3.3](39) 95.9 [1.4](47) 97.4 [1.4](54)
400 96.9 [1.4](3.3) 96.9 [3.4](47) 94.8 [1.5](72) 96.0 [1.5](98)
1000 96.4 [1.5](17) 97.3 [3.5](80) 94.6 [1.6](223) 96.3 [1.6](368)
2000 96.0 [1.6](78) 97.8 [3.6](169) 94.4 [1.7](738) 96.1 [1.7](1311)

significant. Higher Criticism rejects the global null, but SGoF
fails to reject.

4. Discussion

This article develops a novel approach to post-selection infer-
ence for the screening of large numbers of dependent 2 × 2
tables for the presence of significant associations. BST guar-
antees rigorous type I error control, has greater power than
competing tests, and is computationally much less demand-
ing than permutation testing. Our method is related to the
adaptive resampling test (ART) introduced by McKeague and
Qian (2015a), but by exploiting the relatively simple statisti-
cal structure of 2 × 2 tables (in contrast to the marginal linear
model setting) we are able to avoid the need to use the double
bootstrap, and we can base the calibration on direct simula-
tion from the null distribution instead. Further, we are able to

provide computationally feasible robust confidence intervals
for the odds ratios that take the post-selection into account,
whereas robust confidence intervals were not feasible in ART.

In the Supplementary Materials (Section 1), we describe
a forward stepwise version of BST based on removing the
effects of previously selected risk factors via a Mantel–
Haenszel adjustment to the marginal odds-ratio estimates.
This approach works well when only a few forward steps
are involved, but can become cumbersome beyond that. It is
still valid (though more conservative) to use the initial BST
critical values to calibrate further steps of BST after previ-
ous risk factors have been removed from the dataset; this
approach greatly lowers the computational cost in comparison
with forward stepwise BST. An important extension of BST
is to adjust for pre-specified demographic and environmental
effects; this can be done by including all such covariates in
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Figure 2. RACE Study. Left panel: histogram of the marginal log-odds ratio estimates log θ̂k for 2000 genetic variants on
chromosome 5. The rejection region for BST is indicated by arrows; two SNPs fall in the rejection region as identified by their
loci. Right panel: p-values and 95% confidence intervals for the odds ratios of the risk factors detected using forward-stepwise
BST at the 5% level of significance.

marginal logistic regression models (along with each risk fac-
tor Wk), then using the resulting adjusted estimates of log θk

and its standard error in place of the original θ̂k and τ̂k.
Computational cost can become an issue for BST when

p is of the order needed for a genome-wide analysis, as evi-
dent from the runtime results in Tables 3 and 4. This occurs
when trying to generate realizations from the p-dimensional
N(0, CX) distribution with an unstructured correlation matrix
CX. If a specific structure for CX can be assumed (e.g.,
Toeplitz, as for a stationary time series on the lattice 1, . . . , p),
then methods are available to speed up the simulation, as used
in spatial statistics, see for example, Guinness and Fuentes
(2017). This also raises the need to estimate CX taking an
assumed covariance structure into account, and there is an
extensive literature devoted to this problem. For instance,
(Cai et al., 2016) give a thorough account of methods for esti-
mating Toeplitz, banded, spiked, and sparse high-dimensional
covariance matrices. For a genome-wide analysis, a simple
approach would be to assume a block-diagonal structure for
CX, provided the blocks are justified from biological consider-
ations. If such blocks are still too large to be computationally
feasible, splitting them into manageable segments and apply-
ing BST separately to each segment would be reasonable.

A further important issue is the suitability of a particu-
lar covariance structure for the particular application. The
knockoff method of Candès et al. (2018) mentioned in the
Introduction faces similar issues. In the application to Crohn’s
disease SNP data, Candès et al. (2018) approximated the
standardized joint distribution of the SNPs as multivari-
ate Gaussian, and estimated the covariance matrix using
a method of Wen and Stephens (2010), which shrinks off-
diagonal entries of the empirical covariance matrix using
genetic distance information estimated from HapMap data.
As discussed by Candès et al. (2018), SNP data invariably

contain some very high correlations, which presents a chal-
lenge to any screening methodology. A way of alleviating this
problem, they suggest, is to form clusters of highly correlated
SNPs and settle for the detection of such clusters rather than
individual SNPs.

A thorough investigation of these issues is beyond the scope
of the present article, but we anticipate that it should be
feasible to adapt BST along these lines to make it an effective,
scalable, and powerful method of post-selection inference for
full genome-wide SNP data.

5. Supplementary Materials

See Web Appendices 1 for details on forward-stepwise BST
(referenced in Sections 3 and 4), two for the proof of The-
orem 1, three for the HC and SGoF procedures (referenced
in Sections 3 and 4), along with R code implementing BST,
available with this article at the Biometrics website on Wiley
Online Library.
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Appendix

Conditions for Theorem 1. By Theorem 2.1 of Kou and
Ying (1996), the marginal (noncentral hypergeometric) dis-
tribution of each Xk conditional on the margins has the
following representation as a sum of independent Bernoulli

random variables: Xk
d= ∑M1

s=1
I(ηsk ≤ (1 + θ−1

k λsk)
−1)δsk, where

{ηsk : s = 1, . . . ,min(M1, N1k)} is a sequence of indepen-
dent uniform-(0, 1) random variables, and δsk = I(s ≤ N1k).
Here, −λsk ≤ 0, s = 1, . . . ,min(M1, N1k), are the roots of the
Jacobi polynomial

φk(z) =
min(M1,N1k)∑

u=max(0,M1−N2k)

(
N1k

u

)(
N2k

M1 − u

)
zu.

We will make the mild “structural” assumption that the above
representation extends jointly over all k = 1, . . . , p. That is,
we assume that the M1 random p-vectors formed by con-
catenating each summand over k = 1, . . . , p can be arranged
to be independent.

(C1) Model structure: There exist independent random vec-
tors (ηs1, . . . , ηsp), s = 1, . . . , M1, with each component
uniformly distributed on (0, 1), such that

X ,

⎛
⎜⎝

X1

...

Xp

⎞
⎟⎠ d=

M1∑
s=1

⎛
⎜⎜⎝

I(ηs1 ≤ (1 + θ−1
1 λs1)

−1)δs1

...

I(ηsp ≤ (1 + θ−1
p λsp)

−1)δsp

⎞
⎟⎟⎠

conditional on the margins.
(C2) Both the conditional and unconditional correlation

matrices of X converge to the same invertible limit
CX as N → ∞.

(C3) Stability conditions: As N → ∞, M1/N → π ∈ (0, 1),
N1k/N → qk ∈ (0, 1), E(Xk)/N1k → π1k ∈ (0, 1), and
E(M1 − Xk)/N2k → π2k ∈ (0, 1) for k = 1, . . . , p.

Remark 1. Under Condition (C2), the matrix CX can be
consistently estimated by the sample correlation matrix of the
vector of risk factor indicators W restricted to the data on
the cases. To see this, note that the observations on W for
the cases are iid and sum to X, in a parallel fashion to the
conditional representation of X in Condition (C1). This also
makes it clear that Condition (C2) is a mild stability condi-
tion, similar to Condition (C3).

Remark 2. Under the stability condition (C3),

Nτ2
k → σ2

k ,
1

qkπ1k

+ 1

(1 − qk)(1 − π2k)
+ 1

qk(1 − π1k)
+ 1

(1 − qk)π2k

,

(A.1)

so when θ(0) = 1 we have π1k = π2k = π, and σk = {qk(1 −
qk)π(1 − π)}−1/2.


