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a b s t r a c t

Several relativistic extensions of theMaxwell–Boltzmann distribution have been proposed,
but they do not explain observed lognormal tail-behavior in the flux distribution of various
astrophysical sources. Motivated by this question, extensions of classical central limit
theorems are developed under the conditions of special relativity. The results are related to
CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this
special case the asymptotic distribution has an explicit form that is readily seen to exhibit
lognormal tail behavior.

© 2015 Published by Elsevier B.V.

1. Introduction

In special relativity, the momenta of particles on parallel trajectories combine according to the -addition rule

x
� y = x

p
1 + 2y2 + y

p
1 + 2x2, (1.1)

where 0 <  < 1 is a dimensionless parameter representing the reciprocal of the speed of light in the ambient space (with all
variables expressed in dimensionless units). The classical Galilean addition law for momenta appears in the limit as  ! 0.

The purpose of this note is to derive extensions of classical central limit theorems under -addition, and to relate the
resulting (non-Gaussian) limit distributions to an existing parametric family, namely hyperbolic sine transformations of
normal distributions. It is also shown that such distributions arise as the limit distribution of a certain type of relativistic
Ornstein–Uhlenbeck process.

Background on the -addition rule for momenta in special relativity, and corresponding operations for velocity and en-
ergy, can be found in Kaniadakis (2002, 2006, 2009a,b, 2013), along with a comprehensive survey of the literature on var-
ious other -deformations, and references to applications. These include a formal extension of the Maxwell–Boltzmann
distribution (used to model the energy of large systems of particles that only interact through elastic collision and are
at thermal equilibrium), constructed by replacing the standard exponential by the -deformed exponential exp(x) =
exp(sinh�1(x)/), and providing power-law tail behavior with exponent�1/ .

General formulations of central limit theorems for random walks on locally compact Lie groups, of which the real line
under -addition is a simple example,were first established byWehn (1962) and Stroock andVaradhan (1973). These results
require indirect moment conditions on the random elements after they are logarithmically mapped into the associated Lie
algebra (tangent space at the identity), and the limit distribution is described in terms of the infinitesimal generator of a
semi-group of probability measures on the Lie group. Despite their great generality, such results fall short of being able to
resolve whether classical CLTs extend in full to -addition under only standard conditions. Explicit CLTs are currently only
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available for random walks on certain special Lie groups, e.g., for the special orthogonal group SO(3), which is of interest in
the field of directional statistics. In particular, Qiu et al. (2014) recently established an explicit CLT for symmetric random
elements of SO(3), with an isotropic Gaussian distribution as the limit.

We establish complete relativistic extensions of the classical CLTs under standard conditions. These results are estab-
lished by showing that ‘‘relativistic warping’’ is asymptotically equivalent to taking the hyperbolic sine of a row-sum in
a transformed array, and that the standard CLT conditions on the original array suffice for applying the Lindeberg–Feller
theorem to this transformed array. The proofs are elementary, avoiding the need for any background on Lie groups or in-
finitesimal generators. The limiting distributions have an explicit form because the exponential map from the associated Lie
algebra into the Lie group in this special case takes an especially tractable form.

Our main results are presented in Section 2. Background on observed lognormal tail-behavior in astrophysical sources,
and a relativistic version of the Ornstein–Uhlenbeck process that might help explain such observations, are discussed in
Section 3.

2. Relativistic CLTs

In this section we first develop CLTs that apply to the relativistic averaging of momenta, and then consider extensions to
the relativistic averaging of velocities and energies, along with a functional CLT.

2.1. Momenta

Our first result is a full extension of the classical CLT to -sums, only requiring that the i.i.d. summands have finite second
moment.

Theorem 1. Let {Xi} be a sequence of i.i.d. zero-mean r.v.s with variance � 2 <1, and let Xni = Xi/
p
n. Then

Xn1
� Xn2

� · · · � Xnn

d�! 1

sinh(Z), (2.1)

where Z ⇠ N(0, � 2).

Proof. The Lie group (R,
�) is group isomorphic to its Lie algebra (R, +), with the logarithmic map x 7! sinh�1(x) pro-

viding the isomorphism. That is,

sinh�1[(x
� y)] = sinh�1(x) + sinh�1(y), (2.2)

which can be directly checked (without recourse to the theory of Lie groups) using the expression sinh�1(x) = log(x +p
1 + x2). This provides the following decomposition of the -sum:

Xn1
� Xn2

� · · · � Xnn = 1

sinh(Tn + µn), (2.3)

where Tn = 1


P
n

i=1(Yni � EYni), Yni = sinh�1(Xi/
p
n), and µn = nEYn1.

Since
p
nYn1 ! X1 a.s. and |

p
nYn1|  |X1|, by dominated convergence we have µn/

p
n = pnEYn1 ! EX1, and

Var(Tn) = 1
2

nX

i=1

Var(Yni) = 1
2

�
E(
p
nYn1)

2 � [E(
p
nYn1)]2

 
! Var(X1) = � 2.

Also, if t is a continuity point of the distribution of |X1 � EX1|, then by dominated convergence

nE([Yn1 � EYn1]21{
p
n|Yn1 � EYn1| > t})

= E[
p
nYn1 � µn/

p
n]2 � E([

p
nYn1 � µn/

p
n]21{|pnYn1 � µn/

p
n|  t})

! 2
E([X1 � EX1]21{|X1 � EX1| > t}).

Thus, noting that the last term above tends to zero as t !1, it follows that
nX

i=1

E([Yn1 � EYn1]21{|Yn1 � EYn1| > ✏}) = nE([Yn1 � EYn1]21{
p
n|Yn1 � EYn1| > ✏

p
n})! 0

for every ✏ > 0, so the Lindeberg condition holds and Tn
d�! N(0, � 2) by the Lindeberg–Feller theorem.

The first derivative of sinh�1(x), namely 1/
p
1 + x2, is bounded between 1 � |x|↵ and 1 for any 0 < ↵  2. By taking

↵ = 1 when |x| � 1 and ↵ = 2 when |x| < 1, then integrating, we obtain | sinh�1(x) � x|  x
2 min(|x|, 1). Using this
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Fig. 1. The behavior of the bias µn as a function of log2 n in Example 1 (red solid line) and Example 2 (green dashed line), when  = � = 1.

inequality and the condition EX1 = 0 (not used up to now), we have

|µn| = |nE[Yn1 � X1/
p
n]|  nE| sinh�1(X1/

p
n)� X1/

p
n|

 2
E[X2

1 min(|X1|/
p
n, 1)],

which tends to zero by dominated convergence. The result then follows by (2.3) and the continuous mapping theorem. ⇤

Example 1. Let the Xi be i.i.d. copies of a discrete r.v. X having distribution formed by standardizing (to have zero-mean and
unit variance) the probability mass function

pk = C

k3(log k)(log log k)2
, k = 3, 4, . . .

where C is a normalizing constant. Note that EX2 < 1 and Theorem 1 is applicable, but E[X2 log(1 + |X |)] = 1, so it is a
borderline case. Also, X is not symmetric and the bias µn in (2.3) does not vanish. As proved in Theorem 1, µn ! 0, but its
rate of convergence to zero is very slow, as seen in Fig. 1, indicating that the distribution of the -summay be substantially
skewed, even for large samples. Curiously, the bias does not tend monotonically to zero, but initially becomes more severe
(for n  64).

In contrast, µn tends very rapidly to zero in the following example, see Fig. 1.

Example 2. Let X =
p
2 with probability 1/3, and �1/

p
2 with probability 2/3. This X is not symmetric but has finite

moments of all orders (as well as zero-mean and unit variance).

Note that the asymmetry in Example 1, rather than the borderline moment condition, is the prime cause of the slow rate
of convergence of the bias to zero. For CLTs on general Lie groups, a suitable symmetry assumption can have the convenient
effect of removing bias. For example, in connection with the explicit CLT on the (compact) Lie group SO(3)mentioned in the
Introduction, the main result of Qiu et al. (2014) assumes that the angular distribution of the random rotation is symmetric
on (�⇡ , ⇡]; the possibility of an extension to the asymmetric case was not discussed.

Our second result extends the classical Lindeberg–Feller theorem and contains Theorem 1 as a special case, although the
proof is less revealing in the sense that the bias is no longer made explicit.

Theorem 2. If {Xni, i = 1, . . . , n} is a triangular array of independent zero-mean r.v.s such that
P

n

i=1 E[X2
ni
1{|Xni| > ✏}] ! 0

for all ✏ > 0, and
P

n

i=1 Var(Xni)! � 2 <1, then (2.1) holds.

Proof. Consider the following alternative decomposition of the -sum as

Xn1
� Xn2

� · · · � Xnn = 1

sinh(Sn + Rn),

where Sn = P
n

i=1 Xni and Rn = P
n

i=1
�
sinh�1(Xni)� Xni

 
. By the Lindeberg–Feller theorem, Sn

d�! Z ⇠ N(0, � 2).
The result then follows using the continuous mapping theorem and Slutsky’s lemma if the remainder Rn!p 0. By the same
bound on | sinh�1(x)� x| used to handle the bias term µn in the proof of Theorem 1,

E|Rn|  2
nX

i=1

E[X2
ni
min(|Xni|, 1)] = 2(An + Bn),

where for any given ✏ > 0,

An =
nX

i=1

E[X2
ni
min(|Xni|, 1)1{|Xni| > ✏}] 

nX

i=1

E[X2
ni
1{|Xni| > ✏}]! 0
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Fig. 2. The pdf of 1

sinh(Z + µ) compared with the pdf of Z ⇠ N(0, 1) (dashed), for µ = 0 (blue), µ = 1 (green) and µ = 2 (red), for  = 0.5 (left

panel) and  = 0.9 (right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

by the Lindeberg condition, and

Bn =
nX

i=1

E[X2
ni
min(|Xni|, 1)1{|Xni|  ✏}]  ✏

nX

i=1

EX
2
ni

if ✏ < 1/ . Thus lim sup Bn  ✏� 2, and since ✏ can be arbitrarily small, we also have Bn ! 0, completing the proof. ⇤
Our approach has involved showing that a Lindeberg–Feller type result holds for the transformed array sinh�1(Xni)

under standard conditions on the underlying array {Xni}. In contrast, for the Lie group CLTs mentioned in the Introduction,
moment conditions are needed on the transformed array (logarithmicallymapped into the Lie algebra); in our special setting,
those conditions are a consequence of the simpler conditions on the underlying array.

We conclude this section by noting that a full extension of the classical strong law of large numbers also holds. If Xi are
i.i.d. with finite mean and Xni = Xi/n, then

Xn1
� Xn2

� · · · � Xnn !
1

sinh(EX1) a.s. (2.4)

The proof uses a similar argument to what we have already seen, except the relevant remainder term is handled using the
inequality | sinh�1(x)� x|  |x|min(|x|, 1).

2.2. Arcsinh-normal distributions

We refer to a r.v. of the form a sinh X , where X is normally distributed and a is a constant, as arcsinh-normal, in parallel
with the term lognormal. Fig. 2 shows the pdf of 1


sinh(Z + µ), where Z ⇠ N(0, 1), for various choices of  and µ. The

distribution is close to normal for small  , but has lognormal tail behavior; the lognormal tails become especially apparent
as µ increases.

Arcsinh-normal distributions form a subclass of the translation system SU introduced by Johnson (1949). Various classical
characterization results for normal distributions can be translated immediately into arcsinh-normal versions. For example, if
X andY are independent and their-sum is arcsinh-normal, thenbothX andY must be arcsinh-normal; this is a consequence
of (2.2) and Cramér’s theorem. Likelihood-basedmethods of inference for such distributions are available (Jones and Pewsey,
2009), but, as far as we know, their appearance as limit laws in special relativity has not previously been noted.

2.3. Velocity and energy

Under special relativity, the velocity u(q) and energy E(q) of a particle with momentum q are given (in dimensionless
units) by

u(q) = q
p
1 + 2q2

, E(q) = 1
2

p
1 + 2q2, (2.5)

and the corresponding -sum rules are

u1
�vu2 = u1 + u2

1 + 2u1u2
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Fig. 3. The pdf of the limiting distribution for velocity:  = 0.33 (blue),  = 0.5 (purple),  = 0.7 (green),  = 0.9 (red) and  = 0.99 (violet). The
vertical dashed lines indicate the lower and upper bounds (±1/) on the velocity. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and

E1
�eE2 = 2E1E2 + 1

2

q
(4E2

1 � 1)(4E2
2 � 1),

respectively, see Kaniadakis (2006). The previous CLTs for momenta can be translated into CLTs for velocity and energy as
follows.

Let Uni = u(Xni) and Eni = E(Xni), where {Xni, i = 1, . . . , n} is a triangular array of the form considered earlier. Using the
identity (cf. Kaniadakis, 2006)

Un1
�vUn2

�v · · · �vUnn = u(Xn1
� Xn2

� · · · � Xnn),

applying the above theorems (and noting that u(·) is continuous) we have

Un1
�vUn2

�v · · · �vUnn

d�! sinh(Z)


p
1 + sinh2(Z)

= 1

tanh(Z)

and similarly

En1
�eEn2

�e · · · �eEnn

d�! 1
2

q
1 + sinh2(Z) = 1

2 cosh(Z).

The pdfs of these limiting distributions are illustrated in Figs. 3 and 4.

2.4. Relativistic invariance principle

Next we discuss a -sum version of the functional CLT (invariance principle) of Donsker (1951). As in Theorem 1, let {Xi}
be a sequence of i.i.d. zero-mean r.v.s with variance � 2 <1, and set Xn,i = Xi/

p
n. Then define the relativistic random walk

for momentum as the process

Bn(t) = Xn,1
� Xn,2

� · · · � Xn,dnte for 0 < t  1,
where d·e is the ceiling function, and set Bn(0) = 0. Viewing Bn as a random element in the space of bounded functions on
[0, 1] endowed with the uniform norm, under the conditions of Theorem 1 we have

Bn(t)
d�! B(t) = 1


sinh(W (t)),

where W (t) is a Wiener process with infinitesimal variance � 2. This follows from the classical Donsker theorem using a
similar expansion to (2.3) and noting that the drift term µn, now a function of t , converges uniformly to zero.

3. Relativistic Maxwell–Boltzmann distributions

The first relativistic extension of the Maxwell–Boltzmann distribution was due to Jüttner (1911), but in recent years
various authors have questioned whether Maxwell–Boltzmann–Jüttner theory is adequate to explain the flux distributions
of relativistic sources, especially those that expand into an infinite surrounding space (e.g., cosmic rays, quasars, gamma ray
bursts, and X-rays from black hole objects), rather than being confined to a closed vessel. Indeed, it has been observed that
lognormal distributions may provide better approximations in such systems, see, e.g., Ioka and Nakamura (2002); Gaskell
(2004); Gandhi (2009); Kunjaya et al. (2011); Gladders et al. (2013).
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Fig. 4. The pdf of the limiting distribution for energy, with the same color coding as in Fig. 3. The vertical dashed lines indicate the lower bounds (1/2)
on the energy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Multiplicative processes have typically been used to explain lognormal distributions. Yet existing approaches (e.g., based
on self-organized criticality) used to model the X-ray flux of black hole objects rely on additive processes, and produce
power-law tail behavior rather than lognormal (see Kunjaya et al., 2011, who develop a more sophisticated multiplicative
model to address this issue). By extending classical central limit theory to allow the type of addition that is relevant to special
relativity, and that is relevant to an open system, our results may provide an alternative explanation for the lognormal
behavior that is a common feature of relativistic particle systems.

Dunkel et al. (2007) showed that the Jüttner (and modified-Jüttner) distribution can be obtained from the maximum
entropy principle under the constraint that the average (relativistic) energy at equilibrium is fixed; this is done by defining
the entropy with respect to the Haar measure on the relevant state space (a locally compact group, on which the Haar mea-
sure is preserved under the group operation). The Haar measure for the real line under -addition is dq/

p
1 + 2q2, and

the arcsinh-normal distribution maximizes entropy with respect to this Haar measure when a constraint is placed on the
secondmoment of rapidity: ' = sinh�1(q) = tanh�1(u), where q is the momentum and u 2 (�1/, 1/) is the velocity.
The addition rule for rapidities is the usual addition (for parallel trajectories), so this result can be obtained directly from the
entropy-maximizing property of the normal distribution. However, it is not natural from the physical point of view to place
a constraint on the second moment of the rapidity, in contrast to a constraint on the expected energy say (used to derive
Jüttner type distributions).

A physically more compelling approach to deriving a relativistic Maxwell–Boltzmann distribution is to construct a
relativistic Langevin equation driven by aWiener process, and determine its limiting distribution. Many types of relativistic
Ornstein–Uhlenbeck (OU) processes directly driven by a standard Wiener process have been proposed, and shown to
converge to either Jüttner or modified-Jüttner stationary distributions, see Dunkel and Hänggi (2009) and Angst (2011)
for references to this extensive literature.

Wenowdescribe a different type of relativistic OUprocess and show that it has an arcsinh-normal stationary distribution.
This involves using the relativistic Wiener process discussed in the previous section to drive a -deformed version of the
Langevin equation. Since the exponential map [x] ⌘ sinh(x)/ is a field isomorphism from (R, +, ·) to its -deformed
version, we have

[x] ⌦ [y] = [x · y] and [x] � [y] = [x + y],
for -multiplication and -addition, respectively. Let Xt be anOUprocess on the real line satisfying the stochastic differential
equation dXt = ↵Xt dt + dWt , where ↵ < 0 andWt is a standardWiener process. It is then easily seen that the transformed
process Yt = [Xt ] satisfies the following -deformed Langevin equation driven by the relativisticWiener process Bt = [Wt ]:

dYt = �
⌦ Yt

⌦ d t
� dBt ,

where � = [↵], andwe have used the -differential dYt ⌘ Yt+dt

 Yt as defined in Kaniadakis (2013). Formally, thismeans
that Yt satisfies the stochastic integral equation

Yt = Y0
�
Z

t

0

�
⌦ Ysp

1 + 2s2
ds

� Bt , t � 0, (3.1)

where the Haar measure for the real line under -addition now plays a role because Yt is being treated as a stochastic
process on this Lie group. The stationary distribution of Xt is normal, so the stationary distribution of Yt is arcsinh-normal.
In related work, OU processes on Lie groups that are driven by a Wiener process on the associated Lie algebra have been
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studied by Baudoin et al. (2008), who showed the existence of ‘‘natural’’ OU processes with stationary distribution induced
by the exponential map applied to the Wiener process at time 1.

To conclude, we have provided in (3.1) a natural and explicit construction of a relativistic OU process having a stationary
distribution with lognormal tails, which may help explain the observed flux distributions of various astrophysical sources.
Extensions of classical CLTs and OU processes to other Lie groups on the real, such as the Lie group associatedwith Tsallis en-
tropy (see Tempesta, 2011 for background) can also be developed using our approach. This will be the topic of a future paper.
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Tempesta, P., 2011. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 84, 021121.
Wehn, D., 1962. Probabilities on Lie groups. Proc. Natl. Acad. Sci. USA 48, 791–795.

http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref1
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref2
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref3
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref4
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref5
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref6
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref7
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref8
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref9
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref10
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref11
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref12
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref13
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref14
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref15
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref16
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref17
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref18
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref19
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref20
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref21
http://refhub.elsevier.com/S0167-7152(15)00006-1/sbref22

