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Abstract

The recovery of gradients of sparsely observed functional data is a challenging ill-posed
inverse problem. Given observations of smooth curves (e.g., growth curves) at isolated time
points, the aim is to provide estimates of the underlying gradients (or growth velocities). To
address this problem, we develop a Bayesian inversion approach that models the gradient in
the gaps between the observation times by a tied-down Brownian motion, conditionally on its
values at the observation times. The posterior mean and covariance kernel of the growth veloc-
ities are then found to have explicit and computationally tractable representations in terms of
quadratic splines. The hyperparameters in the prior are specified via nonparametric empirical
Bayes, with the prior precision matrix at the observation times estimated by constrained `1

minimization. The infinitessimal variance of the Brownian motion prior is selected by cross-
validation. The approach is illustrated using both simulated and real data examples.

KEY WORDS: Growth trajectories; Functional data analysis; Ill-posed inverse problem; Non-
parametric Empirical Bayes; Tied-down Brownian motion.
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1 Introduction

The extensive development of functional data analysis over the last decade has led to many useful

techniques for studying samples of trajectories (Ramsay and Silverman, 2005, Ferraty and Vieu,

2006). Typically, a crucial first step is needed before such analyses are possible: the trajectories

need to be reconstructed on a fine grid of equally spaced time points (if they are not already in

such a form). Methods for reconstructing trajectories in this way have been studied using kernel

smoothing (Ferraty and Vieu, 2006), smoothing splines (Ramsay and Silverman, 2005), local linear

smoothing (Hall et al., 2006), mixed effects models (James et al., 2000, Rice and Wu, 2000), and

principal components analysis through conditional expectations (Yao et al., 2005b,a).

In this paper we study the problem of reconstructing gradients of trajectories on the basis of

sparse (or widely separated) observations. The proposed approach is specifically designed for re-

constructing growth velocities from longitudinal observation of childhood developmental indices,

e.g., height, weight, BMI, head circumference, or measures of brain maturity obtained via fMRI

(Dosenbach et al., 2010). Growth velocities based on such indices play a central role in life course

epidemiology, often providing fundamental indicators of prenatal or childhood development that

are related to adult health outcomes (Barker et al., 2005).

Repeated measurements of childhood developmental indices may be available on most subjects

in a study, but usually only sparse temporal sampling is feasible (McKeague et al., 2011). It can

thus be challenging to gain a detailed understanding of growth patterns. Moreover, the problem is

exacerbated by the presence of large fluctuations in growth velocity during early infancy, and high

variability between subjects. In addition, although the patterns of examination times vary among
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children, they tend to cluster around “nominal” ages (e.g., birthdays), so there can be large gaps

without data. We call this regular sparsity, in contrast to irregular sparsity in which the observation

times for each individual are widely separated but become dense when merged over all subjects.

The problem of reconstructing gradients under irregular sparsity (even with only one observa-

tion time per trajectory) has recently been studied by Liu and Müller (2009). In their approach, the

best linear predictor of the gradient is estimated (assuming Gaussian trajectories) in terms of esti-

mated functional principal component scores. The accuracy of the reconstruction depends on how

well each individual gradient can be represented in terms of a small number of estimated principal

component functions. This in turn requires an accurate estimate of the covariance kernel of the

trajectories, which is not possible in the case of regular sparsity.

Numerical analysis methods can be used to reconstruct gradients using only individual level

data in the case of regular sparsity. For example, difference quotients between observation times

provide simple approximate gradients, but these estimates are piecewise constant and would not be

suitable for use in functional data analysis unless the observation times are dense. Spline smooth-

ing to approximate the gradient of the trajectory over a fine grid is recommended by Ramsay and

Silverman (2005). More generally, methods of numerical differentiation, including spline smooth-

ing, are an integral part of the extensive literature on ill-posed inverse problems for linear operator

equations. In this literature, the observation times are usually viewed as becoming dense (for the

purpose of showing convergence), see Kirsch (1996); in particular, the assumption of asymptoti-

cally dense observation times plays a key role in the study of penalized least squares estimation

and cross-validation (Nashed and Wahba, 1974, Wahba, 1977).

In this paper we develop a flexible Bayesian approach to reconstructing gradients, focusing on
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the regular sparsity case. The prior gradient is specified by a general multivariate normal distribu-

tion at n fixed observation times, and a (conditional) tied-down Brownian motion between the ob-

servation times. This leads to a simple and explicit representation of the posterior distribution of the

gradient in terms of the prior mean and the prior precision matrix at the observation times. Based

on a sample of subjects, the nonparametric empirical Bayes method along with cross-validation

is used to specify the hyperparameters in the prior, with the prior precision matrix estimated by

constrained `1 minimization (Cai et al., 2011). An important aspect of the proposed approach is

that the reconstructed gradients can be computed rapidly over a fine grid, and then used directly as

input into existing software, without the need for sophisticated smoothing techniques. In addition,

our approach furnishes ways of assessing the errors in the reconstruction (using credible intervals

around the posterior mean) and of assessing uncertainties in the conclusions of standard functional

data analyses that use the reconstructed gradients as predictors (e.g., using repeated draws from

the posterior distribution in a sensitivity analysis).

For background and an introduction to empirical Bayes methods we refer the interested reader

to Efron (2010). Previous work on the use of such methods in the setting of growth curve mod-

eling include reconstructing individual growth velocity curves from parametric growth models

(Shohoji et al., 1991), and nonparametric testing for differences in growth patterns between groups

of individuals (Barry, 1995). A nonparametric hierarchical-Bayesian growth curve model for re-

constructing individual growth curves has also been developed (Arjas et al., 1997), but requires the

use of computationally intensive Markov chain Monte Carlo methods (MCMC) and may not be

suitable for exploratory analyses.

As already mentioned, our motivation for developing the proposed Bayesian reconstruction
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method comes from the problem of carrying out functional data analysis for growth velocities

given measurements of some developmental index at various ages. The first panel of Figure 1

shows cubic-spline-interpolated growth curves for 10 children based on their height (or length)

measurements at birth, four, eight, and twelve months, and three, four and seven years. There are

no data to fill in the gaps between these observation times. The corresponding growth velocities,

obtained by differentiating the cubic splines (Ramsay and Silverman, 2005), are displayed in the

second panel. Unfortunately, however, such growth rate curves are unsuitable surrogates for the

actual growth rates because artifacts of the spline interpolation emerge as the dominant features,

and there is no justification for ignoring all random variation between observation times. Moreover,

it is not easy to see how to quantify the error involved in such reconstructions.

Our proposed reconstruction method, as developed in Section 2, provides a way around this

problem. Simulation and real growth data examples are used to illustrate the performance of the

proposed method in Sections 3 and 4. In Section 5 we compare our approach with the popular

method of analyzing growth trajectories via latent variable models. Proofs of the main results are

provided in the Appendix. We have developed an R package growthrate implementing the

proposed reconstruction method (López-Pintado and McKeague, 2011); this package is available

on the CRAN archive, and includes the real data set used in Section 4.

2 Gradients of sparsely observed trajectories

In this section we develop the proposed Bayesian approach to recovering gradients. Explicit for-

mulae for the posterior mean and covariance kernel of the gradients are provided. An empirical

Bayes approach to estimating the hyperparameters in the prior is also developed.
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2.1 Posterior gradients

We first consider in detail how to reconstruct the gradient for a single subject. In the growth

velocity context, the observation times will typically vary slightly across the sample, but will be

clustered around certain nominal ages. Let the observation times for the specific individual be

0 = t1 < t2 < . . . < tn = T , and assume that the endpoints of the time interval over which the

reconstruction is needed are included.

The statistical problem is to estimate the whole growth velocity curve X = {X(t), 0 ≤ t ≤ T}

from data on its integral (i.e., growth) over the gaps between the observation times. Equivalently,

we observe

yi =
1

∆i

∫ ti+1

ti

X(s) ds, i = 1, . . . , n− 1, (1)

where the ∆i = ti+1 − ti are the lengths of the intervals between the observation times. Here

yi is the one-sided difference quotient estimate of X(t) for t ∈ [ti, ti+1], as commonly used in

numerical differentiation. Reconstructing X based on such data is an ill-posed inverse problem

in the sense that no unique solution exists, so some type of regularization is needed to produce a

unique solution. When the observation times are equally-spaced, the one-sided difference quotient

can be derived as the X minimizing ‖X‖L2 under the constraint (1), see Kirsch (1996), page 97.

A more sophisticated approach is to take into account the proximity of ti to neighboring obser-

vation times ti−1 and ti+1, and estimate X(ti) by the second-order difference quotient

yi = wiyi−1 + (1− wi)yi,

where wi = ∆i/(∆i−1 + ∆i), for i = 2, . . . , n− 1. As we shall see, the building blocks needed to
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construct the proposed Bayes estimator consist of the yi and the n-vector

y = (y1, y2, . . . , yn−1, yn−1)T .

The central problem is to specify a flexible class of prior distributions for X in such a way

that is tractable to find its posterior distribution. An unusual feature of our problem, however, is

that a direct approach via Bayes formula does not work: the conditional distribution of yi given

X is degenerate, so there is no common dominating measure for all values of X (i.e., there is no

full likelihood). Our way around this difficulty is to first find the marginal posterior distribution of

X restricted to the observation times, for which the usual Bayes formula applies, and then show

that this leads to a full posterior distribution. This approach turns out to be tractable when we

specify the prior using the following hierarchical model: X has a multivariate normal distribution

at the observation times, and is a tied-down Brownian motion in the gaps between observation

times (conditional on X at those time points). This provides a fully coherent prior distribution of

X . In some cases the prior of X can be specified unconditionally (as with the shifted Brownian

motion discussed in Section 2.4), but in general the hierarchical specification we use is simpler and

provides greater flexibility.

More precisely, we specify the prior on X as follows:

1. At the observation times:

X ≡ (X(t1), . . . , X(tn))T ∼ N(µ0,Σ0),

where Σ0 is non-singular.

2. The conditional distribution of X given X is a tied-down Brownian motion with given in-

finitesimal variance σ2 > 0.
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In the growth velocity setting, the observation times are typically chosen to concentrate data

collection in periods of high variability (e.g., the first year of life), so it is natural that the prior

should reflect such information. Moreover, allowing an arbitrary (multivariate normal) prior at the

observation times provides flexibility that would not be possible using a Brownian motion prior

for the whole of X . In addition, the availability of data at these time points makes is possible

to specify the hyperparameters in the multivariate normal (as we see later), which is crucial for

practical implementation of our approach.

We now state our main result giving the posterior distribution of X . In particular, the result

shows that the posterior mean takes the computationally tractable form of a quadratic spline with

knots at the observation times. The posterior mean is the best linear predictor of X , providing the

optimal reconstruction of X in the sense of mean-squared error.

Theorem 2.1. The posterior distribution of X is Gaussian with mean

µ̂(t) = µ̂i + [µ̂i+1 − µ̂i](t− ti)/∆i

+6(t− ti)(ti+1 − t) [yi − (µ̂i + µ̂i+1)/2] /∆2
i

for t ∈ [ti, ti+1], where
µ̂ = (µ̂i) = (Σ−1

0 + Q)−1(Σ−1
0 µ0 + Dy)

is the posterior mean of X, and

Q =
3

σ2



1
∆1

1
∆1

0 · · · 0

1
∆1

1
∆1

+ 1
∆2

1
∆2

. . . ...

0 1
∆2

. . . . . . 0
... . . . . . . . . . 1

∆n−1

0 · · · 0 1
∆n−1

1
∆n−1


,

D =
6

σ2
diag

(
1

∆1

, . . . ,
1

∆i−1

+
1

∆i

, . . . ,
1

∆n−1

)
.

The posterior covariance kernel of X is K̂ = σ2K̃ +K∗, where

K̃(s, t) = (s ∧ t− ti)− (s− ti)(t− ti)/∆i

−3(s− ti)(t− ti)(ti+1 − s)(ti+1 − t)/∆3
i
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for s, t ∈ [ti, ti+1), with K̃(s, t) = 0 if s and t are in disjoint intervals;

K∗(s, t) = (ak(s), bk(s))

[
Σ̂kl Σ̂k,l+1

Σ̂k+1,l Σ̂k+1,l+1

]
(al(t), bl(t))

T

for s ∈ [tk, tk+1) and t ∈ [tl, tl+1), with k, l = 1, . . . , n− 1, where

ai(t) = 1− (t− ti)/∆i − 3(t− ti)(ti+1 − t)/∆2
i ,

bi(t) = (t− ti)/∆i − 3(t− ti)(ti+1 − t)/∆2
i ,

for t ∈ [ti, ti+1), i = 1, . . . , n− 1, and

Σ̂ = (Σ̂ij) = (Σ−1
0 + Q)−1

is the posterior covariance matrix of X.

Remarks

1. The posterior mean of X provided by Theorem 2.1 has a simple and explicit form that can

be computed rapidly once the hyperparameters in the prior (namely µ0, Σ0 and σ2) are

provided. We discuss various ways of specifying the hyperparameters in the next section.

2. The infinitessimal variance σ2 can be regarded as a smoothing parameter, and plays the role

of a time-scale, cf. the adaptive Bayesian estimation procedure of van der Vaart and van

Zanten (2009) based on Gaussian random field priors with an unknown time-scale. When

σ2 → ∞, the posterior distribution of X converges to its prior distribution, and between

observation times the posterior variance of X tends to infinity.

3. The matrix Q represents the posterior precision (at the observation times) corresponding to

a non-informative (improper) prior, and it is singular, reflecting the fact that we are dealing

with n parameters to be estimated from n − 1 observations y1, . . . , yn−1. The problem is

ill-posed, but an “informative” prior provides regularization: the posterior precision matrix

Σ−1
0 + Q is non-singular.
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4. In the special case that the prior distribution of X is a Gaussian Markov random field, i.e.,

non-neighboring components are conditionally independent given the rest (Rue and Held,

2005), its posterior distribution is also a Gaussian Markov random field. That is, since

Q is tridiagonal, whenever the prior precision matrix Σ−1
0 is tridiagonal, so is the posterior

precision matrix Σ−1
0 +Q. Tridiagonal matrices often arise in inverse problems, and efficient

algorithms for computation of their inverses and eigenvalues are available.

5. In typical Bayesian settings, the information in the data tends to swamp the prior information

as the sample size increases. It can often be shown in such settings that the posterior contracts

to the true parameter given that it is in the support of the prior distribution (Ghosal and

van der Vaart, 2007, Knapik et al., 2011), but such results rely on the existence of a full

likelihood and are not applicable in our setting.

2.2 Specifying the hyperparameters

Suppose that we are given data on y for a sample of N individuals, each having the same fixed set

of observation times t1, . . . , tn. How can we use such data to specify the hyperparameters?

The hyperparameters are not identifiable in general, even if the prior distribution is correctly

specified. To see this, note that the (Gaussian) marginal distribution of y is determined by p =

n−1+n(n−1)/2 means and covariances, but there are n+n(n+1)/2+1 > p hyperparameters in

the prior. Although it is possible to identify these hyperparameters by imposing extra structure on

Σ0 and using a parametric empirical Bayes approach (as we show in the next section), the presence

of prior misspecification would be a serious issue for applications. Another possibility would be

to define a flexible higher-level prior for the hyperparameters, but this would again require the use
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of computationally intensive methods (MCMC).

Instead we adopt the following nonparametric empirical Bayes approach. The prior mean µ0

is naturally specified by the sample mean of y, and this does not require the prior to be correctly

specified. The corresponding sample covariance matrix, Σ̂N , however, is singular [having rank

min(N, n − 1) < n] and hence unstable for estimating Σ0, and cannot specify the posterior dis-

tribution which depends on the prior precision matrix Ω0 = Σ−1
0 . We use the constrained `1

minimization method of sparse precision matrix estimation (CLIME) recently developed by Cai

et al. (2011): Ω0 is specified as the (appropriately symmetrized) solution of

min ||Ω||1 subject to |Σ̂NΩ− I|∞ ≤ λN , Ω ∈ Rn×n,

where the tuning parameter λN is selected by 5-fold cross validation using the loss function

Tr[diag(ΣΩ− I)2].

The infinitessimal variance σ2, or equivalently σ, is selected by a form of cross validation

introduced by Wahba (1977). The prediction error based on leaving-out an interior observation

time (ti+1, for some fixed i = 1, . . . , n− 2) is given by

CV(σ) =
1

N

N∑
j=1

Eij

[
yij −

1

∆i

∫ ti+1

ti

X̂
−(i+1)
j (s) ds

]2

,

where j indexes the subjects, the expectation Eij is over draws X̂−(i+1)
j (·) from the posterior dis-

tribution of Xj(·) based on the reduced data with ti+1 removed; here µ0 and Ω0 are specified as

above, except the (i+ 1)th component is not used. This expression can be written explicitly using

the bias-variance decomposition as

CV(σ) =
1

N

N∑
j=1

[
yij −

1

∆i

∫ ti+1

ti

µ̂
−(i+1)
j (s) ds

]2

+
1

∆2
i

∫ ti+1

ti

∫ ti+1

ti

K̂−(i+1)(s, u) ds du,
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in terms of the mean and covariance kernel of X̂−(i+1)
j (·) that are available from Theorem 2.1; note

that the covariance kernel only depends on the observation times so it is not indexed by j.

2.3 Variations in observation times among subjects

In this section we discuss how our approach to specifying the hyperparameters can be adapted to

handle situations in which the observation times vary among subjects. In the applications we have

in mind, most observation times tend to be close to “nominal” observation times {ti, i = 1, . . . , n},

so it is reasonable to use these as a first approximation. That is, in terms of the nominal observation

times, and using the procedure described above, we find initial estimates µ̂j(·) for all subjects, and

a value of σ. Then, for the purpose of specifying µ0 and Ω0 in a way that is tailored to the

observation times of the kth subject, we adjust the data on the other subjects to become

y
(k)
ij =

1

∆
(k)
i

∫ ti+1,k

tik

µ̂j(s) ds, i = 1, . . . , nk, j 6= k,

where {tik, i = 1, . . . , nk} are the actual observation times for the kth subject and ∆
(k)
i = ti+1,k −

tik. The final estimate µ̂k(·) is then calculated by applying our formula for µ̂(·) to the data on the

kth subject, with the hyperparameters estimated from the adjusted data (thus borrowing strength

from the whole sample). The adjustment has no effect when the observation times agree with their

nominal values, and small perturbations around the nominal values would have little effect on the

reconstructed gradients.

A computationally simpler approach, that is essentially equivalent to what we just described, is

to restrict the posterior covariance kernel and mean based on the nominal observation times to the

actual observation times for each given subject, thus directly obtaining suitable hyperparameters

across the whole sample that adjust for any changes from the nominal observation times; this is the
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approach implemented in the growthrate package.

2.4 Example: shifted Brownian motion prior

Shifted Brownian motion priors have been used in various nonparametric Bayesian settings in

recent years (van der Vaart and van Zanten, 2008a,b) and provide a simple illustration of Theorem

2.1. Suppose the prior distribution of X at the observation times (i.e., the prior of X) is specified

so that

X(ti) = µi + σ1Z + γB(ti), i = 1, . . . , n, (2)

where Z ∼ N(0, 1), B is an independent standard Brownian motion, σ1 > 0, γ > 0, and the prior

mean µ0 = (µ1, . . . , µn)T as before. In particular, when γ = σ the prior distribution for the entire

trajectory X takes the form of a shifted Brownian motion.

Under (2), the prior covariance matrix at the observation times has (i, j)th entry

(Σ0)ij = σ2
1 + γ2 min(ti, tj). (3)

The prior precision matrix has a simple (tridiagonal) form similar to Q, namely

Σ−1
0 =

1

γ2



γ2

σ2
1

+ 1
∆1

− 1
∆1

0 · · · 0

− 1
∆1

1
∆1

+ 1
∆2
− 1

∆2

. . . ...

0 − 1
∆2

. . . . . . 0

... . . . . . . . . . − 1
∆n−1

0 · · · 0 − 1
∆n−1

1
∆n−1


,

cf. Rue and Held (2005), page 99. In the special case that γ2 = σ2/3 the posterior covariance

matrix becomes diagonal:

Σ̂ = (Σ−1
0 + Q)−1 =

σ2

6
diag (∆i−1wi, i = 1, . . . , n) ,
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where w1 ≡ ∆1/(∆0 + ∆1), ∆0 = 6σ2
1/σ

2, wn ≡ 1, and the other wi are defined as in Section 2.1.

The components of the posterior mean at the observation times are then given by

µ̂i =


(1− w1)y1 + w1(µ1 + µ2)/2, i = 1;

yi + [µi − (wiµi−1 + (1− wi)µi+1)]/2, i = 2, . . . , n− 1;

yn−1 + (µn − µn−1)/2, i = n.

It can then be seen that µ̂ provides a uniformly consistent estimator of X in the numerical analysis

sense: if µi = µ(ti), where µ(·) is a fixed continuous function, and maxi=1,...,n−1 ∆i → 0, then

µ̂(t)→ X(t) uniformly in t for any continuous X .

A parametric empirical Bayes approach to specifying the hyperparameters can be developed

in this setting. Conditioning on X(ti) and X(ti+1) yields 2(n− 1) estimating equations involving

means and second moments:

Eyi = (µi + µi+1)/2, Ey2
i = (µi + µi+1)2/4 + σ2∆i/12 + (σ2

i + σ2
i+1 + 2σi,i+1)/4,

i = 1, . . . , n − 1, where σi,i+1 is the prior covariance of X(ti) and X(ti+1), and σ2
i is the prior

variance of X(ti). Under the shifted Brownian motion model (2), the prior distribution has only

n+3 parameters (µ1, . . . , µn, σ2
1 , γ2 and σ2), and the second-moment estimating equation simplifies

to

Ey2
i = (µi + µi+1)2/4 + σ2∆i/12 + σ2

1 + γ2(ti + ∆i/4).

Another (n− 1)(n− 2)/2 estimating equations are obtained from the covariances of the yi:

Eyiyj = (µi + µi+1)(µj + µj+1)/4 + σ2
1 + γ2(ti + ∆i/2),

for i = 1, . . . , n − 2, j = i + 1, . . . , n − 1, provided n ≥ 3. The marginal distribution of the data

is Gaussian with mean and covariance only depending on the prior means µi through the sums

14



µi + µi+1, i = 1, . . . , n − 1, so these means are not identifiable unless one of them (say µ1) is

known. Once µ1 is given (or specified say using the sample mean of y1), all the other parameters

in the shifted Brownian motion prior are identifiable.

In view of known convergence-rate results for the CLIME estimator (Cai et al., 2011), it may

be possible to extend the consistency result shown above to the general setting, to the effect that

the empirical Bayes version of each µ̂(t) converges uniformly to X(t) as maxi=1,...,n−1 ∆i → 0

and N → ∞. However, µ̂(t) is is not analytically tractable in general (only in the special case

discussed in this section), so this would be a challenging problem.

3 Simulation study

In this section we report the results of a simulation study designed to assess the performance of µ̂(t)

as a method of estimating X . In order to calibrate µ̂(t), the prior mean and precision matrix are

specified from the data as in Section 2.2. We also examine the performance of the cross validation

method for choosing σ.

The simulation model for generating the underlying X is defined in a parallel fashion to the

prior:

1. At the observation times, X ≡ (X(t1), . . . , X(tn))T is a zero-mean stationary Gaussian

Markov random field with covariance matrix having (i, j)th entry e−α|ti−tj |, where α > 0.

2. The conditional distribution of X given X is a tied-down fractional Brownian motion (fBm)

with Hurst exponent 0 < H < 1.

The tied-down fBm used here is represented (conditionally on X) as in (6), except that B0
i (t) =

Bi(t) − tBi(1), t ∈ [0, 1], where the Bi are independent standard fBms, and σ = 1. The Hurst
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exponent H is a measure of the smoothness of the sample paths between the observation times:

H = 1/2 gives standard tied-down Brownian motion and agrees with the prior (provided σ = 1);

we also consider the cases H = 0.7 and 0.9 to give examples with much smoother sample path

behavior than Brownian motion. We considered two values of the simulation model parameter:

α = 3 and 6, representing “high” and “low” levels of correlation in X, respectively. The sample

size is fixed at N = 100, and we consider n = 5 and n = 10 equispaced observation times on the

interval [0, 1] (that is, T = 1).

Figure 2 shows boxplots comparing the MSE of our approach with the MSE of the spline

interpolation approach described in the Introduction. The boxplots are based on 50 independent

samples, and setting α = 3 in the simulation model. Web Figure 1 shows the corresponding

boxplots for α = 6, and the results are very similar. Here the MSE of µ̂(·) is defined by

MSE =
1

N

N∑
j=1

1

n

n∑
i=1

(µ̂j(ti)−Xj(ti))
2,

where µ̂j(·) is the calibrated posterior mean of Xj(·) with σ = 1. In all cases, µ̂(·) has a smaller

median MSE than the spline estimator, and in some cases the reduction is more than 50% (namely

for n = 10 and H = 0.9). Note that the improvement of µ̂(·) over the spline method increases

withH (and also with n). This indicates that µ̂(·) is robust to departures from the prior that involve

smoother trajectories X . Similar results (not shown) can be obtained in terms of the mean absolute

deviation.

We applied the cross validation method for choosing σ to a single sample generated by the

above simulation model for α = 3, H = 1/2 and n = 10. Figure 3 shows plots of cross validation

error CV(σ) based on removing three of the interior observation times, as well as averaging CV(σ)

with each interior point successively removed. In all cases, the minimum is located close to the
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true value of σ = 1, so we calibrated µ̂(·) using σ = 1 in all the simulations reported above.

We have also done extensive simulations (not shown) based on shifted Brownian motion pri-

ors, and found that the two competing approaches have comparable MSE; this is not surprising,

because, as can be seen from the explicit form in Section 2.4, µ̂(·) is very close to the spline es-

timator in this case. In addition, we found that measurement error in the observations y has little

affect on the accuracy of the reconstructions.

4 Growth velocity curves

In this section we illustrate our approach using data from the Collaborative Perinatal Project (CPP).

This was an NIH study of prenatal and familial antecedents of childhood growth and development

conducted during 1959–1974 at 12 medical centers across the United States. There were approx-

imately 58, 000 study pregnancies, mothers being examined during pregnancy, labor and delivery.

The children were given neonatal examinations and follow-up examinations at four, eight, and

twelve months, and three, four, and seven years. We restrict attention to the subsample of girls

having birthweight 1500–4000 gms, gestational age 37–42 weeks, non-breast-fed, maternal age

20–40 years, the mother did not smoke during pregnancy, and for whom complete data on height

(at these ages) and all the covariates are available. This gave a sample of size N = 532. The data

are included in the growthrate package, and additional discussion can be found in McKeague

et al. (2011).

Figure 5 shows the cross validation error based on removing each of the 5 interior observation

times (1/3, 2/3, 1, 3, 4 years) in turn. Note that, due to the non-equispaced observation times, the

various curves are ordered according to which time point is removed. The curves suggest that a
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choice of σ in the range 1–3 is reasonable, although, since cross validation tends to overfit, the

lower end of this range might be preferable.

Figure 4 gives the reconstructed growth velocity curves for two of these subjects, and for three

choices of σ. The choice σ = 1 produces very tight bands, which may be unrealistic because the

growth rate is unlikely to have sharp bends at the observation times; the more conservative choices

σ = 2 and 3 allow enough flexibility in this regard and appear to be more reasonable. Notice that

the σ = 2 and σ = 3 bands bulge between observation times (and this is especially noticeable in the

last observation time interval), which is a desirable feature since we would expect greater precision

in the estimates close to the observation times. Plots of the posterior mean growth velocity curves

for a random subset of 200 subjects based on σ = 1, 2, 3 are provided in Web Figure 2.

5 Discussion

The standard approach to the longitudinal data analysis of growth trajectories is via mixed-effects

or latent variable models (Bollen and Curran, 2006, Wu and Zhang, 2006), and in this section we

compare it with the proposed approach.

The hierarchical prior we use for growth velocity can be seen as a flexible nonparametric

model for an infinite-dimensional latent process. This contrasts with the standard mixed model

approach of representing a trajectory by a polynomial, allowing additive uncorrelated random dis-

turbances at the observation times, and treating some or all of the coefficients as random, i.e.,

a finite-dimensional latent structure. In contrast, our approach does not model within-subject

(within-curve) and between-subject (between-curves) variations separately, as in mixed-effects

models. Rather, the between-curve variation is represented by the prior—a random effect specified
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in terms of a tied-down Brownian motion process; this prior also suffices to provide the within-

subject variation that in mixed models is typically provided by the uncorrelated disturbance terms,

or white noise. At the infinitessimal scale, Brownian motion is white noise, so in a sense the two

approaches are parallel in their handling of within-subject variation, but the advantage of using

a single prior is that the full power of the Bayesian approach comes into play. In particular, this

allows a closed-form calculation of the estimated growth velocity curves, without the need for

sophisticated numerical methods that play a role in fitting complex mixed models. In summary,

although mixed models provide an array of effective techniques for understanding trajectories, and

longitudinal data more generally, in the context of growth velocity reconstruction we believe that

the proposed approach can offer some advantages: greater flexibility and computational efficiency.

A referee raised the question of whether the proposed approach is sensitive to outliers. The

sample mean of y could indeed be a poor estimate of the prior mean µ0 if there are outliers. The

same issue could be raised about the CLIME estimator we use for Σ−1
0 (as with any method based

on a sample mean or sample covariance). One recourse would be to use robust estimators for µ0

and Σ−1
0 , but, as our reconstruction is linear in the data y, it would still be sensitive to outliers. A

better recourse would be to carefully prescreen the data for outliers before using the method. In the

real data examples (of childhood growth curves) that we have studied, it has not been necessary to

remove outliers.

Supplementary Materials

Web Figures referenced in Sections 3 and 4 and R code implementing the simulation study in

Section 3 are available with this paper at the Biometrics website on Wiley Online Library.
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Appendix

Proof of Theorem 2.1. The first part of the proof is to determine the posterior distribution of X.

In terms of its prior density p(x), the posterior density of X is given by Bayes formula as

p(x|y1, . . . , yn−1) ∝ p(y1, . . . , yn−1|x)p(x)

∝

[
n−1∏
i=1

p(yi|xi, xi+1)

]
p(x), (4)

where x = (x1, . . . , xn)T , the observation in the ith time interval is yi, and we have used the

independent increments property of Brownian motion to separate the terms. Also, using standard

properties of Brownian motion, it can be shown that p(yi|xi, xi+1) is normal with mean (xi +

xi+1)/2 and variance σ2∆i/12. Apart from the addition of a constant, the log-likelihood term

above is given (as a function of x for fixed y1, . . . , yn−1) by

log[p(y1, . . . , yn−1|x)] = − 6

σ2

n−1∑
i=1

[
(x2

i + x2
i+1 + 2xixi+1)/4− yi (xi + xi+1)

] /
∆i

= −1

2

3

σ2

[
x2

1

∆1

+
n−1∑
i=2

(
1

∆i−1

+
1

∆i

)
x2
i +

x2
n

∆n−1

+ 2
n−1∑
i=1

xixi+1

∆i

]

+
6

σ2

[
y1

∆1

x1 +
n−1∑
i=2

(
yi−1

∆i−1

+
yi
∆i

)
xi +

yn−1

∆n−1

xn

]
= −1

2
xTQx + bTx, (5)
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where Q is defined in the statement of the theorem and

b =
6

σ2

(
y1

∆1

, . . . ,
yi−1

∆i−1

+
yi
∆i

, . . . ,
yn−1

∆n−1

)T
.

Writing the prior density of X in the form

p(x) ∝ exp

(
−1

2
xTQ0x + b0

Tx

)
where Q0 = Σ−1

0 and b0 = Σ−1
0 µ0 (see Rue and Held (2005), page 27) and using (4) and (5), we

obtain

p(x|y1, . . . , yn−1) ∝ exp

(
−1

2
xT Q̂x + b̂Tx

)
,

where Q̂ = Σ−1
0 + Q and b̂ = Σ−1

0 µ0 + b. This implies that the posterior distribution of X is

Gaussian with covariance matrix Σ̂ = (Σ−1
0 + Q)−1 and mean

µ̂ = Q̂−1b̂ = Σ̂(Σ−1
0 µ0 + b) = Σ̂(Σ−1

0 µ0 + Dy).

The next part of the proof is to determine the conditional distribution of X given X and the

data. From the structure of the prior distribution of X between observation times, the conditional

distribution of X given X and the data coincides with the distribution of the process

X(t) = σ∆
1/2
i B0

i ((t− ti)/∆i) +X(ti) + [X(ti+1)−X(ti)](t− ti)/∆i (6)

for t ∈ [ti, ti+1), where B0
i , i = 1, . . . , n − 1 are independent standard Brownian bridges subject

to the constraint (1) imposed on X by the data, i.e.,

σ

∫ 1

0

B0
i (s) ds+ (X(ti) +X(ti+1))/2 = yi.

From Lemma 1 that follows the proof, providing the conditional distribution of B0
i given∫ 1

0
B0
i (s) ds, it is then seen that the conditional distribution of X given X and the data is Gaussian
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with mean

E(X(t)|X, y1, . . . , yn−1) = X(ti) + [X(ti+1)−X(ti)](t− ti)/∆i

+ 6(t− ti)(ti+1 − t) [yi − (X(ti) +X(ti+1))/2] /∆2
i

for t ∈ [ti, ti+1), and covariance kernel σ2K̃, where K̃ is defined in the statement of the theorem.

Setting zi = X(ti)− µ̂i and rearranging terms in the above display then gives

E(X(t)|X, y1, . . . , yn−1) = µ̂(t) + Z(t),

where

Z(t) = zi + (zi+1 − zi)(t− ti)/∆i − 3(t− ti)(ti+1 − t)(zi + zi+1)/∆2
i

= ai(t)zi + bi(t)zi+1

for t ∈ [ti, ti+1), i = 1, . . . , n− 1. Here ai(t) and bi(t) are defined in the statement of the theorem.

The final step of the proof is to remove the conditioning on X. From the first part of the proof,

we have that the posterior distribution of (z1, . . . , zn)T = X − µ̂ is Gaussian with mean zero and

covariance matrix Σ̂. It follows immediately that the the posterior distribution of the process Z is

Gaussian with mean zero and covariance kernel K∗, as defined in terms of Σ̂ in the statement of

the theorem. As we showed above, the conditional distribution of X given Z (or X) and the data

is Gaussian with mean function µ̂ + Z and covariance kernel σ2K̃. Since µ̂ and K̃ do not depend

on Z, it follows using the convolution formula that the posterior distribution of X is Gaussian with

mean function µ̂ and covariance kernel K̂ = σ2K̃ +K∗.

Lemma 1. Let B0 be a standard Brownian bridge. The conditional distribution of B0 given∫ 1

0
B0(s) ds is Gaussian with mean µ0(t) = 6t(1−t)

∫ 1

0
B0(s) ds and covariance kernelK0(s, t) =

s ∧ t− st− 3ts(1− t)(1− s), for s, t ∈ [0, 1].
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Proof. Note that W = (B0(s), B0(t),
∫ 1

0
B0(u) du)T is a zero-mean Gaussian random vector.

Partition its covariance matrix as

Σ =

 Σ11 Σ12

Σ21 Σ22

 ,
where Σ11 and Σ22 are the covariance matrices ofW (1) = (B0(s), B0(t))T andW (2) =

∫ 1

0
B0(u) du,

respectively. Then, from the covariance of B0,

Σ11 =

 s(1− s) s ∧ t− st

s ∧ t− st t(1− t)

 , Σ12 = ΣT
21 = (s(1− s)/2, t(1− t)/2)T ,

and Σ22 = 1/12. The conditional distribution of W (1) given W (2) is Gaussian with mean

µ(1) + Σ12Σ
−1
22 (W (2) − µ(2)), where µ(1) and µ(2) are their respective means, and covariance

Σ11−Σ12Σ
−1
22 Σ21. The result now follows since the finite-dimensional distributions of a Gaussian

process are determined by its mean and covariance kernel.
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Figure 1: Growth curves based on natural cubic spline interpolation between the observation times
(left panel), and the corresponding growth velocities (right panel).
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Figure 2: Simulation model with α = 3. Boxplots comparing the MSE of the proposed estimator
µ̂(·) and the spline estimator of X at the observation times; n = 5 (first row), n = 10 (second
row), H = 0.5 (first column), H = 0.7 (second column), H = 0.9 (third column).
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Figure 3: Simulation model with α = 3, n = 10, H = 0.5. The cross validation error CV(σ)
over a fine grid of values of σ, based on removing each of the first 3 interior observation times (left
panel), and based on averaging CV(σ) with all interior points successively removed (right panel).
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Figure 4: Reconstructed growth velocity curves for two subjects; posterior mean (solid line), point-
wise 95% credible intervals (dashed lines) based on σ = 1, 2, 3 for the first, second and third plots
in each row, respectively; for one subject in the first row, and a second subject in the second row.
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Figure 5: The cross validation error CV(σ) over a fine grid of values of σ in the growth velocity
example based on removing each of the 5 interior observation times (1/3, 2/3, 1, 3, 4 years), CV2,
. . . , CV6, respectively.
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