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 COMPACT COVARIANCE OPERATORS'

 CHARLES R. BAKER AND IAN W. McKEAGUE

 ABSTRACr. Let B be a real separable Banach space and R: B* -* B a covariance
 operator. All representations of R in the form Yen ? en, {en, n > 1) c B, are
 characterized. Necessary and sufficient conditions for R to be compact are ob-

 tained, including a generalization of Mercer's theorem. An application to character-

 istic functions is given.

 1. Introduction. The study of covariance operators is a major component in the

 theory of probability measures on Banach spaces [10], [9], [1]. The covariance

 operator of a strong second-order measure is always compact [2]; however, the

 covanance operator of a weak second-order measure need not be compact. In this

 paper we first characterize series representations of covariance operators, and then

 give a set of necessary and sufficient conditions for a covariance operator to be

 compact. The classical Mercer's theorem [7] can be obtained as an immediate

 corollary. These results are then applied to extend a result of Prohorov and

 Sazanov [6] on relative compactness of probability measures from Hilbert space to

 Banach space.

 2. Definitions and notation. B is a real separable Banach space with norm *

 and topological dual B*. A linear operator R: B* -* B is a covariance operator if R

 is symmetric and nonnegative: <Ru, v> = <u, Rv> and <Ru, u> > 0, for all u, v in
 B*. A probability measure y on the Borel a-field of B is said to be weak

 second-order if JB<X, U>2 d4(x) < x, for all u in B*; y is strong second-order if

 fBIIXII2 d4(x) < x. Every weak second-order measure y has a mean element m in

 B and a covariance operator R: B* -* B [9], [10], defined by

 <m, v> = <x, v> d4(x), <Ru, v> = <x - m, u><x - m, v> d4(x),

 for all u, v in B*. Strong second-order measures have compact covariances; the

 strong second-order property is not necessary in order that y have compact

 covariance.

 For a covariance operator R: B* -* B it is well known [8], [1], that there exists a
 separable Hilbert space H c B such that the natural injection j: H -* B is

 continuous and R = jj*. H is the RKHS of R and is the completion of range(R)
 with respect to the inner product < *, >H defined by <Ru, Rv>H= <Ru, v>.
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 IH will denote the identity on H. For u, v in B, z in B* (resp. in H),
 (u 0) v)(z) = <v, z>u (resp., <v, Z>Hu). If T is any map r(T) _ range(T). T, is the
 linear topology on B* determined by a neighborhood base at zero of the form

 Vc,(0) = {f f B*: supE=C<f, x>2 < ?} for all ? > 0 and all compact sets C c B
 (Tc is the topology of uniform convergence on compact sets). For a given covari-

 ance operator R: B* -* B, qR is the real-valued quadratic functional on B* defined
 by qRf = <Rf, f >. The notation R = EX"e,, 0 e, for {en, n > 1) c B means that the
 sequence ( Nen 0 e,) converges to R in the strong operator topology: E N en,f>en

 Rf in the norm topology of B, for all f in B*. IH = 2 ne,, 0 en has a similar
 interpretation. If { u, n > 1) is any orthonormal basis for H, then R = L:jun C ju,,
 [9]. KR will denote the unit ball in H.

 If /. is a probability measure on the Borel a-field of B, its characteristic

 functional Ai is defined as A2(x) = f_Be<XY> dy(y), for x in B*.

 3. Representation of covariance operators. In this section, R is an arbitrary

 covariance operator.

 THEOREM 1. R = n 0 en if and only if en = jv, vn E H for n a 1, and

 ,H = EnVn 0 Vn,.

 PROOF. It suffices to show that the stated conditions are necessary for R = Enen
 0) en. Suppose R = nen 0 en, and fix ek. Let Pk = ek 0 ek. To show ek E
 range(j), let (as in [3]) D: r(j*) -- B be defined by Dj*f = Pkf. Then IIDj*f 12 =
 ilPkfII = IIekHK2<ek,f> < IIekII2En<ff en>2 = I|ek| K<Rf,f> = IIekH Hflj*f|I2. Thus D
 can be extended to a continuous linear map from r(j*) = H into B. From its

 definition, Dj* = Pk, so Pk = jD* and thus ek E range(j).
 To see that IH = 2vn 0 vn, where jvn = ens n > 1, define QN = v 0 vn.

 QN = QN and QN 0o, So QN exists. IIQN/j*fII = K f, en> 211j*fIl2, so that
 l!IQ]V/2lI ? 1 and II QNI2X I IH > IIXII H for all x in r(j*). Thus,

 | (vn C0vVn)j*fj 2 = II QNj i*f fIIH
 1 ~~~H

 < _-IIQN12j*fII2 + IIj*fI2

 which converges to zero as N -x o for any fixedf in B*. Thus, E2vn 0 Vn = IH on
 r(j*), and the result follows by r(j*) = H. D

 REMARK. Suppose E is a locally convex topological vector space, R: E'-* E is a
 covariance operator, and R = Jj*, where j: H -* E is the injection and H is the
 RKHS of R. R will have such a representation, for example, if E is quasi-complete

 [8]. In this case, it is easily shown that Theorem 1 holds without modification.

 The representation IH = Xvn 0) vn does not require that {vn, n > 1 } be a CONS
 in H; however, sufficient conditions for {vn, n > 1) to be a CONS in H can be
 given.

 PROPOSITION 1. Suppose IH = E vn 0 vn; the following are equivalent:

 (1) IlVkIIH = 1,

 (2)vk 2sp(vn,n#k},
 (3) Vk sp{ vn, n k

 If any of the above conditions holds for all k > 1, then { vn, n > 1) is a CONS for H.
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 4. Compact covariance operators.

 THEOREM 2. Suppose R = Xe,, 0 e, {e, n > 1) c B. Let {v, n > 1) c H be
 such that en = jv,,, n > 1. The following are equivalent:

 (1) R is compact;
 (2)j is compact;

 (3)j[KRI is compact in B;

 (4) the series E v,, 0 jv,, converges uniformly in H on bounded subsets of B*;

 (5) (E,re,, 0 en) converges to R uniformly in B on bounded subsets of B*;
 (6) qR is w*-continuous on bounded subsets of B*;

 (7) qR is Tc-continuous.

 PROOF. (1) =X (2). Suppose fa- f in the w* topology of B*, where Ilfall < k for
 all a. Then IIj*fa _j*f1121 = <R(fa- f), (fa -f)> < 2kIIR(fa f)IIB; since R is

 compact, j*fa ---j*f in H [4, p. 486] and thusj is compact.
 (2) => (3). j compact implies j[KRI is relatively compact in B. Since KR is weakly

 compact in H and j is weakly continuous, j[KRI is weakly compact in B, and thus
 closed.

 (3) X (2) by definition.

 (2) (4). By Theorem 1, , n Vn = IHH Set QN = IZNvn 0 vn. If A c B* is
 bounded, thenj*[A] is compact; by Dini's theorem I QNH2XIll HTIIx H uniformly on
 j*[A]. Hence Il(QN -I)*xllH ? ll HNxll2 - O

 (4) =* (5), sincej is continuous.

 (5) => (1), since R is the uniform limit of compact operators.
 (2) ?- (6) follows from the fact that j is compact if and only if j*fa 0 in the

 norm topology of H for all bounded generalized sequences (fa) in B* which are w*

 convergent to zero [4, p. 486], and qR(fa) = HIJ*fal2H
 (1) (7). Suppose R is compact. Writing C = j[KRI, C is compact in B.

 qR(f) = <Rf,f> = llj*flI2 = supXEKKj*f X>H = SUpXEC<f, X>2 . Thus qR is Tc-
 continuous at zero. Tc-continuity of qR follows from qR(fa) = qR(fa - ) - qR(f)
 + 2<Rf,f,>.

 (7) =* (1). Suppose qR is Tc-continuous. Using (6), R is compact if qR is w*
 continuous at 0 on bounded subsets of B*. But B is separable so that the w*

 topology on bounded subsets of B* is metrizable and it suffices to consider

 sequences. Supposefn f-w 0 and IIfnII < k. Let L be an arbitrary compact subset of
 B. Since (fn) is bounded in B* the fn are equicontinuous and uniformly bounded as
 continuous functions on L. Thus, by the Arzela-Ascoli theorem [4, p. 266], (fn) is
 relatively compact as a subset of CR(L). Thus since fn --* 0, fn converges to 0
 uniformly on L. Therefore fn -T 0 and qR(fn) -O 0. This completes the proof of
 Theorem 2. E]

 REMARKS. (1) Suppose r: [0, 1] x [0, 1] -] R is continuous, symmetric and posi-

 tive definite. For fixed t C [0, 1], let 7,(x) = x, for x in C[O, 1]; 117, 11 = 1. A
 compact covariance operator R: C*[O, 1] C[O, 1] is defined by [Ri](t) =

 fIr(t, s) dtt(s) for any yt in C*[O, 11 (by Arzela-Ascoli theorem). Thus for s, t E
 [0, 1], <R7,, r> = r(t, s). The integral operator in L2[0, 1] corresponding to the

 kernel r has continuous orthonormal eigenvectors { Yn, n > 1) and associated
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 nonzero eigenvalues {X, n > 1); it is well known that {X</2yn, n > 1) is a CONS

 in the RKHS H of R. Thus, from Theorem 2, v n1X,n(t)yn(s) converges uniformly
 to r(t, s) for all t, s in [0, 1]. This is the classical Mercer's theorem [7, pp. 245-246].

 (2) The fact that the unit ball of H is compact in B when R is compact was

 proved by Kuelbs [5] under the assumption that R is the covariance of a strong

 second-order measure.

 5. Characteristic functionals. Let A denote a family of probability measures on B

 (separable Banach) and A the corresponding family of characteristic functionals.

 THEOREM 3. Let B be a separable Banach space. Then the following are equivalent:

 (a) There exists a topology T on B* such that for each family A of probability

 measures on B, A is equicontinuous in this topology if and only if A is relatively

 compact in the topology of weak convergence.

 (b) B is finite dimensional.

 PROOF. As in the Hilbert space case (see [6, Lemma 2]), Tc is the weakest
 topology on B* such that relative compactness of A m equicontinuity of A.

 Suppose that (a) holds. Then Tc C T and Tc-equicontinuity of A implies relative
 compactness of A. Now let R: B* -* B be any compact covariance operator. Let

 {en} be a CONS in the RKHS of R. Define 1Uk to be the zero mean Gaussian

 measure on B with covariance operator Eken 0 en. Then { 1j} is Tc-equicontinuous
 by Theorem 2 and { (4} is relatively compact. Therefore R is the covariance of a
 Gaussian probability measure on B and, by [9, Theorem 11], B is finite dimen-

 sional. El
 Theorem 3 extends a result of Prohorov and Sazonov [61 who proved it for

 Hilbert spaces.
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