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Summary. The paper develops a new marginal testing procedure to detect significant predictors
that are associated with the conditional quantiles of a scalar response. The idea is to fit the
marginal quantile regression on each predictor one at a time, and then to base the test on the t -
statistics that are associated with the most predictive predictors.A resampling method is devised
to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the
most predictive variables.Asymptotic validity of the procedure is established in a general quantile
regression setting in which the marginal quantile regression models can be misspecified. Even
though a fixed dimension is assumed to derive the asymptotic results, the test proposed is
applicable and computationally feasible for large dimensional predictors. The method is more
flexible than existing marginal screening test methods based on mean regression and has the
added advantage of being robust against outliers in the response. The approach is illustrated
by using an application to a human immunodeficiency virus drug resistance data set.
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1. Introduction

Consider a scalar response Y and a p-dimensional predictor X=.X1, : : : , Xp/T. We are interested
in testing the presence of significant predictors that affect the conditional quantile of Y at a
given quantile level τ or across multiple quantiles. To answer this question, we develop a new
inference procedure based on marginal linear quantile regression. For theoretical development,
throughout we assume that p is finite, though the test is applicable to cases with a large number
of predictors.

Quantile regression has attracted increasing attention in recent years, mainly due to the
following attractive features:

(a) robustness against outliers in the response, especially in the case of median regression;
(b) the ability to capture heterogeneity in the set of important predictors at different quantile

levels of the response distribution caused by, for instance, heteroscedastic variance.

To test for significant predictors at the τ th conditional quantile of Y , one natural approach
is to carry out a hypothesis test comparing the null model of no predictors and the full model
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consisting of all p predictors, by using either Wald-type, quasi-likelihood-ratio tests or bootstrap
methods; see related discussions in Koenker (2005), chapter 3, Kocherginsky et al. (2005) and
Feng et al. (2011). Unfortunately, these omnibus-type tests are based on fitting a model with all
p predictors, which quickly becomes prohibitive and leads to less powerful tests for large p.

Recently McKeague and Qian (2015) proposed an adaptive resampling test, which provides
valid post-selection inference for detecting significant predictors based on marginal linear regres-
sion. As in correlation learning or sure independence screening, the idea of marginal regression
is to regress the response on each predictor one at a time (Fan and Lv, 2008; Genovese et al.,
2012). The adaptive resampling test successfully controls the familywise error rate by accounting
for the variation that is caused by variable selection.

Partly inspired by this work, here we propose a new method for testing the existence of
marginal effects in quantile regression. The new approach allows the most active predictors to
vary at different quantile levels of the response distribution, so it is more flexible than mean
regression and has the added advantage of being robust against outliers in the response. The test
proposed is based on a maximum-type t-statistic associated with the selected most informative
predictor at the quantile level of interest. Valid statistical inference must take into account the
uncertainty that is involved in the selection step; see related discussion in Leeb and Pötscher
(2006) and Belloni et al. (2014). We show that the limiting distribution of the proposed post-
selected statistic changes abruptly in the proximity of the null hypothesis of no effect. To adapt
to the non-regular asymptotic behaviour of the test statistic that is caused by variable selection,
we develop a modified bootstrap procedure using a ‘pre-test’ through thresholding. To the best
of our knowledge, the test is the first inference tool developed for quantile regression that scales
in a computationally practical way with dimension. Unlike the omnibus-type tests that require
fitting a model with all p predictors, the method proposed is based on fitting p linear quantile
regression models with a single predictor, so its computational cost grows only linearly with p.
Even though we assume a fixed dimension to derive the asymptotic results, there is numerical
evidence that the test continues to work in cases with p>n, but a thorough investigation for the
high dimensional case remains open.

This paper makes a novel contribution that is distinct from McKeague and Qian (2015). First
of all, the test in McKeague and Qian (2015) is based on selecting the predictor that is maximally
correlated with the response Y. However, correlation is not useful in the quantile regression set-
up. Instead, we propose a new selection rule, which selects the most informative predictor at the
quantile of interest as the predictor that minimizes an empirical asymmetric L1-loss function.
Secondly, our proposed test uses a scale invariant t-statistic, whereas that in McKeague and
Qian (2015) is based on the maximum slope estimator. In quantile regression, the scale of the
slope estimator depends not only on covariates but also on the quantile level. Therefore, a scale
invariant statistic is more desirable for multiple-quantile analysis, since prestandardization of
covariates is not sufficient to make the type of statistic as in McKeague and Qian (2015) scale
free. Thirdly, unlike least squares regression, quantile regression allows the analysis over a set of
quantile levels to capture the population heterogeneity. The flexibility of such globally concerned
quantile regression has been discussed in Zheng et al. (2015). With the established convergence
results across quantiles, our developed method can be used to detect the significance of predictors
not only at a single quantile level but also at multiple quantiles jointly.

For quantile regression, developing asymptotic theory to calibrate the test statistic is enor-
mously more challenging because of three main obstacles. Firstly, unlike in mean regression, the
quantile estimator θ̂n.τ / of the slope parameter for the predictor selected has no explicit form.
Secondly, the asymmetric L1-loss function is not differentiable everywhere. Lastly, since each
marginal quantile regression model is (possibly) misspecified, there is a prediction bias which is



Testing for Marginal Linear Effects 3

caused by omitting the correct predictors, and the bias takes a complicated form in the quantile
regression setting.

To overcome these challenges and to study the non-regular limiting behaviour of θ̂n.τ /, we
consider a general quantile regression model indexed by a (unidentifiable) local parameter that
represents uncertainty at the

√
n-scale close to the null hypothesis. We establish the asymptotic

properties of the t-statistic Tn.τ / = n1=2θ̂n.τ /=σ̂n.τ / and obtain a quadratic expansion for the
non-differentiable loss function by using empirical process tools. In addition, we assess the bias
of the marginal quantile regression estimator due to model misspecification under the local
model by adapting the results in Angrist et al. (2006). On the basis of the asymptotic theory
developed, we devise a non-parametric bootstrap procedure that adapts to the non-regular
asymptotic behaviour of Tn.τ / by using a pre-test that involves thresholding. We establish the
bootstrap consistency of this procedure under the general local quantile regression model.

The current paper is closely related to the post-selection inference literature. In particular,
one can view the determination of the most informative predictor as a selection step, and
the inference on the slope that is associated with the selected predictor in marginal quantile
regression as the inference after selection. Lee and Taylor (2014) developed a post-selection
inference method for marginal screening in linear regression, which selects the top k predictors
that are most correlated with Y. Our proposed test solves a similar problem for the special case
of k = 1 in a quantile regression set-up. In contrast, the method in Lee and Taylor (2014) relies
on a strong model assumption that the regression errors are normally distributed with constant
variance, and thus it cannot be applied to quantile regression. Among very few related works in
the quantile regression literature, Belloni et al. (2014, 2015) proposed post-selection inference
methods for quantile and median regression models respectively. However, inference in Belloni
et al. (2014, 2015) is focused on the slope parameter of a single prespecified predictor (such as
a treatment indicator), whereas the remaining predictors are selected through L1-penalization.
Thus their approach does not apply to a marginal screening-type test in which no predictor is
singled out a priori.

Recently, Zhang et al. (2017) proposed a test based on the martingale difference divergence to
detect the dependence of the conditional quantile of the response on covariates in a model-free
setting. The current paper differs from Zhang et al. (2017) from several perspectives. When the
interest is on the dependence at a single quantile level τ , our proposed method does not require
any model assumptions on the quantiles near τ , whereas the test calibration in Zhang et al.
(2017) requires a stronger local quantile independence assumption. In addition, our proposed
method can be used to conduct joint tests across multiple quantiles, and to identify the most
predictive variables, whereas that in Zhang et al. (2017) can only be applied to assess the overall
dependence at a given single quantile level.

The rest of the paper is organized as follows. In Section 2, we formulate the problem, establish
the non-regular local asymptotic distribution of Tn.τ / and develop the proposed test procedure.
We assess the performance of the approach through a simulation study in Section 3 and apply
it to a human immunodeficiency virus (HIV) drug susceptibility data set in Section 4. Some
concluding remarks are made in Section 5. Proofs are collected in Appendix A and the on-
line supplementary material. The R program developed and the HIV data are available from
http://www.columbia.edu/∼im2131/ps/index.html.

2. Method proposed

2.1. Marginal quantile regression
Suppose that {.yi, xi/, i=1, : : : , n} is a random sample of .Y , X/, where xi = .xi,1, : : : , xi,p/T. Let
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T ⊂ .0, 1/ be a set with L prespecified quantile levels, where L is finite. We assume the following
linear quantile regression model:

Qτ .Y |X/=α0.τ /+XTβ0.τ /, τ ∈T , .1/

whereα0.τ / and β0.τ /∈Rp are the unknown quantile coefficients, Qτ .Y |X/= inf{y :FY .y|X/�
τ} is the τ th conditional quantile of Y given X, and FY .·|X/ is the distribution function of Y
given X. Model (1) assumes only that the conditional quantile of Y is linear in X at quantiles
of interest and thus is broader than the linear regression model in McKeague and Qian (2015).
Unlike least squares regression, quantile regression analysis enables us to study at multiple
quantiles. We aim to develop a formal test of whether any component of X has an effect on
either a given quantile or at multiple quantiles of Y. Throughout we assume that all predictors
are standardized before the data analysis. For notational simplicity we shall first present the
proposed test at a single quantile level τ ∈ T and discuss testing across multiple quantiles in
Section 2.5.

Our proposed test is based on fitting the working marginal quantile regression models by
regressing Y on Xk, k = 1, : : : , p, for each k separately, i.e., for each k, the working marginal
quantile regression solves the population minimization problem to obtain

.αk.τ /, θk.τ //=arg min
α, θ

E[ρτ .Y −α−θXk/−ρτ .Y/], .2/

where ρτ .u/={τ −I.u�0/}u is the quantile loss function (Koenker, 2005), and here we (implic-
itly) assume integrability. The coefficient θk.τ / approximates the linear effect of Xk on the τ th
quantile of Y , and we refer to it as the quantile marginal linear effect of Xk hereafter. However,
it is worth noting that the marginal quantile regression models are in general misspecified, and
consequently αk.τ /+ θk.τ /Xk may differ from Qτ .Y |Xk/, the conditional quantile of Y given
a single predictor Xk, and θk.τ / may differ from the derivative of Qτ .Y |X/ with respect to Xk.
Since the seminal work of Fan and Lv (2008), marginal regression has been used for feature
screening in various models. For conditional quantile screening, He et al. (2013) proposed a
screening method based on marginal non-parametric quantile regression, and Shao and Zhang
(2014) developed a model-free approach based on martingale difference correlation. Differently
from these works, our focus is not on screening but on testing the existence of overall covariate
effects through marginal regression, and the test proposed can be used as a first step before
variable selection.

We define the index of the most informative predictor at the τ th quantile as

k0.τ /=arg min
k=1,:::,p

E[ρτ{Y −αk.τ /−θk.τ /Xk}−ρτ .Y/] .3/

and denote the corresponding slope parameter by θ0.τ / = θk0.τ /.τ /. We focus on testing H0 :
θ0.τ / = 0 versus Ha : θ0.τ / �= 0: Note that the rejection of H0 implies that at least one of the p
predictors has an effect on the τ th conditional quantile of Y.

On the basis of the random sample, we define

k̂n.τ /=arg min
k=1,:::,p

Pn[ρτ{Y − α̂k.τ /− θ̂k.τ /Xk}]

:=arg min
k=1,:::,p

n−1
n∑

i=1
ρτ{yi − α̂k.τ /− θ̂k.τ /xi,k},

.4/

where .α̂k.τ /, θ̂k.τ //=arg minα,θPn{ρτ .Y −α− θXk/} are the sample quantile coefficient esti-
mators that are obtained by regressing Y on Xk. The marginal quantile regression estimator of
θ0.τ / is then given by θ̂n.τ /= θ̂k̂n.τ /:
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For any given k = 1, : : : , p, by theorem 3 of Angrist et al. (2006), the asymptotic covariance
of .α̂k.τ /, θ̂k.τ // is Σk.τ /

:= Jk.τ /−1E[[ψτ{Y −αk.τ / − θk.τ /Xk}]2X̃kX̃
T
k ]Jk.τ /−1, where Jk.τ /

= E[fY{αk.τ / + θk.τ /Xk|Xk}X̃kX̃
T
k ], ψτ .u/ = τ − I.u < 0/ and X̃k = .1, Xk/T. We can estimate

Jk.τ / by the kernel-based estimator that was suggested by Powell (1991),

Ĵk.τ /= .nhn/−1
n∑

i=1
K[{yi − α̂k.τ /− θ̂k.τ /xi,k}=hn]x̃i,kx̃T

i,k, .5/

where K.·/ is a kernel function, and hn is the positive bandwidth satisfying hn →0 and hn
√

n→
∞. By lemmas 1–3 in Appendix A and theorem 3 of Powell (1991), it is easy to show that
Ĵk.τ / − Jk.τ / = op.1/ uniformly in τ . Alternatively we can also estimate Jk.τ / by using the
difference quotient method in Hendricks and Koenker (1991). Consequently, we can estim-
ate Σk.τ / consistently by Σ̂k.τ / = Ĵ

−1
k .τ /Pn.[τ − I{Y < α̂k.τ / + θ̂k.τ /Xk}]/2X̃kX̃

T
k Ĵ

−1
k .τ /. For

any k =1, : : : , p, denote the lower right diagonal element of Σ̂k.τ / as σ̂2
k.τ /.

Our proposed test statistic is defined as

Tn.τ /= n1=2 θ̂n.τ /

σ̂n.τ /
, .6/

where σ̂n.τ /= σ̂k̂n.τ /.τ /. The test statistic Tn.τ / is a maximum-type statistic, which is a natural
choice for testing H0. However, when none of the components of X have an effect on the τ th
conditional quantile of Y , k0.τ / is unidentifiable—it can be any of the p indices. In addition,
the distribution of n1=2{θ̂n.τ /−θ0.τ /}=σ̂n.τ / does not converge uniformly with respect to θ0.τ /

in the neighbourhood of θ0.τ / = 0, so the normal limiting distribution that holds away from
θ0.τ /= 0 cannot be used to construct rejection regions. To construct a suitable test procedure
for H0, it is important to study the asymptotic behaviour of Tn.τ / under local alternatives.

2.2. Local model
In the local model, we replace the slope parameter β0.τ / in model (1) by

βn.τ /=β0.τ /+n−1=2 b0.τ /, .7/

where b0.τ /∈Rp is the local parameter. When β0.τ /=0, the quantile effect of X is n−1=2XTb0.τ /

and it vanishes asymptotically. Let ε.τ / = Y −α0 − XTβn.τ / denote the quantile regression
residuals. It is clear that Qτ{ε.τ /|X}= 0. Throughout, we assume that the distributions of X
and ε.τ / are fixed and only the distribution of Y depends on n, but we suppress n in the notation
of Y for notational simplicity.

Under the local model, we define

k̄n.τ , b0/=arg min
k=1,:::,p

min
α,θ

E[ρτ .Y −α−Xkθ/−ρτ .Y/] .8/

and rewrite θ0.τ / as θn.τ /
:=θk̄n.τ ,b0/.τ /. When b0.τ /=0, k̄n.τ , 0/ coincides with k0.τ / defined in

equation (3) under the global model. If β0.τ / �=0 and k0.τ / is unique, then k̄n.τ , b0/→k0.τ / and
θn.τ / is asymptotically bounded away from zero, representing a non-local alternative case. In
contrast if β0.τ /=0, then θn.τ / is in the neighbourhood of zero representing a local alternative
case. However, if β0.τ /=b0.τ /=0, then k̄n.τ , b0/ is not well defined and θn.τ /=0, representing
the null case i.e., under the local model (7), even though k̄n.τ , b0/ is unidentifiable at β0.τ / =
b0.τ / = 0, it is still ‘weakly identifiable’ when b0.τ / �= 0. By analysing the local model, we can
study the (non-regular) asymptotic behaviour of the test statistic Tn.τ /.
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2.3. Limiting behaviour under the local model
Under the local model, in which the response Y depends on n, .αk.τ /, θk.τ // defined in equa-
tion (2) also depends on n, but throughout the paper we suppress this dependence to simplify
notation. We make the following assumptions.

Assumption 1. The conditional quantile regression model (1) with slope parameters defined
in equation (7) holds, where α0.τ /, β0.τ / and b0.τ / are in the interior of compact sets.

Assumption 2. Under the local model, for each n � 1, k = 1, : : : , p and any τ ∈T , there are
unique .αk.τ /, θk.τ //=arg min.α,θ/E[ρτ .Y −α−θXk/−ρτ .Y/].

Assumption 3. The covariate X has a compact support.

Assumption 4. The conditional density fY .·|X/ is bounded and uniformly continuous with a
bounded first derivative, over the support of X.

Assumption 5. Under the local model, for k =1, : : : , p, the matrices

Jk{τ , β0.τ /}= lim
n→∞ E[fε.τ /{ek.τ /|X}X̃kX̃

T
k ] :=

(
πk{τ , β0.τ /} μk{τ , β0.τ /}
μk{τ , β0.τ /} μkk{τ , β0.τ /}

)

and limn→∞ E[[ψτ{ε.τ / − ek.τ /}]2X̃kX̃
T
k ] exist and are positive definite for all τ ∈ T , where

ek.τ /=αk.τ /+Xkθk.τ /−α0.τ /−XTβn.τ / is the prediction bias due to marginal regression of
Y on Xk at the quantile level τ .

Assumption 2 is an identifiability condition that is needed to ensure that the population
quantile coefficient vector .αk.τ /, θk.τ // that is obtained by regressing Y on Xk is unique.
Assumptions 3–5 concern X and ε.τ /, and are needed to apply a result of Angrist et al.
(2006), theorem 3, to obtain the asymptotic properties of the marginal regression estima-
tor .α̂k.τ /, θ̂k.τ // under misspecification caused by omitting the correct predictors. Assump-
tion 3 is needed to obtain the approximate representation of .αk.τ /, θk.τ // when β0.τ / = 0.
This condition can be relaxed by assuming some boundedness condition on the higher mo-
ments of X, but this would greatly complicate the proofs. In theory, the boundedness in the
support of X is naturally needed to avoid quantile crossing if multiple linear quantile re-
gression functions are assumed. When β0.τ / = 0, .αk.τ /, θk.τ // → .α0.τ /, 0/ by the proof of
lemma 2, so the first limiting matrix in assumption 5 is Jk.τ , 0/ = E[fε.τ /.0|X/X̃kX̃

T
k ] with

πk.τ , 0/ ≡ π.τ , 0/ = E[fε.τ /.0|X/], μk.τ , 0/ = E[fε.τ /.0|X/Xk] and μkk.τ , 0/ = E[fε.τ /.0|X/X2
k ],

and the second limit is τ .1− τ /E[X̃kX̃
T
k ].

Theorem 1 gives the asymptotic representation of n1=2{θ̂n.τ /−θn.τ /}=σ̂n.τ / when β0.τ / �=0
and β0.τ / = 0 separately. The asymptotic representation goes through a phase transition at
β0.τ / = 0, with a different form for β0.τ / �= 0 (in which case k̄n.τ , b0/ is identifiable). We first
fix some notation. Let X = .1T

p , X1, : : : , Xp/T and Xj be its jth element for j = 1, : : : , 2p. In
addition, for k = 1, : : : , p, let Vk.τ , β0/ = |Jk.τ , β0/|, Ck.τ / = E[fε.τ /.0|X/]E[fε.τ /.0|X/XkX] −
E[fε.τ /.0|X/Xk]E[fε.τ /.0|X/X] and Bk.τ / = E[fε.τ /.0|X/XX̃

T
k ]. Let M{τ , β0.τ /} := .M1{τ ,

β0.τ /}, : : : , M2p{τ , β0.τ /}/T be a Gaussian process with mean 0 and covariance func-
tion Ω.τ , τ ′/, whose .j, j′/th element is Ωj,j′.τ , τ ′/= limn→∞ E[XjXj′ [τ − I{ε.τ /<ej.τ /}][τ ′ −
I{ε.τ ′/<ej′.τ ′/}]], where ej.τ /= ej−p.τ / for j =p+1, : : : , 2p.

Theorem 1. Suppose that assumptions 1–5 hold, and, for each τ ∈T , k̄n.τ , 0/≡k0.τ / is unique
when β0.τ / �= 0, and k̄n{τ , b0.τ /} → κτ{b0.τ /} ∈ {1, : : : , p} when β0.τ / = 0 and b0.τ / �= 0.
Then, jointly over τ ∈T , we have
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n1=2{θ̂n.τ /−θn.τ /}
σ̂n.τ /

d→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mp+k0.τ /{τ , β0.τ /}πk0.τ /{τ , β0.τ /}−Mk0.τ /{τ , β0.τ /}μk0.τ /{β0.τ /}
Vk0.τ /{τ , β0.τ /}σk0.τ /.τ /

if β0.τ / �=0,

Mp+K.τ /.τ , 0/π.τ , 0/−MK.τ /.τ , 0/μK.τ /.τ , 0/
VK.τ /.τ , 0/σK.τ /.τ /

+
(

CK.τ /.τ /

VK.τ /.τ , 0/
− Cκτ{b0.τ /}.τ /

Vκτ{b0.τ /}.τ , 0/

)T
b0.τ /

σK.τ /.τ /
if β0.τ /=0,

where

K.τ /=arg max
k=1,:::,p

.Mk.τ /+Bk.τ /Tb0.τ //TJk.τ , 0/−1.Mk.τ /+Bk.τ /Tb0.τ // .9/

with Mk.τ /= .Mk.τ , 0/, Mk+p.τ , 0//T.

In theorem 1, the convergence condition on k̄n{τ , b0.τ /} is a weak continuity condition on
the joint distribution of ε.τ / and X. Because of the prediction bias ek.τ / from marginal regres-
sion, Ωj,j.τ , τ ′/ does not have an explicit expression. However, when β0.τ /=β0.τ ′/=0, ek.τ /

and ek.τ ′/ go to 0 under the local model for all k = 1, : : : , p, and consequently Ωj,j′.τ , τ ′/ =
{min.τ , τ ′/− ττ ′}E[XjXj′ ].

We refer to the special case in which fε.τ /.·|X/=fε.τ /.·/ is the same across all values of X as
homoscedastic, i.e. the distribution of the regression error ε.τ / does not depend on the covariates.
In this case, Vk.τ , 0/=f 2

ε.τ /.0/ var.Xk/, Ck.τ /=f 2
ε.τ /.0/ cov.Xk, X/ and the limiting distribution

in theorem 1 when β0.τ /=0 can be simplified as in the following corollary.

Corollary 1. Under the assumptions of theorem 1, for the homoscedastic case, we have that,
jointly over all τ ∈T such that β0.τ /=0,

n1=2{θ̂n.τ /−θn.τ /}
σ̂n.τ /

d→Mp+K.τ /.τ /−MK.τ /.τ /E[XK]
fε.τ /.0/var.XK.τ //σK.τ /.τ /

+
(

cov.XK, X/

var.XK/
− cov.Xκτ{b0.τ /}, X/

var.Xκτ{b0.τ /}/

)T b0.τ /

σK.τ /.τ /
,

where K.τ / = arg maxk=1,:::,p{Mp+k.τ / − Mk.τ / E[Xk] + fε.τ /.0/bT
0 .τ / cov.Xk, X/}2=var.Xk/

with Mk.τ /=Mk.τ , 0/.

2.4. Adaptive bootstrap for testing at a single quantile
By theorem 1, we can obtain the asymptotic critical values for the test statistic Tn.τ / by simulating
its asymptotic representation under the null hypothesis (with β0.τ /=b0.τ /=0). This approach,
however, requires estimating the weighted covariance matrix of X with weights to accommodate
heteroscedasticity and thus does not perform well in finite samples with large p. For practical
purposes, we propose to adopt the idea in McKeague and Qian (2015) and to develop an adaptive
bootstrap procedure.

Denote {.yÅ
i , xÅ

i /, i= 1, : : : , n} as the bootstrap sample that is obtained by sampling the ob-
served data with replacement. The conventional bootstrap version of Rn.τ /

:= n1=2{θ̂n.τ / −
θn.τ /}=σ̂n.τ / is RÅ

n .τ /
:= n1=2{θ̂Ån .τ / − θ̂n.τ /}=σ̂nÆ.τ /, where θ̂

Å
n .τ / is the bootstrap version of

θ̂n.τ /, and σ̂nÆ.τ /= σ̂k̂
Æ

n.τ /.τ / with k̂
Å
n .τ / as the bootstrap counterpart of k̂n.τ /.
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However, since θ̂n.τ / is a non-regular estimator, i.e. its distribution does not converge
uniformly in an n−1=2-neighbourhood of the null, the conventional bootstrap would fail to
estimate the null distribution. To account for the discontinuity in the limiting distribution of
Rn.τ /, we propose to compare |Tn.τ /| with some threshold λn.τ / > 0 to capture the different
behaviours of Rn.τ / in two scenarios: β0.τ / �= 0 (away from the null) and β0.τ / = 0 (in the
n−1=2-neighbourhood of the null). We consider the following modified bootstrap version of
Rn.τ /:

RÅ
n{τ , b0.τ /}=

{
n1=2{θ̂Ån .τ /− θ̂n.τ /}

σ̂nÆ.τ /
if |Tn.τ /|>λn.τ / or |T Å

n .τ /|>λn.τ /,

VÅ
n{τ , b0.τ /} otherwise,

.10/

where T Å
n .τ / = n1=2 θ̂

Å
n .τ /=σ̂nÆ.τ / and VÅ

n .τ , b/ is the bootstrap version of Vn.τ , b/, which is a
process in b∈Rp defined in expression (11) that denotes the asymptotic representation of Rn.τ /

in the local model. The definition of VÅ
n{τ , b.τ /} can be found in expression (13). For compu-

tational convenience, we use the sample estimator σ̂nÆ.τ / in the bootstrap to avoid recalculating
Ĵk.τ / for each bootstrap sample and each k, but one can also use the bootstrap variance esti-
mator to achieve potential second-order accuracy (Efron and Tibshirani, 1993; Hall and Kang,
2001).

The idea of the modified bootstrap is as follows. If λn.τ /=o.n1=2/ and λn.τ /→∞, theorem 1
indicates that P{|Tn|>λn.τ /}→ I.β0 �=0/; thus Rn.τ / can be bootstrapped consistently by the
naive bootstrap. The challenge lies in bootstrapping Rn.τ / when β0.τ /=0 since k̂n.τ / does not
converge to k0.τ / in this case. From lemma 4 and expression (S.15) in the on-line supplementary
material, we know that, when β0.τ / = 0, the estimated asymptotic representation of Rn.τ / is
Vn{τ , b0.τ /, k̂n.τ /}, where

Vn.τ , b, k/= .−μ̂k.τ /, π̂.τ //Gn[X̃kψτ{ε.τ /}]

V̂ k.τ /σk.τ /
+
(

Ĉk.τ /

V̂ k.τ /
− Ĉk̄n.τ ,b/

V̂ k̄n.τ ,b/.τ /

)T b
σk.τ /

,

Gn =n1=2.Pn −Pn/ with Pn being the distribution of .Y , X/, V̂ k.τ /=|Ĵk.τ /|, .π̂.τ /, μ̂k.τ // are
the elements in the first row of Ĵk, and Ĉk.τ / is the kernel-based estimator of Ck.τ /.

Therefore, we define the Vn.τ , b/ process as

Vn.τ , b/=Vn{τ , b, Kn.b/},

Kn.τ , b/=arg max
k=1,:::,p

.Gn[X̃kψτ{ε.τ /}]+ B̂
T
k .τ /b/TĴ

−1
k .τ /.Gn[X̃kψτ{ε.τ /}]+ B̂

T
k .τ /b/,

.11/

where B̂k.τ / is the kernel-based estimator of Bk.τ /.
The following theorem 2 shows that the adaptive bootstrap version RÅ

n{τ , b0.τ /} provides a
consistent estimator of the distribution of Rn.τ / jointly over τ ∈T .

Theorem 2. Suppose that the assumptions in theorem 1 hold, and λn.τ /→∞ and λn.τ /=
o.n1=2/ for all τ ∈T . Then RÅ

n{τ , b0.τ /} converges to the limiting distribution of Rn.τ / jointly
over τ ∈T conditionally (on the observed data) in probability.

For the calibration of the test statistic, we need to compute only RÅ
n .τ /

:=RÅ
n .τ , 0/, the boot-

strap statistic with b=0. Let RÅ
n.j/.τ /, j =1, : : : , m, be the bootstrap statistics from m bootstrap

repetitions. For a level γ test, we can calculate the lower and upper critical values of Tn.τ / by the
.γ=2/th and .1−γ=2/th sample quantiles of {RÅ

n.j/.τ /, j =1, : : : , m}. If Tn.τ / is smaller than the
lower or larger than the upper critical values, we shall reject the null hypothesis and declare that
there is at least one predictor that has a significant effect on the τ th quantile of Y. Alternatively,
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we can also compute the p-value as 2 min[m−1Σm
j=1I{RÅ

n.j/.τ / > Tn.τ /}, m−1Σm
j=1I{RÅ

n.j/.τ / <

Tn.τ /}].

2.5. Testing across multiple quantiles
One attractive feature of quantile regression is that it enables us to assess the relationship
between Y and X at multiple quantiles. We now discuss testing across multiple quantiles through
marginal quantile regression. Let T ={τ1, : : : , τL} be a set of quantile levels of interest. To test
whether any component of X has an effect on either of the L-quantiles, we can consider testing
H̃0 :θ0.τ1/= : : : =θ0.τL/=0 versus H̃a: at least one of the θ0.τl/s is non-zero, where θ0.τl/ is the
slope of the most informative predictor at the τlth quantile as defined in equation (3).

To pool information across quantiles, we propose to consider the sum-type test statistic
Sn =ΣL

l=1T 2
n .τl/, where Tn.τ / is defined in equation (6). By the joint convergence result in theorem

2 over τ ∈T , we can extend the adaptive bootstrap for the test calibration of Sn. Specifically, de-
fine the modified bootstrap statistic as SÅ

n =ΣL
l=1RÅ2

n .τl, 0/. The p-value of the multiple-quantile
test can then be calculated by the proportion of modified bootstrap statistics that are larger
than Sn.

One may also consider the maximum-type test statistic max1�l�L |Tn.τl/| to combine infor-
mation across quantiles. We choose the sum-type test statistic as it has good power against dense
alternatives, and in quantile regression θ0.τ / is more likely to be non-zero in an interval of τ and
thus dense when the alternative is true. The joint test for H̃0 is an omnibus test and may not be
informative in applications where the linear effect exists at some but not all quantile levels. In
such cases, we may apply the test at several individual quantile levels after the joint test rejects
H̃0 to obtain a more comprehensive picture.

2.6. Selection of the tuning parameter λn(τ )
The tuning parameter λn.τ / is involved in the pre-test with criterion |Tn.τ /| >λn.τ / to deter-
mine whether a conventional bootstrap RÅ

n .τ / or a bootstrap of the asymptotic representation
Vn.τ , b/ should be used. In the extreme case with λn.τ / = 0, the bootstrap proposed reduces
to the naive bootstrap, which gives an inflated type I error rate. When λn.τ / = o.n1=2/ and
λn.τ / →∞, satisfying the conditions in theorem 2, the pre-test has asymptotically negligible
type I error as limn→∞ P{|Tn.τ /| >λn.τ /|θn.τ / = 0}= 0, so only the bootstrap of Vn.τ , 0/ is
used under the null hypothesis that θn.τ / = 0. In finite samples, however, if λn.τ / is overly
large, the test will be too conservative. Our empirical investigation shows that, for large sam-
ples, λn.τ / = c

√{τ .1− τ / log.n/} with c ∈ [4, 10] provides a good choice, where the rate cho-
sen is proportional to the expected value of the maximum of n sub-Gaussian variables with
mean 0. In finite samples, we propose to use a double-bootstrap procedure to choose the
constant c. For illustration, we describe the procedure for testing at a single quantile τ as
follows.

For a bootstrap sample {yÅ
i , xÅ

i , i= 1, : : : , n}, obtain the first-level bootstrap statistics θ̂
Å
n .τ /

and σ̂nÆ.τ /, and m double-bootstrap statistics RÅÅ
.1/ , : : : , RÅÅ

.m/, the analogies of RÅ
n .τ , 0/ as defined

in expression (10), associated with a candidate c-value. For each c in the grid, we calculate the
rejection rate as the proportion of bootstrap samples for which n1=2{θ̂Ån .τ / − θ̂n.τ /}=σ̂nÆ.τ /

exceeds the double-bootstrap critical values, determined by the lower bound of the .γ=2/th and
the upper bound of the .1−γ=2/th sample quantiles of {RÅÅ

.1/ , : : : , RÅÅ
.m/}. The double bootstrap

then chooses the c-value that gives the rejection rate that is closest to the nominal significance
level γ. The double bootstrap could be time consuming, so in practice we recommend using a
double bootstrap with m = 100 for smaller samples of n � 500 and choosing quite a conservative
c = 5 for larger samples.
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3. Simulation study

3.1. Under linear regression models
We first assess the performance of the proposed test in linear regression models by considering
four cases. For cases 1–3, data are generated from the model Y = XTβ + ε, where ε∼ N.0, 1/

in cases 1 and 2 and ε∼ t2 in case 3. Case 1 corresponds to the null hypothesis of no active
predictors with β=0. In case 2, we let β= . 1

3 , 0, : : : , 0/T so there is a unique active predictor. In
case 3, we let β1 = : : : =β5 = 0:25, β6 = : : : =β10 =−0:15 and βj = 0 for j = 10, : : : , p, so there
are 10 active predictors and k0 is not unique. For case 4, data are generated from the model
Y =XTβ + .1+0:45X1/ε, where β =0 and ε∼N.0, 1/. Case 4 represents a heteroscedatic case,
where the predictor X1 is active at τ �= 0:5 but inactive at τ = 0:5. In all cases, the covariate
vector X = .X1, : : : , Xp/T is from the multivariate normal distribution with mean 0, variance
1 and an exchangeability correlation of 0.5, truncated at −2 and 2. For each case, a random
sample of size n = 200 of .Y , X1, : : : , Xp/ is generated, and the simulation is repeated 500 times.
Even though the asymptotic results assume a finite p, we shall demonstrate that the test works
empirically also for cases with p>n through the analysis for five dimensions, p = 10, 100, 200,
400, 1000.

We apply the proposed quantile marginal effect test (QMET) at a single quantile level τ =0:5
and τ=0:75, separately, and at three quantiles τ={0:25, 0:5, 0:75} jointly to detect the predictor
effects on the conditional quantiles of Y. For comparison, we also include three competing
methods:

(a) analysis of variance, AOV;
(b) Bonferroni, BONF;
(c) the centred percentile bootstrap CPB for single-quantile testing.

Each test is calibrated at the nominal level γ=0:05. AOV is a rank-score-type method for testing
the null hypothesis that no predictors have significant effects against the alternative that at least
one predictor has a significant effect, and this method is feasible only in cases where p < n.
The AOV method is implemented in the function ‘anova.rq’ of the R package quantreg.
BONF is a method of multiple comparison with Bonferroni adjustments, where a rank score
test is carried out in the marginal quantile regression of Y on each Xj, j = 1, : : : , p, and the
null hypothesis is rejected if the minimum of p resulting p-values is smaller than γ. The rank-
score-based tests are chosen for AOV and BONF since such tests were shown to be more stable
than the Wald-type tests in the quantile regression literature (Kocherginsky et al., 2005). CPB
is the centred percentile bootstrap method based on the conventional bootstrap statistic RÅ

n .τ /.
For both CPB and the QMET, 200 bootstrap samples are used. For the QMET method, we let
the threshold λn.τ /= c

√{τ .1− τ / log.n/} and choose c∈ .0, 6/ by a double bootstrap with 100
double-bootstrap samples.

Table 1 summarizes the rejection rates of the various methods against p. The rejection rates
for case 1 with τ = 0:5, 0.75 and τ = {0:25, 0:5, 0:75}, and for case 4 with τ = 0:5 correspond
to type I errors where the null hypothesis is true, whereas they represent power in the other
scenarios. In all three null scenarios, the CPB method gives high type I errors, confirming that
the conventional bootstrap procedure fails to control the familywise error rate as it does not
account for the uncertainty that is involved in the variable selection process. The AOV test is
not feasible in cases with p � n, and it is highly conservative with power close to 0 for p � 100.
The Bonferroni correction method has similar performance to that of the QMET for p = 10,
but the QMET method is in general more powerful for larger p. Compared with the other
methods, the QMET method with a double bootstrap maintains the level reasonably well and
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Table 1. Percentages of rejections from various methods in cases 1–4 with nD200†

Case p Results for τ =0.5 Results for τ =0.75 Results for
multivariate

CPB AOV BONF QMET CPB AOV BONF QMET QMET

1 10 27.8 6.6 5.2 3.8 24.8 6.2 3.2 5.6 2.4
100 35.4 0.0 2.4 3.0 37.2 0.0 2.4 4.8 2.8
200 39.4 2.2 4.6 34.6 1.8 5.6 2.6
400 42.2 2.0 4.4 42.4 2.0 8.0 2.4

1000 48.8 1.6 4.6 42.0 1.2 4.8 1.6
2 10 86.5 61.0 79.6 75.0 78.8 50.6 73.0 64.8 83.8

100 85.7 0.0 67.2 67.0 75.4 0.2 55.8 54.4 70.2
200 83.2 59.2 61.5 77.2 47.6 59.2 65.6
400 84.8 58.8 62.1 74.8 43.0 60.0 70.1

1000 85.7 50.6 64.6 75.6 38.2 61.2 65.4
3 10 94.0 94.2 91.6 85.4 75.0 70.2 70.6 62.0 84.2

100 88.2 0.0 75.6 71.8 71.0 0.4 48.8 47.6 72.5
200 89.6 74.2 72.0 71.2 52.2 50.2 71.3
400 84.4 67.4 71.6 69.4 44.8 49.4 68.8

1000 87.4 64.0 74.4 70.2 39.0 52.6 70.8
4 10 24.0 7.2 6.6 6.0 90.8 47.8 70.8 80.6 77.4

100 26.2 0.0 4.4 3.2 86.0 0.0 53.4 61.4 46.8
200 25.0 3.0 4.0 86.4 44.0 58.4 43.4
400 30.6 2.2 5.8 85.8 41.4 57.0 30.7

1000 28.6 2.2 6.6 87.4 38.2 58.2 26.8

†Case 1 with τ =0:5, 0.75 and case 4 with τ =0:5 correspond to the null model, and the others correspond to the
alternative model. The last column is the proposed test across three quantiles 0.25, 0.5 and 0.75.

Table 2. Percentages of rejections of the QMET and Bonferroni methods at τ D0.5 in cases 5 and 6

Method Results for case 5 Results for case 6

p = 10 p = 100 p = 200 p = 400 p = 1000 p = 10 p = 100 p = 200 p = 400 p = 1000

QMET 3.6 1.6 2.1 2.3 4.1 65.8 50.0 49.0 53.1 60.5
BONF 4.0 3.2 6.0 2.6 3.2 65.0 46.0 38.6 40.2 34.2

it provides relatively high power across all scenarios that were considered. Under alternative
models with homoscedastic errors, the QMET across quantiles tends to be more powerful than
the single-quantile test especially at the tail quantiles. However, in heteroscedastic models (case
4) where the signal has different magnitudes at different quantiles, it may be more advantageous
to apply the test at a single quantile level with a stronger signal than the omnibus test across
quantiles.

3.2. Under misspecified non-linear regression models
We consider two additional cases to assess the performance of the proposed test under the
misspecification of linear models and for covariates with a different correlation structure. The
data are generated from the model Y = X2

1=3 + bX1 + ε, where ε∼ N.0, 1/, and the covariates
.X1, : : : , Xp/ are generated in the same way as in cases 1–4 but with an auto-regressive AR(1)
correlation structure of parameter 0.5. We let b = 0 in case 5, and b = 1

3 in case 6. Table 2
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Fig. 1. Rejection rates of QMET at τ D 0.5 in cases 1–4 against the constant a involved in the bandwidth
parameter hn: , case 1, , case 2; , case 3; , case 4

summarizes the rejection rates of the QMET and BONF methods at τ = 0:5 in cases 5 and 6.
Note that the test proposed is only for detecting linear covariate effects. When there is no linear
relationship between X and Y at any quantiles (case 5), the QMET has difficulty identifying
the non-linear relationship. However, if there is some linear trend in a misspecified model such
as in case 6, the QMET can still identify the covariate effects with higher power than the
Bonferroni method. The idea of the QMET method may be extended to detect non-linear
covariate effects by marginally regressing Y on some polynomial or basis functions of each
covariate separately.

3.3. Sensitivity against the bandwidth hn
The calculation of σ̂k.τ / involves a bandwidth parameter hn. In our implementation, we fol-
low the suggestion in Hall and Sheather (1988) and choose hn = an−1=3{Φ−1.1 − γ=2/}2=3 ×
.1:5φ2{Φ−1.τ /}=[2{Φ−1.τ /}2 +1]/2=3 with a = 1, where Φ is the distribution function of N(0,1).
To assess the sensitivity of the test proposed against hn, we plot the rejection rates of QMET at
τ =0:5 against a in cases 1–4 in Fig. 1. Results suggest that the performance of the test is quite
stable for a∈ [0:5, 1:5].

4. Application to the study of human immunodeficiency virus drug resistance

We illustrate the method proposed by analysing an HIV drug susceptibility data set from the
HIV drug resistance database (http://hivdb.stanford.edu), which is a public resource
for the study of sequence variation and mutations in the molecular targets of HIV drugs (Rhee
et al., 2003). After a patient starts antiretroviral therapy, the infecting HIV can form new muta-
tions. Some mutations may not respond to existing drugs, which is a characteristic known as drug
resistance or reduced drug susceptibility, meaning that the drugs become less effective at prevent-
ing the virus from multiplying. Researchers have estimated that, in an untreated HIV-infected
subject, every possible single point mutation occurs between 104 and 105 times per day (Coffin,
1995). Drug resistance has become a major obstacle to the success of HIV therapy. Therefore,
understanding the effect of mutations on drug resistance is an important research topic.



Testing for Marginal Linear Effects 13

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

0 1

−1
0

1
2

3

0 1

−1
0

1
2

3

0 1

−1
0

1
2

3

(a) (b) (c)

Fig. 2. Boxplots of common logarithmic susceptibility of a training data set versus three predictors (a)
103N, (b) 190A and (c) 230L that are selected by the forward QMET method at τ = 0.75

We analyse the susceptibility data for the drug efavirenz. After excluding rare mutations, the
data set includes 1472 HIV isolates and 197 locations of mutations. The susceptibility of an
HIV sample is defined as the fold decrease in susceptibility of a single virus isolate compared
with the susceptibility of a wild-type control isolate, i.e. the virus that has never been chal-
lenged by drugs. We focus on predicting common logarithmic susceptibility, denoted by Y , to
efavirenz based on Xk, k = 1, : : : , p = 197, indicating the presence of a mutation of interest in
the kth viral sequence position. The susceptibility data are highly non-normal, even after log-
transformation (see Fig. 2), so quantile regression provides a valuable way of analysing these
data. In addition, analysis at the upper quantiles of susceptibility is of particular interest, being
associated with stronger drug resistance. In this analysis, we consider two quantile levels: τ =0:5
and τ =0:75.

The test proposed can be used as a stopping rule in forward regression to select multiple
significant predictors. Specifically, suppose that the test detects a significant predictor in the
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first step. We can then use the residuals Y − θ̂n.τ /Xk̂n.τ / as a new outcome variable and carry out
the marginal quantile regression over the remaining predictors. Repeat the procedure and record
the p-values in the sequential tests as p1, p2, : : : . The procedure will stop at the mth step, where
m= inf{j :pj >γ} and γ is the nominal level of significance. To account for the sequential testing
that is involved in the forward regression, we further employ a multiple-test adjustment in the
style of Holm (1979) and finally choose the covariates that are identified in the first m̃ steps, where
m̃=1 if p1 >γ=.m−1/, and otherwise m̃=max1�j�m−1{j : pl �γ=.m− l/ for all l=1, : : : , j}.

To assess the performance of the method in settings with n < p, we randomly split the data
into a training set of size n = 190 and a testing set of size 1282. For each split, we carry out 20
steps of forward quantile marginal effect testing (the QMET) and standard forward selection
quantile regression, FWD, using the training data, and use the model that is selected in each
step to predict the τ th quantile of log-susceptibility of the testing data.

Figs 3(a) and 3(b) plot the training set p-values (plus and minus the median absolute deviation
MAD) for the newly entered predictor at each step across 50 random splits at τ = 0:5 and
τ = 0:75, and Figs 3(c) and 3(d) plot the corresponding prediction errors (median ± MAD)
in the test sets. At a quantile level τ , the quantile prediction error is defined as the average of
quantile loss ρτ .Y − Ŷ /, where Y is the true response and Ŷ is the predicted value for subjects
from the testing data. At the 0.05 level of significance, the QMET method selects about one
predictor at the median and three at level τ =0:75, whereas the FWD method selects more than
20 predictors. The prediction error plots suggest that, with the QMET method, the improvement
in prediction error becomes negligible after the first three predictors enter the model. In contrast,
the prediction accuracy of the FWD method improves much more slowly. Generally speaking,
at both quantile levels, FWD enters about 15 predictors to achieve the same prediction accuracy
as the model selected by the QMET with just three predictors.

The obvious difference in the prediction accuracy suggests that two methods enter different
predictors at each stage, which is not surprising given their different selection criteria. In each
step of the forward QMET method, the QMET procedure is applied by treating residuals from
the previous stage as new outcomes and identifies the predictor that gives the smallest quantile
loss in marginal regression. In contrast, the standard FWD method identifies the predictor that
gives the smallest Wald-type p-value conditionally on the predictors that have entered before
the current step.

To demonstrate the value of regression at different quantiles, we look into one example
training set, for which the forward QMET method at τ = 0:75 at the level of significance of
0.05 selects three predictors, 103N, 190A and 230L, sequentially, whereas the method at the
median selects only the first predictor. The binary predictors 103N, 190A and 230L indicate
the presence of substitution of amino acid asparagine, alanine and leucine at positions 103, 190
and 230 respectively. Fig. 2 shows the boxplots of the common logarithmic susceptibility of
the isolates in the training set with and without the three mutations. The boxplots suggest that
isolates with these three mutations are associated with higher drug resistance at both the median
and τ =0:75. After accounting for the effects of the first mutation, the effects of 190A and 230L
become insignificant at the median but remain significant at τ = 0:75, i.e. for the isolates that
are more drug resistant; Table 3.

5. Discussion

We have developed a new procedure for detecting marginal effects in quantile regression. Our
simulation study suggests that the test is effective and has stable performance, providing adequate
control of the familywise error rate along with competitive power, even for cases with large p
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Table 3. p-values from the forward QMET procedure for predictors 103N, 190A
and 230L, and the corresponding estimated coefficients, standard errors and
Wald-type p-values by regressing the log-susceptibility on all three predictors
jointly at τ D0.5 and τ D0.75 in the example training set

τ Variable Forward Results from multiple quantile regression
QMET
p-value Coefficient Standard error Wald p-value

0.5 103N 0.0000 1.5593 0.1122 0.0000
190A 0.8525 1.6021 0.5290 0.0028
230L 0.7175 1.6372 0.8625 0.0592

0.75 103N 0.0000 1.7249 0.1827 0.0000
190A 0.0125 1.8947 0.1900 0.0000
230L 0.0000 2.1871 0.0928 0.0000

(although the asymptotic theory that we used to calibrate the test assumes fixed p). The theoreti-
cal study for diverging p is an interesting and challenging topic that deserves further research.

An alternative approach to the QMET beyond those which we have considered would be to
use higher criticism, which is a way of synthesizing a collection of p-values from multiple tests
that was originally proposed by Tukey (1989) and later systematically developed by Donoho
and Jin (2004, 2015). However, as reported in McKeague and Qian (2015) for the mean re-
gression version of our proposed test, higher criticism is typically anticonservative unless the
predictors are close to being uncorrelated, which would be a highly restrictive assumption in
most applications.

Our proposed test statistic can be viewed as a maximum-type test statistic across p covariates.
Similarly to the discussion as in Chatterjee and Lahiri (2015) for mean regression, we may
also consider an alternative statistic based on the sum of squared t-statistics, Σp

k=1θ̂
2
k.τ /=σ̂2

k.τ /.
Our empirical studies show that the maximum-type test is more powerful for detecting sparse
signals, and the sum-type test has more power for dense alternatives; see the results in the on-line
supplementary material. This observation agrees with the findings in mean regression (Cai et al.,
2014; Gregory et al., 2015; Chen and Qin, 2010; Fan et al., 2015). Therefore, we recommend
the proposed test for scenarios with sparse signals. How to combine two types of test statistics
to accommodate signals of unknown sparsity levels is an interesting future research topic.

The test proposed can be used as a first step in applications to assess the overall significance of
covariates on quantiles of Y. If the null hypothesis is rejected, one can use existing model selection
procedures to see how many and which variables should be included next. Alternatively, one may
use the test as a stopping rule in forward regression to select multiple significant predictors in a
sequential manner, and our empirical study has shown some promising evidence. There is some
recent work for sequential forward regression on error rate control and the probabilistic bounds
for the number of selected covariates (Fithian et al., 2015; Li and Barber, 2017; G’Sell et al., 2016;
Kozbur, 2015; Tibshirani et al., 2016). However, because of the dependence between the new out-
comes and the non-additive property of quantile functions, it would be challenging and also be-
yondthescopeof thepaper tostudythetheoreticalpropertiesof theforwardregressionprocedure.

6. Supplementary material

The supplementary material that is available on line contains the proofs of lemmas 1–4, corollary
1 and lemmas 5 and 6, and some additional simulation results.
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Appendix A

A.1. Proof of theorem 1
The proof of theorem 1 follows immediately from the following lemmas 1 and 4, which establish the
joint asymptotic representations of n1=2{θ̂n.τ / − θn.τ /}=σ̂n.τ / over τ ∈ T for β0.τ / �= 0 and β0.τ / = 0,
separately. Lemma 2 builds an approximate connection between .αk.τ /, θk.τ // and .α0.τ /, βn.τ // under
the local model with β0.τ /=0, which together with lemma 3 are needed for proving lemma 4. The proofs
for lemmas 1–4 are provided in the on-line supplementary material.

We first fix some notation. For any vector v ∈ Rp, let vk denote its kth element, and v.−k/ denotes its
subset excluding the kth element, for any k =1, : : : , p. For notational simplicity, we write k̄n{τ , b0.τ /} as
kn.τ /, and omit the argument τ in various expressions such as Mk.τ , ·/, πk.τ , ·/, Vk.τ , ·/, Jk.τ , ·/ etc. when
needed.

Lemma 1. Suppose that assumptions 1–5 hold. For all τs in T for which β0.τ / �=0 and k0.τ / is unique,
we have k̂n.τ /→k0.τ / almost surely and

n1=2{θ̂n.τ /−θn.τ /}
σ̂n.τ /

d→ Mp+k0.τ /{β0.τ /}πk0.τ /{β0.τ /}−Mk0.τ /{β0.τ /}μk0.τ /{β0.τ /}
Vk0.τ /{β0.τ /}σk0.τ /.τ /

:

Lemma 2. If assumptions 1–5 hold, we have(
αk.τ /
θk.τ /

)
=
(
α0.τ /
βn,k.τ /

)
+J−1

k .τ , 0/AT
k .τ /βn,.−k/.τ /+o.n−1=2/ .12/

uniformly over τ for which β0.τ /=0, where Ak.τ /= .E[fε.τ /.0|X/X.−k/], E[fε.τ /.0|X/XkX.−k/]/.

Remark 1. For the homoscedastic case where fε.τ /.·|X/ is common across X, by lemma 2, we have that
uniformly in τ ∈T for which β0.τ /=0,

θk.τ /=βn,k.τ /+ cov.Xk, XT
.−k//β.−k/.τ /

var.Xk/
+o.n−1=2/= cov.Xk, XT/βn.τ /

var.Xk/
+o.n−1=2/:

Lemma 3. If assumptions 1–5 hold, we have(
n1=2

(
α̂k.τ /−α0.τ /
θ̂k.τ /−βn,k.τ /

))p

k=1

d→
(

J−1
k .τ , 0/

{(
Mk.τ , 0/

Mp+k.τ , 0/

)
+AT

k .τ /b0,.−k/.τ /

})p

k=1

uniformly in τ ∈T for which β0.τ /=0.

Lemma 4. Under assumptions 1–5, we have

n1=2{θ̂n.τ /−θn.τ /}
σ̂n.τ /

d→ Mp+K.τ /.τ , 0/π.τ , 0/−MK.τ /.τ , 0/μK.τ /.τ , 0/

VK.τ /.τ , 0/σK.τ /.τ /

+
(

CK.τ /.τ /

VK.τ /.τ , 0/
− Cκτ{b0.τ /}.τ /

Vκτ{b0.τ /}.τ , 0/

)T b0.τ /

σK.τ /.τ /

uniformly over τ ∈T for which β0.τ /=0, where

K.τ /=arg max
k=1,:::,p

.Mk.τ /+BT
k .τ /b0.τ //TJ−1

k .τ , 0/.Mk.τ /+BT
k .τ /b0.τ //

with Mk.τ /= .Mk.τ , 0/, Mk+p.τ , 0//T:
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A.2. Proof of corollary 1
The proof of corollary 1 is provided in the on-line supplementary material.

A.3. Proof of theorem 2
Let PÅ

n denote bootstrap average, and G
Å
n = .PÅ

n − Pn/
√

n. Define ε̂n.τ / = Y − α̂n.τ / − θ̂n.τ /Xk̂n.τ /. The
bootstrapped process VÅ

n {τ , b.τ /} is defined as

VÅ
n {τ , b.τ /}= .−μ̂KÆ

n.τ ,b/.τ /, π̂.τ //G
Å
n [X̃KÆ

n.τ ,b/ψτ{ε̂n.τ /}]

V̂ KÆ
n.τ ,b/.τ /σ̂KÆ

n.τ ,b/.τ /
+
(

ĈKÆ
n.τ ,b/.τ /

V̂ KÆ
n.τ ,b/.τ /

− ĈKn.τ ,b/

V̂ Kn.τ ,b/.τ /

)T
b

σ̂KÆ
n.τ ,b/.τ /

,

.13/

where Kn.τ , b/=arg min Ln,k.τ , b/, KÅ
n .τ , b/=arg maxk UÅ

n,k.τ , b/,

Ln,k.τ , b/=min
α,θ

Pn.ρτ [ε.τ /+α0.τ /+XT{β0.τ /+n−1=2b}−α−θXk]/,

and

UÅ
n,k.τ , b/= .G

Å
n [X̃kψτ{ε̂n.τ /}]+ B̂

T
k .τ /b/TĴ

−1
k .τ /.G

Å
n [X̃kψτ{ε̂n.τ /}]+ B̂

T
k .τ /b/:

Let EM denote expectation conditional on the data, and let PM be the corresponding probability
measure. We shall show that I{|T Å

n .τ /| > λn.τ / or |Tn.τ /| > λn.τ /}→PM
I{β0.τ / �= 0} and I{|T Å

n .τ /| �
λn.τ /}I{|Tn.τ /|�λn.τ /}→PM

I{β0.τ / = 0} for all τ ∈T conditionally (on the data) in probability. This
together with lemmas 5 and 6 below implies the result.

For k =1, : : : , p, the bootstrapped marginal regression coefficients satisfy

.α̂Å
k .τ /, θ̂

Å
k .τ //=arg min

α,θ
PÅ

n {ρτ .Y −α−θXk/}:

By the first-order condition, we have PÅ
n [ψτ{Y − α̂Å

k .τ / − θ̂
Å
k .τ /Xk}X̃k] = 0 for τ ∈ T . Similarly, by the

definition of .αk.τ /, θk.τ // in equation (2), E[ψτ{Y −αk.τ /−θk.τ /Xk}X̃k]=0. Under the assumptions that
are listed in Section 2.3, it can be verified that, for any η> 0, the class of functions {ψτ .Y −α− θXk/X̃k :
τ ∈T , .α, θ/∈R2, supτ∈T ‖.α, θ/− .αk.τ /, θk.τ //‖�η} is a P-Donsker class, and E‖[ψτ .Y −αn −θnXk/−
ψτ{Y −αk.τ / − θk.τ /Xk}]X̃k‖2 → 0 for any sequence .αn, θn/ such that |.αn, θn/ − .αk.τ /, θk.τ //|→ 0 for
all τ ∈T .

Using similar arguments to those in the proof of theorem 10.16 of Kosorok (2008), we have

n1=2

(
α̂Å

k .τ /−αk.τ /

θ̂
Å
k .τ /−θk.τ /

)
=J−1

k {τ , β0.τ /}n1=2PÅ
n [ψτ{Y −αk.τ /−θk.τ /Xk}X̃k]+op.1/: .14/

This, together with expression (S.2) in the on-line supplementary material, implies that

n1=2

(
α̂Å

k .τ /− α̂k.τ /

θ̂
Å
k .τ /− θ̂k.τ /

)
=J−1

k {τ , β0.τ /}G
Å
n [ψτ{Y −αk.τ /−θk.τ /Xk}X̃k]+op.1/ .15/

for all τ ∈T for k =1, : : : , p.
When β0.τ /=0, note that

|T Å
n .τ /|=

∣∣∣∣n1=2θ̂
Å
n .τ /

σ̂nÆ.τ /

∣∣∣∣� max
k=1,:::,p

∣∣∣∣n1=2{θ̂Åk .τ /− θ̂k.τ /}
σ̂k.τ /

+ n1=2θ̂k.τ /

σ̂k.τ /

∣∣∣∣
where σ̂2

k.τ / is the lower right-hand diagonal element of Σ̂k.τ /, the consistent estimator of Σk.τ /, which is
assumed in assumption 5 to be bounded away from zero for all τ ∈T and k. This, together with equation
(15), bootstrap consistency of the sample mean, lemma 3 and the condition that λn.τ /→∞, implies that
|T Å

n .τ /|=λn.τ /=oPM .1/ conditionally in probability.
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When β0.τ / �= 0, it is easy to verify that |θn.τ /|→ |θ0,k0 .τ /| > 0 under the condition that k0 is unique,
where .α0,k.τ /, θ0,k.τ //=arg minα, θ E[ρτ{ε.τ /+α0.τ /+XTβ0.τ /−α−θXk}]. Thus

PM{|T Å
n .τ /|�λn.τ /}=PM{n1=2|θ̂Ån .τ /− θ̂n.τ /+ θ̂n.τ /−θn.τ /+θn.τ /−θ0,k0.τ /.τ /+θ0,k0.τ .τ /|

�λn.τ /σ̂nÆ.τ /}
�PM{|θ0,k0.τ /.τ /|�n−1=2λn.τ / max

k=1,:::,p
σ̂k.τ /+|θ̂Ån .τ /− θ̂n.τ /|

+ |θ̂n.τ /−θn.τ /|+ |θn.τ /−θ0,k0.τ /.τ /|}
tends to 0 in probability, where the convergence follows from lemma 1, lemma 5 below, and λn.τ /=o.

√
n/.

Therefore, for all τ ∈T , we have that

EM |I{|T Å
n .τ /|�λn.τ /}− I{β0.τ /=0}|=EM |I{|T Å

n .τ /|>λn.τ /}− I{β0.τ / �=0}|
=PM{|T Å

n .τ /|>λn.τ /, β0.τ /=0.τ /}
+PM{|T Å

n .τ /|�λn.τ /, β0.τ / �=0}
=PM{|T Å

n .τ /|>λn.τ /|β0.τ /=0}I{β0.τ /=0}
+PM{|T Å

n .τ /|�λn.τ /|β0.τ / �=0}I{β0.τ / �=0}

tends to 0 in probability. This implies that I{|T Å
n .τ /|>λn.τ /}→PM

I{β0.τ / �= 0} and I{|T Å
n .τ /|�λn.τ /}

→PM
I{β0.τ / = 0} conditionally in probability. By lemmas 1 and 3, it is easy to verify that I{|Tn.τ /|

�λn.τ /}→PI{β0.τ /=0} for all τ ∈T . The result of theorem 2 follows from Slutsky’s lemma.

Lemma 5. Suppose that the assumptions in theorem 1 hold. Then k̂
Å
n .τ /→PM

k0.τ / conditionally (on
the data) almost surely and

n1=2{θ̂Ån .τ /− θ̂n.τ /}
σ̂nÆ.τ /

d→ Mp+k0.τ /{β0.τ /}πk0.τ /{β0.τ /}−Mk0.τ /{β0.τ /}μk0.τ /{β0.τ /}
Vk0.τ /{β0.τ /}σk0.τ /.τ /

for all τ ∈ T for which β0.τ / �= 0, conditionally (on the data) in probability, where Mj{β0.τ /} =
Mj{τ , β0.τ /}.

The proof is provided in the on-line supplementary material.

Lemma 6. Suppose that all the assumptions in theorem 1 hold. Then VÅ
n {τ , b0.τ /} converges to the

same limiting distribution as {θ̂n.τ /− θn.τ /}√
n=σ̂n.τ / for all τ ∈T for which β0.τ /= 0, conditionally

(on the data) in probability.

The proof is provided in the on-line supplementary material.
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