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On the Capacity of Channels with 
Gaussian and Non-Gaussian Noise* 

lAY W. MCKEAGUE 

Department of Statistics, Florida State University, Tallahassee, Florida 32306 

We evaluate the information capacity of channels for which the noise process is 
a Gaussian measure on a quasi-complete locally convex space. The coding capacity 
is calculated in this setting and for time-continuous Gaussian channels using the 
information capacity result. The coding capacity of channels with non-Gaussian 
noise having finite entropy with respect to Gaussian noise of the same covariance is 
shown not to exceed the coding capacity of the Gaussian channel. The sensitivity of 
the information capacity to deviations from normality in the noise process is also 
investigated. 

1. INTRODUCTION 

In this article we extend some of  the classical  results of  information theory 
to the setting of  topological  spaces. The capaci ty  of  a channel is currently 
defined in two closely connected ways. In the information capaci ty  sense it is 
the supremum of  the mutual  information between an al lowable input and the 
output  of  the channel. In the coding capaci ty  sense it is the highest rate at 
which coded messages can be sent with arbi t rar i ly  small  probabi l i ty  of  error. 
We shall evaluate the information capac i ty  for the additive Gauss ian  
channel, where the Gauss ian  noise is defined on any quasi-complete  local ly 
convex space. The coding capac i ty  is calculated in this setting and also for 
t ime-continuous channels. Fo r  the case of  non-Gauss ian  noise, an upper 
bound on the coding capac i ty  is given. The question of  robustness of the 
information capaci ty  is also investigated. 

Shannon (1948) determined the information capac i ty  of the white noise 
Gauss ian  channel with bandl imited input signals. K a d o t a  et al. (1971) 
r igorously  treated the case with causal  feedback and the Wiener  process as 
noise. Hi tsuda  and Ihara  (1975) extended these results to a large class of  
Gauss ian  channels with causal  feedback by using the C r a m 6 r - H i d a  represen- 
tat ion of the noise. Baker (1978a) obtained the information capaci ty  of  the 
general Gauss ian  channel without feedback, assuming that  signal and noise 
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belong to separable Banach spaces. Baker proved his results for separable 
Hilbert spaces and extended them to separable Banach spaces using the 
Banach-Mazur Theorem. Here we consider the problem of extending these 
results to some class of topological spaces beyond Banach spaces and to a 
case that is important for applications, the product space 9t r, where T is an 
arbitrary index set. 

The evaluation of the coding capacity of additive Gaussian channels has 
been carried out by Shannon (1948) and Wyner (1966) for bandlimited 
channels with stationary Gaussian noise having a flat spectral density, by 
Shannon (1959) for the time-discrete Gaussian channel, and by Fortet 
(1961), Bethoux (1962), and Ash (1965) for a channel with stationary 
Gaussian noise and signals satisfying an average energy constraint. We shall 
evaluate the coding capacity for a generalization of the time-discrete 
Gaussian channel and use this to find the capacity of the time-continuous 
channel with arbitrary Gaussian noise. The coding capacity of channels with 
non-Gaussian noise satisfying an entropy condition is shown not to exceed 
the coding capacity of the Gaussian channel. 

2. PRELIMINARIES 

Throughout this work E will denote a locally convex, Hausdorff 
topological vector space (we contract this to locally convex space) with 
topological dual E' .  The Borel a-algebra on E will be denoted 3¢(E). A 
probability measure on ~ ( E )  is called a Borel measure. 
• Let F be a finite dimensional subspace of E' .  A subset C of E is a cylinder 

set based at F if it is of the form 

C = {x E E: ( ( f l ,  x) ..... ( f . ,  x)) E D }, 

where n/> 1,f~ ..... fn ~ F, and D ~ .~(9tn). Let c~ F denote the a-algebra of all 
cylinder sets based on F, and c~ = [,-)~F, where F runs over all finite dimen- 
sional subspaces of E' .  c~ is an algebra. The a-algebra generated by c~ is 
called the cylindrical a-algebra, denoted a(E'), and it is the smallest a- 
algebra of subsets of E such that each linear funct ional fE E '  is measurable. 
Clearly a(E ' )  _c ~ ( E ) .  If E is separable and metrizable then a(E ' )  and ~ ( E )  
coincide, but not in general (see Vakhania and Tarieladze, 1978). 

A set function ~t: c~ ~ [0, 1] is called a cylinder set measure (csm) or a 
cylindrical measure if, for each finite dimensional subspace F of E ' ,  p lc~F is 
a probability measure. By Kolmogorov's Theorem, a csm may be extended 
to be countably additive on E 'a (the algebraic dual of E') .  Let p be either a 
csm on E or a probability measure on a(E'). We note the following 
definitions. The characteristic functional /3 is given by / 3 ( f ) =  
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fe e x p l i ( f  x)} dp(x) for f C  E ' . / t  is Gaussian if each f E  E '  is a Gaussian 
random variable under p. If H is a Hilbert space then the csm with charac- 
teristic functional exp(-][  • 1[2/2) is called the canonical Gaussian csm and is 
denoted ?n- /1 is of weak second order if, for each f C E ' ,  
fE (f~ X) 2 dp(x) < 0o. The mean m E E 'a and covariance operator 
R C t ( E ' ,  E 'a) of a weak second-order csm/1 are defined by 

(m, f>  = ~E <f  x)  dp(x), 

(fi, g) = JE (fx)(g,x)d/u(x)-(m,f)(m,g), 

where f,  g C E ' .  
The covariance operator R is non-negative and symmetric: (Rf, g)= 

( f  Rg), (Rff)>1 O, for all f g in E ' .  If  E is separable and quasi-complete 
then the covariance operator of a weak second-order probability measure on 
(E,~r(E')) belongs to f ( E ' , E ) ,  and conversely every symmetric non- 
negative linear operator R: E ' ~  E is the covariance of some weak second- 
order probability measure on E. If E is a normed space then a Borel measure 
p is said to be of strong second order if fe Ilxll  2 du(x) < oo. All Gaussian 
Borel measures on a separable Banach space are of strong second order by 
Fernique (1970). The notion of a covariance operator was introduced for 
strong second-order measures on separable Hilbert spaces by Prohorov 
(1956) and for weak second-order measures on Banach spaces Vakhania 
(1968). We refer to Vakbania and Tarieladze (1978) for further material on 
covariance operators. 

A Borel measure ¢t on E is said to be Radon if, for each B C ~ ( E ) ,  
/J(B)=sup{12(K):KcB, Kcompact}.  If E is Polish (i.e., separable, 
complete, metrizable) then every Borel measure on E is Radon (see Schwartz 
(1973, p. 122)). 

By Prohorov's Theorem, a cylinder set measure p on E can be extended to 
a Radon measure on E if and only if for every e > 0 there is a compact set 
K c E such that/2" (K) >/1 - e, where/~* is the outer measure derived from 
p (see Schwartz, 1973). 

If p is a Gaussian Radon measure on E, then (E, p) can be considered as 
an abstract Wiener space; i.e., there exists a separable Hilbert space H and 
an injection j:  H--,  E such that p =j(?)n), where ?H is the canonical Gaussian 
csm on H (see Borell, 1976). H is called the reproducing kernel Hilbert 
space (RKHS) of/2. The mean of/2 belongs to E and its covariance operator 
belongs to f ( E ' ,  E). 

Schwartz (1964) showed that if E is quasi-complete then each linear 
operator, R: E '  ~ E ,  which is symmetric and non-negative, has a unique 
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Hilbert space H, which is a vector subspace of E, such that the injection j of 
H into E is continuous and R = j j * .  The Hilbert space H is called the RKHS 
of R. The methods employed in this article depend on the existence of a 
RKHS for the covariance operators. For this reason, it is assumed 
throughout that the locally convex spaces E are quasi-complete and that the 
covariance operators map E '  into E. If the RKHS of a covariance operator 
R : E ' ~ E  is separable with a CONS {en, n>/1  } then the covariance 
operator admits a series representation R = Y'n e" ® e, ,  where 
(e= ® e , ) ( f )  = ( f  e , )  e , ,  for f E E ' ,  and the series converges to R in the 
strong operator topology: y,U (f, en ) e,  ~ R f  in E for all f ~  E' .  

Let lax be a zero-mean Gaussian measure on a(E ' )  with covariance 
operator Rx: E ' ~  E and RKHS H x.  The linear space ofla x, denoted t x, is 
the closed subspace of L2(E, tax) spanned by E' .  The space S x is a Hilbert 
space under the inner product induced from L 2 (E, lax). It is well known that 
there exists a unitary operator Ux: S x - ~  H x such that U x f = j *  f ,  for all 
f E E ' .  

It is known that two Gaussian measures lax, lar on a(E ' )  are either 
mutually absolutely continuous (~x " l  a t )  or orthogonal ~u x Llar)  in cases 
that E is a product space ~ r  (see Feldman, 1958; Pan, 1966, for instance), a 
separable Hilbert space (Rao and Varadarajan, 1963) and a separable 
Banach space (Kuelbs, 1970; Baker, 1978b). The following theorem extends 
these results to quasi-complete locally convex spaces. 

THEOREM 2.1. Let  lax, lar be two Gaussian measures on a (E ' )  with 
means m x = 0 and m y =  m E E, and covariance operators Rx: E '  ~ E, Rv: 
E '  ~ E, respectively. Then lax "~ lar i f  and only i f  the following conditions are 
satisfied. 

(i) H x = H r as subsets o f  E; 
(ii) m E Hx; 

(iii) I r -- JJ*  is Hi lbert-Schmidt ,  where J: H x ~ H r is the injection o f  
H x into H r and I v is the identity on H r. 

Moreover,  i f  conditions (i), (ii) and (iii) hold, and i f  {2,,} denotes the 
eigenvalues o f  JJ*  which are different f r o m  1, while {vn} denotes the 
corresponding sequence o f  normalized eigenvectors, then 

dlaxdlar (x) = exp t 1 , 1/2 1 Ux [(JJ ) -  m ] ( x ) - ~ ( m , ( J J * ) - ' m ) ~ z x  

Furthermore, i f  one or more o f  the conditions (i), (ii) or (iii) does not hold, 
then lax ±  lar. 
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Proof Let E be identified with its image under the injection of E into 
E 'a defined by p(x)( f )  = f ( x ) ,  for x C E, f C  E'.  a (E ' )  is identified with the 
a-algebra on p(E) induced by the cylindrical a-algebra on E 'a. Under the 
a(E '~, E ' )  topology E '~ is isomorphic to a product space 9~ A, where A is an 
algebraic basis of E '  (Robertson and Robertson (1964, p. 96)). In this way, 
the measures Atx, Atr are identified with Gaussian measures on a product 
space 9~ A. The proof of the theorem now follows from the product space 
result (Pan, 1966). II 

The next result was given by Baker (1973) for the case that B and E are 
separable Banach spaces with B reflexive. 

THEOREM 2.2. Let E be a locally convex space, At a probability measure 
on (E, a(E')). Suppose B is a separable or reflexive Banach space and 
j: B-~ E is a continuous linear injection. Then the following are equivalent: 

(i) At*(j(B))= i; 
(ii) At=vo j  -~, where 

(8, 
v is a (unique) probability measure on 

Moreover, if (i) or (ii) holds then At is Gaussian if and only v is Gaussian. 
I f  B is both separable and reflexive then j(B) ~ a(E')" so that condition (i) 
may be written ~( j (B))= 1. 

Proof Write M=j(B) .  Then it is easy to show that M N a ( E ' ) =  
j[a(j*(E'))], where a(j*(E'))  is the a-algebra generated by j*(E').  Also, 
j*(E')  is total in B'  from the assumptions that E is locally convex a n d j  is 
injective. By Perlman (1972, Theorem 8) it follows that a( j* (E ' ) )=  a(B'), 
since it is assumed that B is separable or reflexive. Thus M A a ( E ' ) =  
j[a(B')]. Suppose that (i) holds. By Theorem 1.1 of Doob (1937) we may 
define a probability measure fi on M N a ( E ' )  by f i (MAA)=At(A) ,  for 
A Ca(E').  Define v(A)=lY(j(A)), for A Ca(B ' ) .  Then v is a probability 
measure on a(B')  and v oj-1(A) =/Y(A A M )  =p(A),  for A C a(E').  Each 
A E a(B')  is of the form j -~(A)  for some A C a(E'), so that v is unique. 

Conversely, suppose (ii) holds. Let A ~ a(E') and A ~ M .  Then At(A) = 
v o j - l ( A ) = v ( B ) =  1. Thus At*(j(B))= 1 and (i) holds. For f E E ' ,  v{x:- 
( j* fx)<~ k I =  v{x: (f, j x ) ~ k }  = v o j - l { y :  ( f ,y)<~kI=At{y:  ( f y ) ~ k } ,  
and it follows by Perlman (1972) that At is Gaussian if and only if v is 
Gaussian. 

Finally, suppose that B is both separable and reflexive. The separability 
implies that v is a Radon measure so that At = v o j -1  is a Radon measure. 
Now B = Uff-1 nU, where U is the unit ball of B. Thus, since B is reflexive, 
U is weakly compact, and since j is weakly continuous (see Schaefer, 1966, 

643/51/2-5 
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p. 158) we have that j (B) is a Borel subset of E. Hence j ( B ) E  a (E ' ) " ,  since 
by a result of Badrikian and Chevet (1974, p. 347), ~ ' (E )  u = a ( E ' )  u for 
Radon measures la. II 

Let (12, ~ ) ,  (A, J - )  be measurable spaces, laxr a probability measure on 
the product space (O × A, ~ × J ' )  with marginals lax and lar. The average 
mutual information I(/_Zxr ) of the measure laxr is defined by I(laxr ) = 
sup Si,jlaxv(Ai × B j ) log~xr(Ai  × B~)/lax(Ai)lar(Bj)), where the upper bound 
is taken over all possible finite measurable partitions {Ai}, {Bj} of f2 and A, 
respectively, such that lax(Ai) > 0, lar(Bi) > 0. 

Let E x, E r be quasi-complete locally convex spaces, and let laxr be a zero- 
mean Gaussian measure on ( E x X E r ,  a(E~)×  a(E],)) with covariance 
operator R: E~ × E~, ~ E x × E r. The marginal and cross-covariance 
operators of R are denoted Rx,  Rr ,  and Rxr.  It is known (Baker, 1973; 
McKeague, 1980) that R x r = j x V x r J * ,  where V x r : H r ~ H  x is a unique 
bounded linear operator. The following result was proved by Baker (1978a) 
for E x, E r Hilbert spaces and a similar proof works for any locally convex 
E x, Er.  

PROPOSITION 2.3. (a) laxr~lax®lar if  and only i f  Vxr is Hilbert- 
Sehmidt and [[ Vxrl[ < 1. 

(b) I f  lax r ~ lax ® lar then I~xr )  < c~ and I(Pxr ) = - ½ Y~, log(1 -- 7,), 
where {7,, n >/1 } are the eigenvalues of  V*y Vxr. 

3. THE INFORMATION CAPACITY OF GAUSSIAN CHANNELS 

Suppose that messages are selected according to a probability distribution 
gx on (E x, a(Ef~)) and encoded through a measurable map A : E  x ~ E r. A 
noise process laN o n  (By, o(E~) is assumed to be known. The joint 
distribution of the transmitted message and received signal is given by 
laxr(D) =lax(~) lau{(X,y): (x, Ax  + y) C D}, D ~ a(Efv ) × a(E~,). The infor- 
mation capacity, subject to some constraints Q on #x and A, is defined to be 
supQ I~Uxr ). For the remainder of this section we shall assume that pu is 
Gaussian with zero mean and covariance operator Ru: E L ~ E r. The RKHS 
of R u will be denoted H N and the injection into E r by iN" Let the measure 
lax ° A -  1 be denoted laAx. The constraints Q that will be put on lax and A are 
the minimal ones to ensure that the information capacity is finite. One such 
constraint is la*x(Hu)= 1 (see Baker, 1979a). By Theorem 2.2, if H u is 
separable then this constraint may be written fiAx(HN)= 1. The following 
result was obtained by Baker (1978a) for the Hilbert space case and the 
proof for general E x, E r is along similar lines. 
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PROPOSITION 3.1. Suppose that f x  is Gaussian with zero mean and 
eovarianee operator Rx: E~ ~ E x. Let  A: E x ~ E r be a continuous linear 
map and assume that H u is separable and ~Ax(HN) = 1. Then there exists a 
unique trace-class covariance operator T on H N such that A R x A  * =Ju Tj* 
and l ~ x r )  = ½ Y'n log(1 + v.), where {r~, n >~ 1 } are the eigenvalues of  T. 

Proof Since A is linear and fx  is Gaussian, fax  is Gaussian with 
covariance operator A R x A * .  Since ~Ax(HN)= 1 and H N is separable, by 
Theorem 2.2 there exists a unique Gaussian measure v on H u such that 
flAX = V Oju 1. Let T be the covariance operator of v. T is trace-class and the 
covariance operator of v o Ju  I is JN Tj*. Thus A R x A  * =Ju Tj*. 

In order to evaluate I(/txr ) we use Proposition 2.3 and the representation 
Rxr  = i x  Vj*, where V = Vxr: H r ~ H x is a unique bounded linear operator. 
Let {r n, n >~ 1 } denote the eigenvalues of T. It suffices to show that the eigen- 
values of V * V  are {rn(1 + r . )  -1, n>/1}.  We have R r = A R A * + R N =  
jNTJ * +JNJ*N" Thus Jr J* =JN( I + T)J*N, where I is the identity on H N. This 
implies that H v coincides with the RKHS of I + T. Let p denote the injection 
of H v into H N, so that j r = j N p .  Since R x r = R x A *  (see Baker, 1978a, 
p. 83), 'it follows that j x V j * = R x A * = j x j * A * ,  so that V j * = j * A *  and 
Ajx -= j rV* .  Hence A R x A  * = A j x j * A  * = j r V * V j *  =jNPV*Vp*j*N. But we 
also have A R x A * = j N T j  *. Therefore T = p V * V p * .  T h i s  last equation 
uniquely determines V*V. Let {e , ,n  ) 1 }  be a CONS in H N consisting of 
eigenvectors of T so that T =  Y~, r , e ,  @H N e?l. It is now easily checked that 
V ' V =  Y~. r . e .  @Hven. Moreover, u. = (1 + rn) 1/2 e. ,  n >/ 1, is a CONS for 
Hy and V * V = ~ . r . ( I + r . )  - l u . ® n  u n. Therefore, { r . ( l + r . )  1, n~>l} 
is the point spectrum of V ' V ,  as required. I 

Remark. The hypotheses in Proposition 3.1 may be weakened slightly. 
Instead of requiring that H N be separable and fiAx(Hx) = 1, it suffices to have 
a separable subspace H~ of H N such that fiAx(HIN) = 1. 

The next two results extend Theorems 1 and 2 of Baker (1978a) to quasi- 
complete locally convex spaces under the restriction that A be one-to-one. 
This restriction allows us to use a result of Dobrushin (1959) in order to 
reduce to the case of Gaussian messages and avoid the martingale arguments 
of Baker (1979b). The approach in Baker (1978, Lemma 6) fails in our 
situation because the cylindrical cr-algebra on E r is not necessarily separable 
and the limiting arguments used there no longer hold. 

THEOREM 3.2. Suppose that dim(HN) > /M ( M <  oo and fixed), 
dim(Ex) >/M, and the following constraints Q are imposed on f x  and A: 

(a) A is e(E~)/e(E~) measurable; 
(b) f x ° A - 1 is concentrated on an M-dimensional subspace of  HN; 
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(c) A is 1-1 and a(E))"~/o(E~)  " ~  bimeasurable on a a(E))"~ 
measurable subset o r e  x which supports ~x; 

(d) :~IIAxlIgNd;*(x) <- Po, where Po < oo is f ixed.  

T h en  

(1) 
(2) 

supQ I~uxy ) = (M/2)  log(1 + Po/M); 

the supremum is attained when lax o A -  1 is Gaussian with zero 
mean and eovarianee operator (Po/M) M Y~.=I e.  ® e , ,  where {e., n = 1 ..... M}  
is an orthonormal subset o f  H N. The maximizing lax o A - 1 can be obtained 
with a Gaussian lax and a continuous linear A. 

Proof  First we show that  it suffices to consider the case that  
E x = E r = E and A is the identity on E. Let Q denote the set of  pairs (A, lax) 
satisfying constraints (a)-(d) ,  Q '  the set of  probabil i ty measures law on a(E~) 
such that  law is concentrated on an M-dimensional  subspace L w of H u and 
fEyl[xll2nNd~w(x)<~eo . Let lawE Q'  and let L x denote an M-dimensional  
subspace of  E x, A o an isomorphism from L x onto L w. By a consequence of 
the H a h n - B a n a c h  Theorem (Robertson and Robertson,  1964, p. 29) ,A 0 can 
be extended to a continuous linear map  A : E x - * L  w. A is a(E) ) /a (E~)  
measurable.  Since law is concentrated on a finite dimensional subspace on 
which it is Radon it can be extended to a Radon  measure on the whole of  
E v. Thus, by Badrikian and Chevet (1974, p. 374), ~ ( E r )  ca(E~. )  "w and 
since law is concentrated on L w we may  define a Radon measure lax on E x by 
lax(D ) = f iw[A(D ( 3 L x )  ] for D @ .~(Er ) .  Note that L x ~ ~ ( E x )  c a(E~:)"x 
and lax is concentrated on L x. Let C E a(E{,). Then law(C) = ~w(C C3 Lw)  = 
gw[AA I ( C ~ L w ) ]  = f i w[A ( A- I ( C)C 3Lx ) ]  = lax[A- l (c )] ,  so that law = 
lax ° A - 1. Therefore /7 w = /2  x o A - 1 so lax and A satisfy constraints (b) and 
(d). A is 1-1 and a(E))"x/a(E~,) "~ bimeasurable on L x so that lax and A 
satisfy constraint (c). Hence (A,la) belongs to Q, and as in Baker (1978a, 
Lemma  4) we have I(ax,Ax+u) = IQIAX,AX+N)" Conversely,  given (A,lax) E Q 
it is clear that law-=laxoA -1 belongs to Q' ,  and as before IQAX,AX+N)= 
I (a  w, w + u).  Therefore SUPA ,"x e Q I~X,AX + N) = s u p , :  o'  I(la w, w + u)" 

Now consider the case in which E x = E v = E and A is the identity on E. 
By Dobrushin (1959) we have 

I -uMc, x D:) 1 
I (pxr  ) = supv Ic,IID:ISUp ~.d log [ ~ l a v ~ j )  ] laxr(C/ X D:), 

where the outside supremum runs over all finite dimensional subspaces F of 
E '  and the inside supremum over all possible finite ~F-measurable partitions 
{Ci}, {Dj} of  E, such that lax(Ci) > 0, lav(Dj) > 0. Since C i, D: belong to c~, 
there exist Ai ,  B : C ~ ( 9 t " )  such that C i = r ~ I ( A i ) ,  D:=Tr21(Bj),  where 
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zc,:E--+91" is defined by r G ( x ) = ( ( f l , x  > ..... ( f , , x ) ) ,  x C E ,  for some 
f l  ..... f .  C E', Thus, 

Pxr(Ci × Ds) =Px ®PN{(X,Y): (X, X + y )  C 7r2X(Ai) × 7rn I(Bj)} 
= a+ ® ~N{Cx, y): (zt.x, ~.x + ~.y) c A ;  x ~j} 
__ n ~ n :  -u~®u~{(u,v)c (u,u+v)ca~xB~}, 

where P~ =Px  ° ~zn -1 and p ~ = p u  o 7~ -1. Similarly u r ( D s ) = p ~  ® ~t~v{(u, v )C 
9~": u + v C Bj}. Therefore, the inside supremum in the expression for I~xv)  
is equal to the mutual information for a channel with message/~  and noise 
~v on 9~". For such a channel it is known (see Baker, 1978a, Lemma 6) that, 
when the covariance of p~. is fixed and its distribution allowed to vary, the 
mutual information is maximized when/.t~ is Gaussian. We conclude that in 
order to evaluate supo I~xr )  it suffices to consider Gaussian Px belonging to 
Q. We already know an expression for I(tzxr ) in this case. By Proposition 3.1 
and the remark following its proof, I(,Uxr)= ½ Y~nM=I log(1 + r . ) ,  where 

~ ,= 1  r , e ,  ® e, and {e,, n = 1 ..... M} are orthonormal in H N. r,>~0, R x =  
Y~.=I r. ~<Po. It follows (see Baker, 1978, p. 84) Constraint (d) implies that 

that I(,uxr ) is maximized when r.  = Po/M for n - -  1 ..... M and we conclude 
that sup e I(Pxr ) = (M/2)log(1 + Po/M). | 

THEOREM 3.3. Suppose that E x and H u are infinite dimensional and H u 
is separable. Impose the following constraints Q on I~x and A: (a), (c), (d) of  
Theorem 3.2 and (b), fiax(Hu)= 1. Then supoI~uxv)=Po/2, and the 
supremum cannot be attained. 

Proof. First constrain Px o A -1 to have M-dimensional support. By 
Theorem 3.2 there exists a pair ~ ,  A ~t) satisfying Q and such that I ~ v )  = 
(34/2) log(1 + Po/m), where M Pxr is the corresponding joint distribution of 
input and output. Thus, limM~ ~ I~uxM,.)=P0/2, showing that supQ I~uxv ) >/ 
Po/2. 

To show the converse inequality, reduce to the case where E x = E v = E, 
A = identify on E, and Px is Gaussian, as in the proof of Theorem 3.2. By 
Proposition 3.1 and (c) it follows that supQ I~uxr ) <~ ½ ~ r, ~ Po/2. 

If the supremum is attained it must be attained by a Gaussian/t  x on E. 
Then, using the notation of Proposition 3.1, we have ~ ,  log(1 + r , ) = P o -  
But from Theorem 2.2 and the constraints fix(HN)= 1, f~ I[ xt[2N d~x(X) <~ Po, 
it follows that ~ n  r .  ~< Po. These two equations can hold simultaneously 
only if P0--0 .  Hence sup~ I(,uxr ) cannot be attained. II 
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4. ROBUSTNESS OF THE INFORMATION CAPACITY 

In this section we investigate the robustness and sensitivity of the infor- 
mation capacity to small deviations from normality in the noise process lax. 
Gualtierotti (1979, 1980) introduced a class of contaminated Gaussian laws, 
called QN-laws, and studied the information capacity problem for channels 
having QN-laws as noise. Here we make use of an inequality of Ihara (1978) 
to put bounds on the information capacity of these contaminated Gaussian 
channels and give conditions under which their information capacity tends to 
the information capacity of the corresponding Gaussian channels .  

Let P~ and P2 be two probability measures defined on the same 
measurable space (~,~Y-). The entropy Hv2(P1) of P1 with respect to P2 is 
defined by Hp2(P 1) = sup Y~i P1 (Ci) log(P1 (Ci)/P2 (Ci)), where the supremum 
is taken over all finite measurable partitions {C;} of I2. Let E be a locally 
convex space and let laU be a noise distribution on (E, o(E')) which is not 
necessarily Gaussian. Assume, however, that lax is of weak second order. In 
the notation of Section 3 we shall here only be considering channels with 
E x = E  r = E  and A = t h e  identity on E. Let ~ "  be a class of Gaussian 
covariance operators on E. Let ~g" be the class of weak second-order 
measures lax on (E, o(E'))  having a covariance operator belonging to ~ .  ~g" 
represents a class of allowable input distributions determined by their 
covariance operators. For example, the constraints in Theorem 3.3 (with 
E x = E r = E ,  A =identi ty)  have ~ equal to the class of covariance 
operators R x which have a representation R x =iN Tj*, where T is a trace- 
class covariance operator on H u such that T race (T)~P0 .  Let C~UN;~ ) 
denote the information capacity sup{I~xr): lax E ~g-}. The following result is 
an extension of Ihara's inequality to locally convex spaces. 

THEOREM 4.1. Suppose that there exists a zero-mean Gaussian measure 
lao on (E, cr(E')) having the same eovarianee operator as la x. Then 

c~u~; ~ )  ~< c~u~; ~ )  ~< c0,°; 3 )  + H.~(u~). 

Remark. Ihara stated this result for the case E = L 2 [ 0 ,  T]. His proof is 
based on a result of Huang and Johnson (1962) which holds only for a small 
class of signal and noise covariances (see Baker, 1969). However, Baker 
(1978a, Lemma6)  extended Huang and Johnson's result to arbitrary 
Gaussian covariance operators for the signal and noise so that Ihara's result 
is valid for E = L2[0, T]. For locally convex spaces E the same reasoning as 
in the proof of Theorem 3.2 works to reduce to the Gaussian case from 
which the result follows. 

Let H denote a separable Hilbert space, W a covariance operator on H 
and let k be a real number. Let P be a zero-mean Gaussian probability 
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measure on H with covariance operator R. Let c~1=  k 2 +  Tr WR and 
q(x) = eQ(k 2 + ][ W1/2x]]2). Then q(x) ) O, fH q dP = 1 so that the relation 
dQ = q dP defines a probability measure Q on H. Q is said to be a QN-law 
with parameters k, W, and R, and we write Q + QN(k, W,R). ]1W]] and 
Tr WR are rough measures of the "degree of deviation of Q from normality." 
Q has mean zero and covariance operator R 1/2(1 + 2coR 1/2 WR 1/2) R 1/2 (see 
Gualtierotti, 1979). Let {Q, ,n  >/1} be a sequence of QN-laws, 
Qn + QN(k,, W,, R), with R and P fixed. We pose the following question: If 
Q, converges to P (in some sense) then does the information capacity for the 
channel with noise Qn converge to that with noise P? 

In order to give a satisfactory answer to this question we use the following 
notation. If v is a probability measure on H with RKHS H~, then for S < 
fixed let ~ ,  denote the set of input distributions given by 

S ,  = lllx: t~x(H,) = l and ~H Hx]IzH~' d~x(X) <~ SI " 

Note that S v is a constraint on the covariance operator of Px and so falls 
under the framework for Ihara's Theorem. The following result gives bounds 
on the information capacity in terms of the degree of contamination of the 
Gaussian noise. 

THEOREM 4.2. Suppose that Q + QN(k, W, R), where k > 0, 
P + N(O, R). Then 

C(P; Sp)  <<, C(Q; ~'~e) <<- C(P; Sp)  + 
3 Tr WR 

k 2 

and 

COROLLARY 4.3. Suppose that Q, + QN(k,, W n,R) for n >~ 1 and 
Tr(WnR) ~ 0, lira infn~o k, > 0. Then C(Q,; So°) -~ C(P; S e )  as n ~ or. 

Proof of Theorem 4.2. Let Q + QN(k, W, R) and let Q0 denote the zero- 
mean measuye on H with the same covariance operator as Q, namely 
R1/2(I+ 2coR1/2WRI/2)R1/2. The operator T =  2coRI/ZWR1/2 is 
Hilbert-Schmidt, and since eQ > 0 and W is non-negative, T does not have 
- I  as an eigenvalue. Hence, by Theorem 5.1 of Rao and Varadarajan 
(1963), we have that P and Q0 are mutually absolutely continuous. 
Therefore Q ,~ QO and 

(,) 
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The first term on the rhs of ( , )  is 

f [log coe(k 2 + II w1/Zxll2)l eoe( k2 + II wl/2xll 2) d e  

~ eQ f H Wl/2x]12 de -~- ~-~ f ll W1/2xll4 de (since coek 2 ~ 1) 

toe = eoe Tr(WR) + ~-~ {2 Tr(WR) 2 + Tr(WR) 2 } 

k 2 Tr(WR) + 2 Tr(WR) 2 + (Tr WR) 2 
kZ(k 2 + Tr WR) 

The second term on the rhs of (*) equals 

f 11 ~ [ l o g ( l + r i ) - - Q / i ( x ) ) 2 r i ( l + r ~ ) - l ] l  dQ(x), 
i = l  

where ~i = ~ -  1 I~f 1/2(ej, vi)(ej, x) ;  {~,j, ej , j  >~ 1 } are the eigenvalues, 
orthonormal eigenvectors of R, and {ri, vi, i ) 1 }  are the eigenvalues, 
orthonormal eigenvectors of 2eoeR 1/2 WR 1/2 (see Rao and Varadarajan, 1963, 
p. 318). Therefore the second term is less than 

1 co Tr(R 1/2 WR 1/2) 
2-  "/--~1 log(1 + vi) ~< coe Tr(R 1/2 WR 1/2) = k 2 + Tr WR 

Note that d im(He)= dim(Hoe ) since P ~ Q0. Therefore, by Theorem 3.2 if 
dim(He) < oo (or by Theorem 3.3 if dim(He) ---- oo), we have C(Q°;~Q) = 
C(P; ~;'e). However, by Ihara's inequality 

C(Q°; ~r~oe ) < C(Q; ~?;'oe) < C(Q°; foe) + Hoeo(Q), 

with which the previous statements complete the proof of the theorem. II 

5. CALCULATION OF THE CODING CAPACITY 

A basic tool for the construction of codes is a lemma of Feinstein (see 
Ash, 1965, p. 232) and its generalization by Kadota (1970) to channels for 
which the noise process does not possess a probability density. A version of 
these results, to be used in this section, is stated below. 

Suppose that we are given measurable spaces ($2,~) of transmitted 
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signals and (A, J - )  of  received signals. Let f :  .(2 × A ~ A be a ~ X J - / J -  
measurable function and /'/u a probability measure on (A, J - ) .  Here, /~N 
represents a noise process. For  the additive channels considered in this 
article, the spaces .(2 and A are locally convex spaces and f is the addition 
operatio n. If  a message x E / 2  is transmitted then the received signal is a 
random element of A having distribution PN °f~-1, where f×: A ~ A is defined 
by f x ( Y ) = f ( x , y ) .  Note that fx is ~ - / 3 -  measurable (see Halmos, 1950, 
p. 142). A code (k,F,  5) is a set of  k code words x I ..... x k belonging to 
F c .(2, and a measurable partition of  A into k decoding sets C I ..... C~ such 
that Ps ° f~ l (C i )  > 1 - 5, for i = 1 ..... k. Such a code is used as follows: If  a 
received signal belongs to C i then the receiver concludes that x; has been 
transmitted. The probability of error is less than 5, regardless of  which code 
word is transmitted. 

Now let Px be an arbitrary probability measure on (.(2, ~ )  and define t2xv 
on X2XA by ¢ t x r ( D ) = P X ® P N { ( x , y ) : ( x , f ( x , y ) ) ~ D  }. Let ¢tr be the 
projection of  Pxv onto A. 

LEMMA 5.1 (Baker, 1979b). Suppose pNOfx  I ~I~N a.e. dPx(X ). Then 
Pxr ,~Px@pr  and [dy~flN. Moreover, if  [dpN of21]dPr-](y) is ~ ×J= 
measurable then 

[d/~xr[d/~x®Pr](x,y) = [dPN ° fx l[dgv](Y)  a.e. d/2x®gr(x,y  ). | 

LEMMA 5.2 (Kadota,  1970). Suppose that PN o f ~ - I  PN a.e. dPx(X ) and 
[d/~ N Ofxl[dpr](y)  is ~ × J -  measurable. For any real a let A = { (x ,y )C  
$2 × A: log[dpxr[dpx @/dv](x, y) > a}. Then for each integer k and F C 
there exists a code (k, F, 5) such that 

g <~ ke-'~ + l.txv(A e) + Bx(FC). | 

For the remainder of  this section we take ,(2 = A = E, where E is a quasi- 
complete locally convex space. The function f :  E × E -~ E is taken to be the 
addition operation ( f  (x, y) = x + y, forx ,  y ~ E )  which is a ( E ' )×  
a(E') la(E')  measurable. Let /'/N be a zero-mean weak second-order 
probability measure on a(E'), with covariance operator RN: E'-*  E which 
has R K H S  denoted H N. This set-up is known as the channel with additive 
noise. We do not assume that PN is Gaussian unless explicitly mentioned. 

A code (k, n, e) for this channel will be as before but with F replaced by n, 
a positive integer, representing the constraints on code words xl,..., x k given 
by 

(a) x i ~ HN, for i = 1 ..... k; 

(b) [Ix;Fl~N<~neo, for i =  l, . . . ,k; 
(c) d imsp{x  i , i =  1 ..... k} <~ n. 
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These constraints form the natural  generalization of the constraints for the 
time-discrete Gaussian channel with average power limitation P0, as in 
Shannon (1959), in which case xl ..... xkE9~"  and Y~." x 2 =~ ij <<, nPo, for 
i = 1 ..... k. Let [a] denote the integer part  of  a ~ 9~. A real number  R / >  0 is 
said to be a permissible rate of  transmission if there exist codes ([e"R], n, e,)  
with e n ~ 0 as n ~ c~. The coding capacity,  denoted Co, is defined as the 
supremum of all permissible transmission rates. Let/20 denote the Gauss ian  
cylindrical measure on E having zero-mean and the same covariance 
operator as PN. If/l°u is countably additive then the entropy H.o(flN ) of/ /N 
with respect to /a ° may  be defined as in Section 4. Otherwise we define 
H , 0 ~ u  ) by regarding /'/N and /1 ° as measures on E '~ on which/20 is coun- 
tabby additive by Kolmogorov ' s  Theorem. 

THEOREM 5.3. (1) IfntaoQIN) < (DO then C O ~ -~ log(1 + Po)" 
(2) IfH~oCuN) < 0o and dim(Hu) < 0o then Co = O. 

1 log(1 + P0)" (3) I f  tl N is Gaussian and dim(HN) = oo then C O = 

Remark  5.4. An intuitive explanation of (2) is that a finite dimensional 
space H N is " too small" to allow a code to attain any positive rate of 
transmission. 

Proof  o f  Theorem 5.3. First let us suppose that dim(HN) = 0o and ta N is 
Gaussian. Let { e , , n / > l }  be an or thonormal  sequence in H u. Choose 
Q < P 0  and let ~t x be the distribution of  the random element 
X = v V 0 Y ' ~ = I  yiei, where {yi, i =  1,..., n} are i.i.d. N(0, 1) random variables. 
Then Px has mean zero and covariance operator  Q ~ ' =  1 e; ® e i. By Theorem 
2.1, / t N o f x l ~ / a . N  a.e. dlax(X ), since /z x is concentrated o n  H u. Using 
Theorem 2.1 it is possible to evaluate [dla u Ofxl /dCtr](y)  and check that it is 
a ( E ' )  × a ( E ' )  measurable.  For  full details see McKeague  (1980). Thus, 
Lemma  5.2 is applicable for Px. 

Let r , = { x E s p ( e  I ..... e,):[[x][Zu<.nPo} and note that  /ax(V~)= 
P{ n-1 ~ = ~  Y~ > Po/Q} -+ 0 as n --+ oo, by the law of large numbers.  Baker 
(1978a, p. 78) has evaluated dltxr/dla x ®/2 r in the Hilbert  space case and it 
is clear that the same method works here. Let V denote the unique bounded 
linear operator  in the representation R x r = j x V j * .  Baker (1978a, p. 78) 
shows that 

dflxY log (x, y)  
d~x ® ~r 

= ~ -  {a~(x, y)  -- b~(x, y )  -- log(1 + ~i) -- log(l  - t~i)}, 
i = l  
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where the series converges a.e. dgxr ,  {3~, i >/1 } are the eigenvalues of  V* V, 
both a~ and b~, i > / I ,  are zero-mean Gauss ,an  random variables with respect 
to Itxv and {ai, i/> 1; bj, j / >  1 } is a set of  independent random variables with 
respect to Pxr.  F rom the proof  of  Proposit ion 3.1 we have 
c$ i = (Q/(1 + Q))~/2, i = 1,..., n, and cS i = 0, i > n, so that 

1 
log @x®pvd'uxy (x ,y)  =--2,=11 ~ {a~ (x , y ) - b ~ ( x , y ) }  + T n l o g ( 1  + Q), 

where {a 1 ..... an, b~ ..... b,,} are ,.i.d., zero-mean Gauss ,an random variables 
with variance (Q/ ( I  + Q))1/2 with respect to Itxr.  Let 3 > 0, 
a ,  = ½n log(1 + Q) - n6 and A n = {(x,y): log(@xv/di tx®lav)(X,y ) > an}, so 
that A~, = {(x,y): ½ Y~'=~ (a~ - b~) ~ n3} and/lxr(A~, ) ~ 0 as n ~ oo, by the 
law of large numbers.  Let R < 1 log(1 + P 0 )  and k n = [e"g]. Note that 
k,,e-C~. ~ enR-O/2)nlogO +Q)+n~ ~ 0 as n ~ co, provided Q is chosen 
sufficiently close to P0 and 6 is sufficiently small. Thus, by Lemma  5.2 there 
exist codes ( [enR] ,F, ,G)  such that G--+0  as n ~ o o .  Therefore 
C o > ½ log(1 + P0). 

For the converse inequality suppose that H,o(uu) < oo and do not assume 
that PN is Gauss,an.  Let 0 < e < ¼ and suppose that we have a code (k, n, e) 
with code words x a ..... x~ and corresponding decoding sets C~ ..... C k. Write 
It,-------itNof~ ~ so that f l i ( C i ) ) l - - g ,  for i = l , . . . , k .  Using a standard 
technique (see Ash, 1965, p. 253) it is possible to approximate  the sets 
C~,..., C k by disjoint cylinder sets Dx ..... D~ and produce a new code 
(k, n, 2e) with code words x 1 ..... x k and decoding sets D~ ..... D e. Let F be a 
finite dimensional subspace of  E '  with basis {ft ..... f~} such that all the 
cylinder sets D~, i =  1 ..... k, are based on F. Let G be the map G : E ~  ~R ~ 
defined by 7rr(X)-=(( f l ,X > ..... (fr,  X)) SO that D i = J r / l ( A i ) ,  for some 
A~ ~ ~(~Rr), i = 1 ..... k. 

Since the D; are disjoint so are the A,. Define y; = G(xi), It~ = Iti ° zrr ~, for 
i = 1 ..... k. Then 

It~(A,) =It, o 7r;-I(A,) =itl(Di) >/1 -- 2e 

so that the (y~,A,)  form a code for the channel on ~1 r with noise ItN o zr7 ~. 
Notice that the y, ,  i =  1,..., k, are distinct because we have assumed that  

< ¼; if two coincide then we would have ItT(A~) > ½, aT(Aj) > ½ for some 
i4 : j ,  which would be a contradiction. 

Let /l x be the measure on E given by I t x = ( 1 / k )  Y~=l 3~. Define 
I t x ~ = i t x r  ° p  . Then p:E×E--+~Rr×~R r by p ( x , y ) = ( G x , ~ z r y  ) and put r -1 

I(uSrr) ~< I(,uxr ) (see Baker, 1978a, L e m m a  4). However,  since x 1 ..... x k 
satisfy the constraints (a), (b), (c) above, Itx satisfies the following: Itx is 
concentrated on an n dimensional subspace of H N and f I[ xl[2,, ditx(x) <~ nPo. 
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Therefore, by Theorem 3.2 and Ihara's inequality, I(U~xr)<(n/2) 
log(1 + P0) + H,N°~N)" Since H~,o(,Uu) < oo, if follows (see Pinsker, 1960) that 
/~N ~ go. Thus, each g~'lx; has a density on 9V and it is possible to define the 
conditional entropy Hr(XI Y) of X given Y on ~r, as in Ash (1965, p. 24l). 
Since I(pjcr)= H~(X) --H~(XI Y), where H~(X) is the entropy of/~Jc which 
equals log k, we have, using Fano's inequality (see Ash, 1965, p. 244), 

Therefore, 

log k = I~jcr) + Hr(Xl D 
n 

~< -~- log(1 + P0) + H~°~uN) + log 2 + 2~ log k. 

where K is a constant which is independent of n. Let R > mlog(1 + Po) and 
suppose k >/e hR. Then from (5") it follows that 

n[R - 1log( 1 - ) - P o ) ] - K  R -  ½ log(m +P0)  
e>~ ~ >0 ,  2nR 2R 

l log( 1 +P0), no sequence of codes ([e"R], n, %) can as n ~ oo. Thus, if R > 
exist with e n ~ 0 as n ~ oo, so that Co ~< ½ log(1 + P0). Finally, assuming 
dim(HN) = M < oo, we have instead of (t), 

logk <~ [-~log (l + ~ - )  + K]/(1-- 2e) • 

Let R > 0 and suppose k >/e hR. Then, 

e >~ nR - - ~  log 1+ -- K 2nR ~--~, 

as n ~  oo. Thus, if R > O, no sequence of codes ([e"R], n, en) can exist with 
e n ~ O a s n ~ o o , s o t h a t  C 0--=0. | 

6. THE CODING CAPACITY OF TIME-CONTINUOUS CHANNELS 

Let N =  {Nt,--oo < t < oo} be a real-valued second-order stochastic 
process on a probability space (~, J - ,  P). N represents a noise process and is 
not assumed Gaussian unless explicitly stated. The RKHS of N is denoted 
H N and is assumed to be separable. Code words are given by real-valued 
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functions S: ( - c ~ ,  ~ )  ~ 9~ which vanish outside the time interval [0, T]. A 
decision is made as to the identity of  the code word transmitted during the 
interval [0, T] after observing the output during that interval. Let HN r denote 
the R K H S  of {N t, 0 ~< t ~< T}. The following constraints are to be imposed 
on code words S =  {S t , - o o  < t < oo}: 

(a) S vanishes outside [0, T]; 
(b) S restricted to [0, T] belongs so HN~; 

(c) ]ISII~<. PoT. 
A code (k, T, e) for this channel is a set of code words S {1) ..... S {k) satisfying 
the constraints (a), (b), (c) together with disjoint decoding sets C1 ..... C k, 
belonging to ~ r ,  the cylindrical a-algebra on 9~ [°'r], such that 

P{(S~ i) ±  Nt) ~ C Ci} >/1 -- e, for i = 1,..., k. 

A real number R / >  0 is said to be a permissible rate of  transmission if 
there exist codes ([eRr], T, er) with er -~  0 as T ~  ~ .  The coding capacity,  
denoted C 0, is defined as the supremum of all permissible transmission rates. 

Let N o denote a zero-mean Gauss ian  stochastic process with the same 
covariance as N and let PN, /'/N O be the measures on 9t ¢-~'~°) induced by N 
and N °, respectively. Denote by HNo(N ) the entropy of /~ .  with respect to/./NO 
as defined in Section 4. 

THEOREM 6.1. For the time-continuous channel with additive noise N: 

(1) I f  HNo(N ) < oo then C O <~ Po/2. 
(2) I f  HNo(N ) < oo and dim(HN) < ~z then C O = O. 
(3) I f  N is Gaussian and dim(HN r ) = ~  for some T > O  then 

C O = Po/2. 

Proof First let us suppose that  N is Gauss ian  and dim(H~v0 ) = oo, where 
T O > 0. Let m be a fixed positive integer and let n = m T  vary as T > / T  o 
varies over positive integers. Consider the general channel on 9t I°'r°l with 
noise {Nt, O<~t<~ To} and the following constraints on code words 
X 1 ,...~ X k C ~[°'r°l: 

(a) x i E H N  r ° , f o r i = l  ..... k; 
(b) IIx;ll~/~ < n(Po/m), for i = 1 ..... k; 
(c) dim sp{xi, i = 1 ..... k} <~ n. 

Since N is Gaussian and d im(H~ °) = c~ we have, by Theorem 5.3, that the 
l l o g ( l + P 0 / m ) .  Let e > 0  and coding capaci ty  for this channel is 

R '  < ½ log(1 + Po/m). Then there exists a code ([e"R'], n, e) with code words 
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S u), i = 1  ..... [e"R'], and corresponding decoding sets C * C ~ r 0 .  Let 
C i = C* × ~(r0.rl C ~ r ,  where T is determined by the choice of n. The C i 
will act as decoding sets since they are disjoint. Since there is a natural norm 
preserving injection of  HN r0 into Hur we shall identify each S (;) ~ Hr0 with its 
corresponding element in H r .  Define S (i) to be zero outside [0, T]. In this 
way we have a code ([e"R'], T, e) for the time-continuous channel and it 
follows that if R = m R ' < ( m / 2 ) l o g ( l + P o / m  ) there exists a code 
([eRr], T, e) for the time-continuous channel. Therefore Co>~(m/2 ) 
log(1 + Po/m) and letting m -~ ~ ,  we conclude that C o >/Po/2. 

For the converse inequality suppose that HNo(N ) < oo and do not assume 
that N is Gaussian. Let 0 < e < ½ and suppose that we have a code (k, T, e) 
with code words S ~) ..... S ~k) and corresponding decoding sets C a ..... C k for 
the time-continuous channel. Write Pi(A) - P{(S~ i) + Nt) ~ C A t, for A ~ ~ r  
so that Pi(Ci) ~ 1 - -  8 for i = 1 ..... k. There exist cylinder sets D~, i -- 1 ..... k, 
whose base sets are finite unions of semiclosed intervals of the form 
{(x~ ..... x , )  E ~ :  x i E [a i, bi), i = 1 ..... n}, such that Pj(CiAD~) <~ e/3k, for 
i , j  = 1 ..... k (see Halmos, 1950, pp. 21, 56). Now define inductively 

D 1 = D * ,  

j - - I  

D : ~ D f f  -- U D*, 
i - - l  

j = 2  ..... k. 

Then, by a standard argument (see Ash, 1965, p. 253) it can be shown that 
Pj(D~) >/ 1 -- 2e, for j = 1,..., k. 

Let {ei, i >/1} be a C O N S  (possibly a finite sequence) in H r ,  which exists 
since H u is assumed to be separable. Let zc, denote the projection of  HN r onto 
span {e I ..... e,} and define S(, i) =_ zcnS u). We will show that for n sufficiently 
large P{(S(,i)t + Nt) ~ C Di} >~ 1 - 3e, for i = 1 ..... k. Let r = {t~ ..... t~} ~ [0, T] 
be such that all the cylinder sets Di, i = 1 ..... k, are based on 9V. In other 
words there exist A~ c ~ ,  which are finite unions of  semiclosed intervals, 
such that D i = A i×~  [°'rl-~, i = 1  ..... k. Since HNo(N)<oo we have 
]'/N ~ ]'/NO, where 12 N and laNO are the measures induced on ~ ( ~ , ~ o )  by N and 
N °, respectively. Therefore/27v ,~/lfv0 and we may write 

P{(S(~i)t + Nt) ~ E Di} = P{(S(~i)t + Nt)te ~ G Ai} 

=~ ZA,(x + S(. '~) du~ dUN--~o (x) dU~o(X). 

Note that e ( i ) ~  ~(i) as n ~  oo, for each t E [0, T] and i =  1 ..... k, since ° n , t  ~ t  
S(j ) ~ S (;) in H r as n ~ oo. If  #ro is degenerate at 0 for some t c [0, T] then 
S(i) _ S~i) = 0, for all n, i = 1,..., k. Therefore, since the A i are finite unions n, t  - -  
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of intervals in W ,  it can be seen that  ZA~(X + S~ i)) -~XAi(X + S ti)) as n ~ m,  
a.e. d/~Tvo(X), for i = 1 ..... k. Thus, by the dominated  convergence theorem 

P{(S~i) t + Nt)~o ~ Di} ~ P{(S(, i) + Nt)or'C D,} as n --~ m ,  

for i = 1 ..... k. But we have a l ready shown that  P{(SI i~ + Nt) ~ ~ Di} >>. 1 -- 2~. 
Therefore, for n sufficiently large 

P{(S~i)t + Art) r E Di} >/1 -- 3~, 

Also 

and 

for i = 1 ..... k. 

II (i) 2 S,, l[H~<~ n(PoT/n), i=  1 ..... k, 

dim - t l )  S~nk) sp{a n ..... } <~ n. 

Therefore, by  the converse for the general channel in Theorem 5.3 we have 

log k~< log 1 + n +Hl~v~lg({Nt}~) +l°g 2 (1 - 3e). ( , )  

Note that  HiNog({Nt} r)  ~< HNo(N ) < m and (n/2)  log(1 + Po T/n) <~ Po T/2 
and it follows that  C o <~ Po/2. Final ly ,  assuming dim(HN) = M < oo, we have 
instead of ( , ) ,  log k ~< [ (m/2 )  log(1 + Po T/M) + K]/ (1  - 3e), where K is 
independent of  T and it follows that  C o = 0. I 

Remark. If  in Theorem 6.1(1) we have instead of  HNo(N ) < m, 

l im HIN°lr°({Ut}~) - HNo(N), 
T--* ~ T 

where HNo(N) is called the ent ropy rate of  N with respect to N o (see Pinsker,  
1960, p. 77), the most  we can conclude is that  Co <~ Po/2 + HNo(N). 
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