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ABSTRACT

This paper describes a quasi-3D Bayesian inversion of oceanographic tracer data from the South Atlantic
Ocean. Initially, one active neutral-density layer is considered with an upper and lower boundary. The
available hydrographic data are linked to model parameters (water velocities, diffusion coefficients) via a
3D advection–diffusion equation. A robust solution to the inverse problem can be obtained by introducing
prior information about parameters and modeling the observation error. This approach estimates both
horizontal and vertical flow as well as diffusion coefficients. A system of alternating zonal jets is found at
the depths of the North Atlantic Deep Water, consistent with direct measurements of flow and concentra-
tion maps. A uniqueness analysis of the model is performed in terms of the oxygen consumption rate. The
vertical mixing coefficient bears some relation to the bottom topography even though the authors do not
incorporate topography into their model. The method is extended to a multilayer model, using thermal wind
relations weakly in a local fashion (as opposed to integrating the entire water column) to connect layers
vertically. Results suggest that the estimated deep zonal jets extend vertically, with a clear depth-dependent
structure. The vertical structure of the flow field is modified by the tracer fields relative to the a priori flow
field defined by thermal wind. The velocity estimates are consistent with independent observed flow at the
depths of the Antarctic Intermediate Water; at still shallower depths, above the layers considered here, the
subtropical gyre is a significant feature of the horizontal flow.

1. Introduction

Directly observed flow at the depths of the North
Atlantic Deep Water in the South Atlantic Ocean
shows a system of alternating zonal jets (Hogg and
Owens 1999). Deep zonal flow has been explained, for
example, using a coarse wind-driven circulation model
in the Pacific Ocean (Nakano and Suginohara 2002).
Several numerical models of varying resolution of the
South Atlantic Ocean have been used to study the ori-
gin of the zonal flows, leading to the conclusion that
wind is the primary force that generates zonal flow in
the Brazil Basin (Treguier et al. 2003). Whether these
zonal jets are wind driven or not, it has become clear

that a better knowledge and understanding of their
horizontal and vertical structure is important to an ex-
planation of their origins and dynamics. Recently,
Maximenko et al. (2005) and Richards et al. (2006)
have used satellite data and higher-resolution numeri-
cal models to investigate the distribution and persis-
tence of zonal flow structures in the Pacific and World
Oceans.

The present paper takes an indirect path to the study
of the horizontal and vertical structure of ocean circu-
lation. Rather than using numerical models based on
primitive equations (i.e., GCMs), we start with ob-
served tracer concentrations and first-principle dynam-
ics to find an estimate of the steady-state circulation.
We attempt to distinguish the turbulent component
(random mixing) from the advective component. We
recognize that this distinction may be dependent on the
particular inversion model used and its resolution, that
is, that it depends on the method itself. However, we
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are able to explore this dependency and proceed on the
principle that the observed basin-scale tracer distribu-
tions operationally define our scale separation. Our re-
sults will show that with this definition, a system of
zonal jets appear with significant vertical structure,
whose horizontal and vertical scales are controlled by
the tracer distributions.

In an attempt to extract the signal associated with the
mean circulation, oceanographers have found that spa-
tial averaging over scales exceeding the mesoscale
yields tracer concentration maps thought to be repre-
sentative of the mean state. The scarcity of the data,
though, usually requires some type of interpolation
over the domain of interest. This gives only crude esti-
mates for tracer concentrations in regions where no
data are available, and the resulting maps are not nec-
essarily consistent with physical principles.

McKeague et al. (2005) introduced a statistical ap-
proach to the estimation of quasi-horizontal flow in an
abyssal neutral-density layer based on tracer concentra-
tion data. Throughout this paper we will refer to this
approach as the single-layer inversion method or 2D
inversion. The estimated horizontal flow in this case
was found to be primarily zonal, with alternating east–
west jets, mainly in the western South Atlantic. The
present work extends the single-layer methodology by
adding vertical structure. We develop a quasi-3D
Bayesian model to reconstruct vertical flow, as well as
horizontal flow, and provide improved maps for tracer

concentrations. A dynamical analysis of the model as
well as uniqueness and accuracy issues are also dis-
cussed. The Bayesian approach allows us to construct a
probability density (up to a normalizing constant) over
the space of all possible solutions. This high-dimen-
sional density provides information regarding the pa-
rameters to be estimated. Point estimates as well as
uncertainty measures could be easily constructed (in
principle) using this distribution. However, the nor-
malizing constant is analytically intractable and nu-
merical simulations are required to produce samples
(“snapshots”) from the posterior distribution. We
present the posterior mean as the “solution” and pos-
terior standard deviation as “uncertainty,” although
many other choices are possible (quantiles, modes,
etc.).

Figure 1 presents the boundaries of our inversion
domain, which we define as

S � ��x, y, z�: x ∈ �34�W, 11�E�, y ∈ �32�S, 3�S�,

��x, y, z� ∈ �28.02, 27.96��,

where �(x, y, z) denotes the neutral density (McDou-
gall 1987). The black dots indicate sites where tracer
concentration measurements are available from ships.
These bias-corrected hydrographic data [corrected for
cruise-dependent standards and offsets following
Thurnherr and Speer (2004)] are processed in a similar
way to what is described in the 2D inversion method,

FIG. 1. Lateral boundaries of the inversion domain S. Black dots indicate sites where data
have been collected. Background shading represents bathymetry.
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but this time we are considering several neutral-density
layers. Initially our main focus is on the � � 28.00 iso-
pycnal (which we will call the “active” layer) and we
use several layers above and below the active layer to
specify the vertical structure. We will refer to this ap-
proach as a “quasi-3D” inversion since results will be
available for a single isopycnal, but we show results for
several different choices of targeted layers (e.g., Fig.
19). We then extend the methodology to a multilayer
inversion model.

The domain S is discretized using a regular lattice SG

consisting of three 37 	 19 grids LG stacked on top of
one another, with each layer representing an isopycnal.
The three neutral-density layers represent one above
(� � 27.96) and one below (� � 28.02) the active layer
(� � 28.00), roughly corresponding to depths of 1750,
2000, and 2250 m, respectively. Figure 2 displays oxy-
gen and salinity concentrations obtained by interpolat-
ing (using the MATLAB function griddata with option
“nearest”) the data onto the grid LG for each layer.
There is significant variation in the spatial distribution
of the tracer concentration among these layers, indicat-
ing that adding vertical structure to the single-layer
method would yield a better understanding of the abys-
sal circulation in this region. Objective mapping could
be used to obtain more reliable maps than those in Fig.
2, but our aim is to relate estimates of tracer concen-
trations to basic physical principles as well. In Fig. 3,
vertical profiles for oxygen and salinity measurements
at two different locations in the inversion domain are
displayed. The vertical structure around 2000-m depth
varies among different tracers and across the domain as
well, with local extremes in various places and signifi-
cant concentration gradients (of the first and second
order) in other locations, suggesting that vertical mix-
ing terms may be significant. In our inversion we also
include silica (SiO2), potential temperature, and large-
scale potential vorticity tracers.

Our findings reveal horizontal flow with zonal jets
extending across the entire domain, a feature that is not
clearly apparent using the single-layer inversion
method, and that we attribute to intensified mixing
over the Mid-Atlantic Ridge. This allows the zonal jets
to maintain tracer balance across the ridge and to per-
sist in the eastern basin. By taking the analysis further
with a multilayer model, with each layer corresponding
to an isopycnal, the vertical link between layers will be
constructed using thermal wind relations. Rather than
integrating thermal wind vertically over the entire wa-
ter column, we impose it weakly and locally. An esti-
mate of the vertical structure of these zonal flows is
then available and we compare it to the flow simply

derived by integrating thermal wind relations by using
quasi-3D estimates as initial values.

The paper is organized as follows: in section 2 we
develop a quasi-3D model involving a single active
layer with vertical structure determined by boundary
conditions above and below the active layer, along with
the proposed Bayesian inversion technique and the
Markov chain Monte Carlo (MCMC) computational
procedure. Inversion results and their analysis are pre-
sented in section 3, along with a discussion of the
uniqueness and accuracy of the inversion. In section 4,
the proposed approach is extended to multiple active
layers. Concluding remarks are presented in section 5
and technical details regarding the sampler used to per-
form the numerical simulations are in the appendix.

2. Quasi-3D inversion

a. Geostrophic flow model

In this section we build the quasi-3D flow model
starting from a single horizontal active layer onto which
we add vertical advection and diffusion, with boundary
conditions for the tracers in layers above and below the
layer of interest.

We begin by recalling the single-layer dynamics,
which completely ignore vertical structure. The follow-
ing standard notation is used: 3D water velocity u �
(u, 
, w), in situ density �, pressure p, f denotes the
Coriolis parameter, and � � 
f/
y. The geostrophic flow
model in the 2D inversion is based on exact geostrophic
balance

��f� � �
�p

�x
, �fu � �

�p

�y
.

Cross-differentiating and subtracting these two equa-
tions, we get

��f�

�y
�

��fu

�x
� 0.

Neglecting density variations (using the Boussinesq ap-
proximation) and following the reasoning from the
single-layer inversion, under the assumption that zonal
flow vanishes along the eastern boundary [u(xe, y) � 0)]
we can express u as

u�x, y� � �
x

xe ���

�y
�

�

f
�� dx�, �1�

where xe is the longitude of the eastern boundary of the
inversion domain.

For the quasi-3D flow model, vertical structure is
specified through an advection–diffusion equation for
the neutral density �, obtained by neglecting the non-
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linear terms (cabbeling and thermobaricity) in Eq. (12)
from McDougall (1991),

�w �
���z�

�z � ��

�z
� ��z�

�2�

�z2 , �2�

where �(z) denotes the vertical diffusivity. McDougall
(1991) notes that cabbeling and thermobaricity are

likely to be important in the Antarctic Circumpolar
Current. Our domain does not include polar regions;
thus, we neglect these terms and restrict the model to
the mechanical mixing framework. Vertical variations
of �(z) have been hypothesized to be important within
500–1000 m of the ridge flank (Toole et al. 1994; Polzin
et al. 1997). At middepth, however, vertical variations
of �(z) are thought to be negligible, so we set the term

FIG. 2. (left) Interpolated oxygen and (right) salinity data for three neutral-density layers with one above (� � 27.96) and one
below (� � 28.02) the layer of interest (� � 28.00).

JUNE 2008 H E R B E I E T A L . 1183

Fig 2 live 4/C




�(z)/
z in (2) equal to zero. Note that although we
include vertical structure, we ignore vertical variations
in u, 
, w, and �(z) because our inversion has only one
active layer and two boundary layers. Later, we relax
this assumption and investigate a topographically
driven �(z) as well as a model with multiple active lay-
ers.

The neutral density � is computed using the equa-
tions of state for seawater. Vertical gradients of � are
approximated using centered differences. Figure 4 pre-
sents the first and second vertical derivatives of the
neutral density �z � 
� /
z, �zz � 
2�/
z2 at z0 � �2000
m, and the ratio r(x, y) � �zz/�z, which measures the
vertical variation of the abyssal neutral density field
and is referred to as the inverse density scale. At least
five layers (two above and two below the active layer)
of data are needed to approximate these vertical gra-
dients. Ignoring vertical variations in �(z) and w, we can
express the vertical velocity

w � w�x, y� � ��z��x,y�r�x, y�, �3�

and thus, given �(z), see that w is also determined. The
inverse density scale r(x, y) presented in the lower
panel of Fig. 4 plays a very important role in the inver-
sion. Because �(z) is positive, w is forced to have the
same sign as r(x, y). Moreover, if the cross-isopycnal
mixing field is fairly smooth, then the vertical velocity
field will resemble r(x, y). Although we assume that r
is known, it is an inherently noisy quantity (being the
ratio of two derivatives). To investigate whether per-
turbations in r significantly affect the results of the in-
version, Eq. (3) could be extended to w(x, y) � �(z)

(x, y)[r(x, y) � �(x, y)], where � is a zero-mean 2D
Gaussian Markov random field as described in the next
section. In the present paper, however, we assume that
� is negligible.

The connection between velocities u(x, y, z) � (u, 
,
w), diffusion coefficients K � diag[�(x), �(y), �(z)], and

FIG. 3. Vertical profiles for oxygen (solid, bottom scale) and salinity (dashed, top scale) concentrations for two
hydrographic stations, plotted against (left) depth and (right) neutral density.
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tracer concentrations C � C(x, y, z) is made via a
steady-state 3D advection–diffusion equation

u · �C � � · �K�C� � QC, �x, y, z� ∈ S, �4�

with Dirichlet boundary conditions C(x, y, z) � C
S for
(x, y, z) ∈ 
S. The source term is QC � ��C for oxygen
and QC � 0 for conservative tracers; we specify � �
10�10 s�1. We refer the reader to section 3c for an
in-depth discussion regarding our choice for �. The ver-
tical diffusion coefficient �(z) is equivalent to the one
used in (2), since neutral density diffuses with the same
coefficient as temperature and salinity. We aim in this
study to arrive at a solution with no eddy advection
terms involving gradients of �(x) and �(y). Thus, the
horizontal diffusion coefficients are assumed to be spa-
tially invariant. Variations in mixing can be investigated
in our framework, but this extension is left for future
work. Given a set of parameters � � (u, K, C
S), the
advection–diffusion equation may be solved numeri-
cally to reconstruct the tracer concentration (the for-
ward problem).

b. Bayesian inversion

Beyond the physical model, we need the observa-
tional model to connect the observed tracer concentra-
tions to the underlying steady-state tracer fields. We
assume that the measured concentrations C � [C ( j)

obs,i]
satisfy C ( j)

obs,i � N(C ( j)
i , �2

( j)), where i � 1, . . . , nD in-

dexes a site on the lattice LG where data are available;
j � 1, . . . , nC indexes a tracer; and C ( j)

i denotes the
unknown, true, steady-state tracer concentration. The
observations C ( j)

obs,i are assumed to be independent ran-
dom variables with constant (and prespecified) vari-
ance �2

( j) for each tracer j (see the end of section 3d for
further details). It is important to keep in mind that the
underlying tracer concentration C ( j)

i (x, y, z) � C ( j)
i (x, y,

z|�) is obtained as the solution of the advection–
diffusion Eq. (4), given the parameters � � (u, K, C
S).
This solution is numerically approximated using a 3D
multigrid iteration routine available in MUDPACK
(Adams 1991). In the solver, we use a finer grid created
by adding extra grid points between all neighboring
points of SG to improve the accuracy of the solution to
the forward problem. The boundary values on the finer
grid are determined by linearly interpolating their val-
ues on SG.

We pursue a Bayesian approach, choosing a prior
model, which we specify by the unnormalized density
function �(�), for the parameters to be estimated. Us-
ing the data model described above, the Bayes formula
gives the probability density function (pdf) of � condi-
tionally on the tracer data, up to a normalizing constant

	�
|C� � L�C|
�	�
�, �5�

where L denotes the likelihood function,

FIG. 4. Vertical gradients of the neutral density: (a) �z, (b) �zz, and (c) the inverse density scale r (x, y) at z0 � �2000 m.
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L�C|
� � �
i�1

nD

�
j�1

nC

exp��
�Cobs,i

� j � � Ci
� j ��2

2�� j �
2 � .

We specify 
, �(x), �(y), �(z), and C
S to be independent
under the prior distribution. The remaining compo-
nents u and w are determined via Eqs. (1) and (3). We
choose to model 
 using a 2D Gaussian Markov random
field (GMRF), having pdf

	��� � exp��
1�
s�s�

��s � �s��
2 � 
2 �

s∈LG

� s
2�,

where the first sum runs over all neighboring sites (s �
s� if s and s� are adjacent sites on the lattice LG). The
positive tuning parameters �1 and �2 control the neigh-
bor interaction and the variance in the prior distribu-
tions. We specify these parameters in Table 1. The val-
ues presented are selected based on inspection of sev-
eral simulations from the prior distribution, leading to
reasonable prior information. We find that random
draws from this prior distribution display the features
that we expect (see Fig. 15, upper left). As in the single-
layer approach, exponential distributions (with mean
1000 m2 s�1) are selected for the horizontal diffusion
coefficients �(x) and �(y). As discussed before, we ignore
vertical variations in �(z) and restrict it to positive val-
ues; hence, the absolute value of a 2D GMRF is an
appropriate choice as a prior distribution for the verti-
cal diffusion coefficient. For each tracer C(j), the bound-
ary conditions C ( j)


S are now represented by two 2D
GMRFs (for the layer above and below the layer of
interest) and a 1D GMRF (for the edge of the middle
layer), thereby allowing for interaction between adja-
cent sites on the lateral surfaces of the 3D inversion
domain.

EXTRACTING INFORMATION FROM THE POSTERIOR

DISTRIBUTION

The posterior distribution

	�
|C� � ��
i�1

nD

�
j�1

nC

exp��
�Cobs,i

� j � � Ci
� j ��2

2�� j �
2 �	

	 	���	 ���x��	 ���y��	 ���z���
j�1

nC

	 �C�S
� j ��

may be thought of as “the solution to the inverse prob-
lem.” The output of our approach is an entire collection
of possible solutions, onto which we have built a prob-
ability model allowing us to quantify whether one par-
ticular solution is more probable than another. We
summarize this distribution by estimating its mean and
standard deviation. Formally describing the high-
dimension posterior distribution �(�|C) is not possible
because of the intractable normalizing constant. Using
MCMC techniques, we are able to explore the posterior
state space in a manner that allows us to draw samples
from it. This exploration is performed by moving from
one state (or possible solution) to another such that the
amount of time the Markov chain spends in a particular
region of the state space (quantified as the number of
states from that region visited by the chain) is propor-
tional to the probability mass the posterior distribution
puts on that region. Having drawn samples from the
posterior distribution, the mean and standard devia-
tions are then estimated using the sample statistics. For
more background on MCMC we refer the reader to Liu
(2001). Following discussions from the single-layer in-
version method, the posterior state space needs to be
explored adequately in order to assess the posterior
uncertainty accurately. Standard random walk Me-
tropolis moves and column moves as described in
McKeague et al. (2005) are used. In addition, we intro-
duce new moves (scaling moves) to improve the mixing
of the chain and achieve fast decorrelation in the pos-
terior sample. These moves are described and discussed
in the appendix. A complete iteration in the MCMC
scheme we use consists of 1000 cycles; each cycle con-
sists of (i) a scaling move; (ii) a random walk move on
�(x), �(y) (one chosen at random); (iii) a random walk
move on one randomly selected component of 
; (iv) a
random walk move on one randomly selected compo-
nent of �(z); (v) a random walk move on one randomly
selected component of C
S ; and (vi) a column move.

3. Inversion results

a. Flow estimates

The posterior mean horizontal flow shows predomi-
nant zonal flow with alternating jets associated with
tracer tongues, narrower in the vicinity to the equator
and broader farther south (Fig. 5). Quasi-3D inversion

TABLE 1. Values of the tuning parameters �1 and �2 that appear in the prior distributions of 
, �(z), and C ( j)

S .

Salinity Oxygen SiO2 Potential vorticity Potential temperature 
 �(z)

�1 8.6 	 104 0.09 0.17 0.5 	 102 3.3 	 103 2 	 104 1010

�2 10�6 10�7 10�7 10�4 10�4 0 108
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velocities significantly different from zero by at least
one and two posterior standard deviations are dis-
played in the left panel of Fig. 6. In comparison to the
solution of the single-layer inversion method (Fig. 6,
right panel), we observe more significant zonal flow
and less meridional flow with only a few significant
values along the east side of the Mid-Atlantic Ridge in
the southern part of the domain. There is evidence of
alternating zonal jets that extend across the entire do-
main. To get an adequate comparison of the widths of
the alternating zonal jets to the Rossby radius, we
would need to obtain sufficient dynamic range, which
would require a larger inversion region.

Our solution includes a large-scale potential vorticity
(PV � f/H) estimate (Fig. 7) because PV is one of the
tracers. This estimate enables gradients of PV to be

calculated consistently with the other tracers and with
the velocity field (this does not mean that the relative
vorticity is important). We approximate the meridional
gradient of PV and display it in the right panel of Fig.
7, with the mean flow field superimposed. We note the
zonally banded structure of 
(PV)/
y and observe that
westward zonal jets are generally associated with high
positive meridional gradients. The meridional scale of
the jets is about 2°–4°, similar to the findings of
Treguier et al. (2003).

In regions with low vertical diffusion (i.e., southwest
or northeast of the inversion domain; see section 3b for
details) we observe flow along the isopleths of the (con-
servative) tracers, a characteristic of a purely advective
solution. This is no longer valid for the region above
the Mid-Atlantic Ridge, where more intense cross-

FIG. 5. Posterior mean flow from the quasi-3D inversion superimposed on the (a) posterior mean salinity and (b) oxygen
concentration fields, on � � 28.00.

FIG. 6. Posterior mean velocities that differ from zero by at least one (light) and two (dark) posterior std devs for the (a) quasi-3D
approach and (b) single-layer method; contours of the bottom topography (500-m interval).
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isopycnal mixing is estimated. For a better understand-
ing of the main balances in the advection–diffusion
equation, we quantify the magnitude of the advective
and diffusive terms along each axis in Eq. (4) using a
spatial root-mean-square (RMS). For example, the
RMS of the advective term along the x axis is

RMS �
�
s∈LG

�u�s�Cx�s��2

19 	 37
. �6�

In Fig. 8 we detail this analysis for oxygen, showing the
RMS for each term as a function of iteration in an

MCMC simulation. We find that our solution is primar-
ily advective with vertical components that have an
overall small influence, presumably due to the coarse
vertical resolution in our model. The vertical terms
�(z)Ozz and wOz are one order of magnitude smaller
than the horizontal ones and exhibit variation that is
too small to be observed on the scale of the plot.

b. Vertical structure

Our approach provides estimates and uncertainties
of the vertical diffusion coefficient �(z) and velocity w
(Fig. 9). We observe upwelling throughout the domain.

FIG. 7. (a) Posterior mean flow superimposed on the posterior mean PV (normalized scale) and (b) the PVy.

FIG. 8. Advective–diffusive balances: trace plots of RMS for each term in the oxygen
advection–diffusion equation (10�8). The approximately horizontal lines correspond to the
vertical diffusion [�(z) Ozz], vertical advection (wOz), and the “sink” term (�O) whose varia-
tions are too small for the scale of this plot.
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FIG. 9. (a) Posterior mean vertical velocity w and (b) std dev; (c) posterior mean vertical mixing coefficient �(z) and (d) posterior std
dev; (e) posterior mean vertical mixing coefficient �(z) and (f) posterior std dev obtained using the model (7); contours of the bottom
topography (500-m interval).
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This is mainly a result of the simplified model and the
constraints imposed from Eq. (3) [note that �(z) and w
must have the same sign because the inverse density
scale r(x, y) is positive throughout the active layer].

The center panels of Fig. 9 present the posterior
mean (left) and standard deviations (right) for the ver-
tical mixing coefficient. Increased vertical mixing is
usually associated with higher uncertainty in the poste-
rior distribution. Although the average field is fairly
smooth across the entire domain, it is interesting, even
though we do not incorporate topography into our
model, to notice an association between �(z) and the
bottom topography, with higher values over the mid-
ocean ridge.

We further explore the relationship between vertical
mixing and bottom topography by imposing the follow-
ing idealistic model:

��z��x, y� � L�x, y� exp��
z�x, y� � h�x, y�

� �, �7�

where z(x, y) denotes the depth of the layer of interest,
h(x, y) is the depth of the ocean, � denotes an expo-
nential decay scale, and L(x, y) is an arbitrary (smooth)
level function. We treat h and z as fixed (nonrandom)
functions of location and L and � as random positive
quantities. Given an absence of prior knowledge about
the level function, a 2D GMRF is suitable as a prior
distribution for L. For the decay scale, we use an ex-
ponential prior with mean 500 m. Huang and Jin (2002)
specify the vertical diffusivity similarly, using a qua-
dratic exponential decay to study deep circulation in-
duced by bottom intensified mixing. At middepths shal-
lower than the tip of the midocean ridge, the appropri-
ateness of such a model is not clear.

Our results from this approach (Fig. 9, lower panels)
show higher posterior variability and overall reduced

vertical diffusivity values, becoming insignificant in
various places in the eastern and western basin. The
posterior mean exponential decay scale of 800 m has
very high uncertainty (posterior standard deviation
�500 m), suggesting that the inversion is trying to in-
troduce more variability than model (7) can accommo-
date.

Does the use of model (7) produce a better fit to the
data than the model described in section 2b? To make
such a comparison, we define a cost function as follows:
for each visited state �, the distance between available
tracer observations C ( j)

obs,i and the tracer concentration
C(�) determined via the advection–diffusion equations
is quantified using a cost function (or equivalently, mi-
nus the log-likelihood), which is defined as the error
sum of squares normalized by twice the error variance
and takes the form

Err�
� � �
i�1

nD

�
j�1

nC �Cobs,i
� j � � Ci

� j ��
��2

2�� j �
2 .

We use this cost function to compare the fit to the
oxygen data produced by our model with topographic
mixing (7) and our earlier model [GMRF directly on
�(z); see Fig. 10]. Note that there is a higher error as-
sociated with topographic mixing, which we attribute to
a less realistic horizontal velocity field. This is due to a
strong control exerted over 
w/
z, hence over 
 and u as
well.

c. Oxygen consumption rate and uniqueness

The consumption rate � appearing in the oxygen
equation plays an important role in our setting. Al-
though it varies near regions with high productivity, � is
thought to be nearly constant over the broad interior of
the ocean (Feely et al. 2004). For simplicity we set � to
be a constant; this provides a fixed clock rate in the

FIG. 10. Oxygen cost comparison for the two vertical mixing models: 2D GMRF (thick
line) and topography driven (thin line). Trace plots of Err(�).
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advection–diffusion equation and avoids the ill-posed-
ness of the inverse problem. The magnitude of � can be
estimated from a simple analysis of the terms in the
advection–diffusion equation for oxygen,

u · �O � K�2O � �O.

A typical deep ocean is characterized in the interior
(outside the western boundary current) by length scales
of order L � 106 m, velocities of about 10�2 m s�1, and
diffusion coefficients of 103 m2 s�1. Thus, the advection
term in the equation above is estimated to be of the
order 10�2 m s�1 	 10�5 �mol kg�1 m�1 � 10�7�mol
kg�1 s�1. Similarly, the diffusion term is roughly 103

m2 s�1 	 10�11 �mol kg�1 m�2 � 10�8 �mol kg�1 s�1.
This leads to �O � 10�7�mol kg�1 s�1, or equivalently,
� � 5 	 10�10 s�1. A similar value can be found by a
different scaling argument. The time scale of our sys-
tem is of the order 108 s (3 yr); thus, changes in the
oxygen concentration are �O � � 	 108 	 O, hence
� � 5 	 10�10 s�1. Also, Feely et al. (2004) report an
oxygen utilization rate (�O) of 0.1 	 10�9 �mol kg�1

yr�1 which leads to � � 2 	 10�11 s�1. Thus, we settled
on the average value for � � 10�10 s�1.

Higher values for � would increase the “sink” term in
the oxygen equation, requiring greater diffusion near
the equator where advection is small. Indeed, this is
shown by trace plots for �(x) and �(y) in a simulation run
using only oxygen and � � 10�8 s�1 (Fig. 11, lower right
panel). The lateral diffusion coefficients are of order
105 m2 s�1. This would throw off the balances in the
advection–diffusion equation for the other tracers (the
diffusion term dominates), which is physically unrealis-
tic. It would also cause the Markov chain to get stuck.
To illustrate this, for the same value of �, a simulation

run using all the tracers was performed. Examining the
trace plots for the lateral diffusion coefficients (Fig. 11,
lower left panel) we find that these parameters do not
“move” (nearly flat lines) for many iterations.

Lower values of � are not acceptable either. Reduc-
ing the oxygen consumption rate by two orders of mag-
nitude, to 10�12 s�1, lowers the velocities and diffusion
coefficients by the same factor (in order to maintain
balance). In particular �(y) becomes almost negligible
(about 10 m2 s�1; see Fig. 11, upper right panel), even
though the Markov chain is not getting stuck in this
case. The choice of � � 10�10 s�1 appears to be satis-
factory (Fig. 11, upper left panel) in that it produces
plausible diffusion coefficients and adequate conver-
gence of the Markov chain.

We further examine the behavior of the chain by
characterizing each accepted solution by a pair of
nondimensional quantities (�̃, Pe), where �̃ � �L/U.
The velocity component U is estimated using the spatial
RMS described above and varies as the chain is explor-
ing the posterior distribution. The Peclet number is
computed as Pe �UL/�(x). The length scale L and the
clock rate � are held constants: L � 106 m, � � 10�10

s�1. In Fig. 12 we display visited states in the (Pe, �̃)
space. We notice that the Markov chain does converge
(the gray dots tend to stay in a relatively small region of
this space). Once the chain has reached stationarity, the
possible solutions are characterized by Pe � 6. The
same value for the Peclet number can also be achieved
if diffusion coefficients and velocities are simulta-
neously very large or very small, which could happen
under the prior model, yet in that case �̃ would be very
small or very large. The sink term in the oxygen advec-
tion–diffusion equation is thus selecting the solution.

FIG. 11. Trace plots for �(x) (thin line) and �(y) (thick line) in m2 s�1. Simulation runs for
different values of �, showing the behavior of the chain (a): � � 10�10 s�1, (b) � � 10�12 s�1,
(bottom) � � 10�8 s�1 with (c) simulation using all tracers, and (d) with the simulation using
oxygen only.
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Tonguelike distributions of tracer concentration data
are usually interpreted as advective effects. As Armi
and Haidvogel (1982) point out, for a steady-state
model, variable and anisotropic diffusion coefficients
can generate similar distributions. Floats deployed in
the Brazil Basin (Hogg and Owens 1999) have shown a
flow dominated by zonal motions. Our results show a
significant anisotropy of the diffusion coefficients (see
Fig. 13), but we find that the tracer concentration
tongues are dominantly advective (see, e.g., Fig. 8). We
estimate a mean meridional component of roughly 220
m2 s�1, consistent with low eddy kinetic energy levels,
of the order 1 cm2 s�2 with a time scale of 20–30 days.
Based on the balance between zonal advection and me-
ridional eddy diffusion and on estimates of tracer gra-
dients, Thurnherr and Speer (2004) come to a similar
value for �(y). Our estimates are also consistent with
the large-scale eddy diffusivities [�(x), �(y)] � (1.5 � 0.7,

0.7 � 0.4) 	 103 m2 s�1 estimated using float and tracer
observations from the North Atlantic Tracer Release
Experiment (Sundermeyer and Price 1998). Simula-
tions done with imposed isotropic diffusivities have
shown significantly higher cost functions, as displayed
in Fig. 14.

d. Accuracy of the inversion: Simulation example

In this subsection we examine the question of wheth-
er our approach provides an accurate solution in the
setting of a synthetic inversion problem. We create a
simple example with simulated data and known target
parameters to assess the performance of the inversion
method proposed in sections 2a and 2b.

We prespecify a “realistic” meridional velocity field 

and vertical diffusion coefficient field �(z), representing
the main targets of the inversion (see the first panels of
Figs. 15 and 17, respectively). Each field is a random
draw from its prior distribution described in section 2b.
The horizontal diffusivities are assumed to be �(x) �
1000 m2 s�1 and �(y) � 500 m2 s�1. For simplicity we
only use a single tracer (oxygen) with constant bound-
ary conditions on the upper and lower layers, and linear
interpolation to the boundary of the middle layer. To
generate the oxygen tracer data we numerically solved
the forward problem (4) yielding the tracer concentra-
tion over the entire grid SG, discard all but the values at
observation sites, and add independent N(0, 1) mea-
surement error. To compensate for only using a single
tracer we have reduced the measurement error vari-
ance from 2.46 to 1.0. We use the same priors as before.

The results are displayed in Figs. 15–17. The poste-
rior mean flow field (Fig. 15, top right panel) is in close
agreement with its target (top left panel) in that the
main features are reproduced (e.g., strong zonal flow in
the northwest part of the domain). Note, however, that
the posterior mean flow is considerably smoother than
its target, which is to be expected because it does not
reflect any variability. To get a sense of the variability
in the inversion, it is helpful to inspect draws of the
posterior flow field (Fig. 15, bottom panels); these also
exhibit the same features as the target. Posterior histo-
grams of the horizontal diffusion coefficients (Fig. 16)

FIG. 12. Probable solution distribution in the (�̃, Pe) space. We
display 1000 visited solutions (gray dots) after the Markov chain
has reached stationarity. The black dot represents the posterior
mean solution.

FIG. 13. Posterior histograms for the lateral diffusivities (left) �(x) and (right) �(y) (m2 s�1).
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FIG. 14. Comparison between the cost functions for (top) salinity and (bottom) oxygen
concentrations in two simulation runs: imposed isotropic lateral diffusion coefficients (thin
lines) and a free run (thick lines).

FIG. 15. Simulation example: (a) assumed true flow field, (b) posterior mean flow field, and
(c) and (d) two random draws from the posterior distribution.
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are quite tightly concentrated around the target values,
with posterior means of 1031 m2 s�1 for �(x) and 508
m2 s�1 for �(y). The posterior standard deviations are 95
and 69 m2 s�1 respectively. These posterior distribu-
tions are approximately Gaussian and are significantly
different from their exponential priors, showing that
the data have had a large influence. The posterior mean
of the vertical diffusivity �(z) (Fig. 17, middle panel)
again reproduces the main features of its target (first
panel), at least up to a degree of variability given by the
posterior standard deviation (last panel).

Two other important factors are influencing the pos-
terior distribution: the error variance and the number
of data sites. There are 239 data locations (in both the
real and artificial problems) on a 37 	 19 lattice. Our
experiments have shown that we can reduce the num-
ber of data points by as much as 10% without signifi-
cantly altering the resulting posterior mean flow and
mixing values. It would require separate (time con-
suming) simulation runs to determine the influence of
each data point individually. Both the error variance
and the number of data locations are controlling the
“power of the data,” by either strengthening or relaxing
the likelihood. Correspondingly, varying these param-
eters will either reduce or enlarge the posterior vari-
ance, assuming the prior does not change. In the real
problem, the number of data locations is determined by
the grid size and the original hydrographic stations
where data were collected. The error variance �2

( j) for

each tracer is estimated by computing a local sample
variance from tracer measurements in a small box
around an observation site, and then taking a weighted
average of these sample variances, with the weights be-
ing reciprocals of the local sample sizes. This is the
procedure used in McKeague et al. (2005), resulting in
the values given in Table 1 of that paper.

4. Thermal wind and a multilayer inversion

A natural question is what happens when our model
is applied at other depths? We can easily perform the
quasi-3D statistical inversion at any depth we care to
specify. In Figs. 18 and 19 the upper panels present the
posterior mean flow and tracer concentrations for the
� � 27.63 and � � 27.15 isopycnals. One of the defi-
ciencies of our model is that these estimated velocities
and tracer concentrations are not related in any way to
each other or to the � � 28.00 layer. A natural way to
link these layers vertically would be to use thermal
wind relations:

�u

�z
�

g

f�0

��

�y
,

��

�z
� �

g

f�0

��

�x
.

We note that since tracers are advected by the total
velocity, our approach will estimate the total field,
barotropic plus baroclinic. Using velocity estimates
from the � � 28.00 layer, one can integrate thermal
wind equations vertically and obtain velocities across

FIG. 17. Simulation example: (a) assumed vertical diffusion, (b) posterior mean, and (c) std dev fields for the vertical mixing
coefficient �(z).

FIG. 16. Simulation example: posterior histograms for (a) �(x) and (b) �(y).
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the entire water column. The lower panels in Figs. 18
and 19 present velocities obtained in this fashion on top
of interpolated tracer concentration data. Neither of
these approaches produces satisfactory results. The
quasi-3D methodology lacks a vertical link between
layers. Flow derived by integrating thermal wind rela-
tions is turbulent, includes eddies, and may not be con-
sistent with observed tracer concentrations. We choose
to combine the two methods in one unified model that
uses thermal wind to connect layers and the advection–
diffusion equation to link tracer concentration data to
velocities and diffusion coefficients.

The inversion domain S in this situation will have the

same lateral boundaries as in the quasi-3D setup but
the vertical boundaries are now set to � � 28.00 and
� � 27.15. We discretize S using seven 37 	 19 grids LG

stacked on top of one another, with each layer repre-
senting an isopycnal (� � 28.00, 27.96, 27.89, 27.78,
27.63, 27.45, and 27.15, roughly corresponding to depths
of 2000 to 500 m in steps of 250 m). Using hydrographic
data, we compute the in situ density � and approximate
its horizontal gradients 
�/
x, 
�/
y. With k � 1, . . . , 7
indexing the layers, let

Gu,obs
�k� �

g

f�0

��

�y

�k�

, G�,obs
�k� � �

g

f�0

��

�x

�k�

.

FIG. 18. Posterior mean velocities and reconstructed tracer concentrations of (a) salinity and (b) oxygen for the � � 27.63 neutral-
density layer (�1000-m depth) using a quasi-3D model. (c) Salinity, and (d) oxygen interpolated tracer concentration data and velocities
obtained by vertically integrating thermal wind relations for the same isopycnal.
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We view G � [G(k)
u,obs,G

(k)

,obs] as additional data, supple-

menting observed tracer concentrations. Together with
the observational model described before, we also as-
sume that for each layer k and each grid site s ∈ SG,
G(k)

u,obs, (s) and G(k)

,obs(s) are independent Gaussian vari-

ables having means (
u/
z)(k) (s) and (

/
z)(k) (s), re-
spectively, and constant variances �2

u and �2

. For every

hydrographic station where two ship tracks intersect at
a right angle, the zonal gradient of � will be estimated
using data from one cruise while the meridional gradi-
ent will be estimated using data from the other cruise.
As a result, the two gradients can be assumed to be
statistically independent. This argument can be ex-
tended to every grid site s ∈ SG. Following the Bayesian
approach, the likelihood function then becomes

L�C,Gu,G�|
� � �
i�1

n�D

�
j�1

nC

exp��
�Cobs,i

�j� � Ci
� j��2

2�� j�
2 �

	 �
k�1

7

�
s∈LG

exp��
�Gu,obs

�k� �s� �
�u

�z

�k�

�s��2

2�u
2 �

	 �
k�1

7

�
s∈LG

exp��
�G�,obs

�k� �s� �
��

�z

�k�

�s��2

2��
2 �,

where i � 1, . . . , n�D now indexes a site on one of the
five interior lattices where data are available. The pa-
rameters to be estimated are now 
, w, �(x), �(y), �(z),
and C
S , which are again specified to be independent

FIG. 19. Same as Fig. 18 but for the � � 27.15 neutral-density layer (�500-m depth).
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under the prior distribution. The prior distributions for

 and w in this case are constructed by stacking seven
independent 2D GMRFs on top of each other; the dis-
tribution for �(z) is constructed similarly except that we
use the absolute value of each GMRF. The zonal ve-
locity u is then determined via Eq. (1), which we now
write for every layer. Horizontal diffusivities are again
assumed to have prior exponential distributions (with a
mean of 1000 m2 s�1), and for each tracer, the same
prior (as in the quasi-3D case) is selected for values on
the boundary of the inversion domain. We have also
experimented with specifying a 2D prior distribution
for the meridional velocity on the deepest layer and a
3D prior distribution for the vertical gradient 

/
z,
which will consequently determine 
 on every layer.
Our simulations in this case have shown an unrealistic
flow field and higher cost functions when compared to
those resulting from the 3D prior described above. Us-
ing Bayes’s formula, we derive the conditional distribu-
tion of � � (
, w, �(x), �(y), �(z), C
S), given tracer data
and thermal wind data. The vertical gradients 
u/
z and


/
z are approximated using centered differences for
the interior layers and forward differences for the up-
per and lower boundaries. Markov chain Monte Carlo
methods are again used to sample from this unnormal-
ized distribution.

For each neutral-density layer specified above, the
posterior mean flow and oxygen concentration are dis-
played in Fig. 20. A few interesting features of the 3D
velocity field are to be observed: deep layers exhibit
flow that is mostly zonal as opposed to shallower layers
where meridional flow becomes significant. In compari-
son, we also derive flow by integrating thermal wind
relations with respect to z (Fig. 21) and using quasi-3D
results as reference values. Analyzing each layer indi-
vidually, we observe that the horizontal structure of the
two fields differs, especially in the central and northern
regions of our domain. However, in every layer, the
westward flow near 28°S is present in both fields. In
addition, floats deployed to study circulation of the
South Atlantic Antarctic Intermediate Water (Núñez-
Riboni et al. 2005) show the same westward flow be-
tween 20° and 30°S being part of the northern branch of
the South Atlantic subtropical gyre. A quantitative
comparison of this flow shows that flow derived from
float data has a mean speed of 4.7 � 3.3 cm s�1 while
that estimated from the inversion has a posterior mean
speed of 3.3 cm s�1 and a posterior standard deviation
of 0.6 cm s�1.

Using data compiled from Núñez-Riboni et al.
(2005), we converted the mean zonal transport across
the South Atlantic Ocean into averaged mean velocities
for the � � 27.45 isopycnal and compared them to mul-

tilayer posterior mean zonally averaged x velocities
(Fig. 22) to find consistent agreement between the two.
A significant disagreement appears near 11°S where
posterior mean flow is eastward and near 13°S where
posterior mean flow is westward. Float sampling was
inadequate in this region to observe this flow, and the
comparison is invalid there. These are the latitudes of
the South Equatorial Countercurrent (SECC) and the
South Equatorial Current, and our results are consis-
tent qualitatively with the two currents. The SECC is
thought to feed a small gyre near the eastern boundary
called the Angola Dome. This gyre is not evident in the
estimated mean flow because it lies mainly above the
upper boundary of our inversion domain at roughly
500-m depth.

Another interesting feature of the estimated flow
field is that zonal jets extend vertically across several
layers. Figure 23 displays the vertical structure of the
zonal velocity u for the 20°W meridian. In the left
panel, flow estimated using the multilayer model is
used, whereas in the right panel velocities are deter-
mined by integrating thermal wind equations. In com-
parison to the thermal wind flow, we find that the mul-
tilayer estimate shows a stronger depth-dependent
structure. We also notice smaller horizontal-scale zonal
jets at lower latitudes versus broader jets farther south.

The eastward jet at 20°S that we find significant at
2000-m depth extends up to 1000-m depth, while the
westward flow at 30°S is present across the entire water
column. A relatively strong westward flow at 16°S
present in the thermal wind flow does not appear in the
multilayer estimate. The solution does not extend close
enough to the equator to compare to the much smaller
vertical scales found there by Treguier et al. (2003).

5. Concluding remarks

We develop a Bayesian approach to inverting tracer
concentration measurements. Following the single-
layer approach we add vertical structure, initially build-
ing a quasi-3D model and furthering this to a full mul-
tilayer setup. What sets this method apart from various
other approaches is that the term “solution to the in-
verse problem” (which we define as the collection of
velocities, diffusion coefficients, and tracer boundary
values to be estimated) may be ambiguous in this view.
Traditional inverse methods in data assimilation pro-
vide a “unique” or “best” solution, generally computed
by minimizing some objective function. Measures of
uncertainty in this solution are also provided. We ob-
tain more than that. Consider the set of all possible
solutions, given the data measurements and the physi-
cal constraints required by the dynamical model. Some

JUNE 2008 H E R B E I E T A L . 1197



of these solutions are more probable than others.
Loosely speaking, “probable” solutions can be charac-
terized by a realistic flow field resulting in concentra-
tion maps that are close to the observed ones. Our

Bayesian approach provides us with the necessary tools
to quantify “probable.” A full probability distribution is
obtained to characterize the state space of all solutions
to the inverse problem [i.e., the parameters u, 
, w, �(x),

FIG. 20. Posterior mean flow plotted in streamfunction form with reduced contours, set for better visualization (no smoothing) and
reconstructed oxygen tracer concentration for seven neutral-density layers.
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�(y), �(z), and C
S]. Hence, when inquiring about a par-
ticular variable, instead of providing a value, we are
providing a distribution (including mean, variances, and
so on), which is a balance between information in the
data and information in the prior. There are three key
ingredients in our approach: prior, dynamics, and data.
All play an important role and it is impossible to
uniquely determine the “source” of information. Our
prior assumptions are generally mild. We only impose a
certain degree of smoothness for the 2D fields and re-
strict diffusion parameters to positive values. We have

experimented (in a limited way) with different choices
for the hyperparameters that specify the prior distribu-
tion and found only minor changes in the results. When
comparing posterior distributions to the prior ones, we
do notice that they are quite different (many velocities
now have a posterior mean that is different from zero,
and horizontal diffusion coefficients appear to be
Gaussian rather than exponential). We conclude that
the data have swamped the prior in terms of informa-
tion. Markov chain Monte Carlo techniques make our
approach computationally feasible, allowing us to

FIG. 21. Flow derived by vertically integrating thermal wind equations from 2000- to 500-m
depth, plotted in streamfunction form with reduced contours, using quasi-3D results as ref-
erence level values.
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sample this high-dimensional space. Summary statistics
(sample averages, most likely values, and standard de-
viations) may be further used to select a representative
solution and to quantify uncertainty. We are able to
reconstruct tracer concentration maps by numerically
solving the advection–diffusion equation for a selected
set of inputs (coefficients and boundary values). All the
computations were carried out on a dual Power Mac G5
workstation. All the results were based on five million
cycles of the MCMC sampler as described in section 2b.

We estimate abyssal horizontal flow that is domi-
nated by alternating zonal jets consistent with observed

tracer concentration maps and direct measurements of
the flow at the depths of the North Atlantic Deep Wa-
ter. Our results show intensified diapycnal mixing over
the Mid-Atlantic Ridge (as observed by Polzin et al.
1997), which allows jets to extend over the entire do-
main; however, vertical diffusion driven directly by bot-
tom topography results in a less realistic flow field. We
have chosen a model configuration with a given reso-
lution of about 1°, amounting to an operational defini-
tion of the separation of scales between subgrid-scale
diffusion and mean advection. Moreover, by choosing
K to be uniform over the inversion domain, we neglect
its likely spatial variability, which can enter the tracer
equation like advection (tracer attracted to high-energy
high-K regions). We also make the choice to model
tracer advection and diffusion with a mean flow and K.
There is a missing nonlocal effect (not representable by
K) due to the tracer being bodily translated by large
eddies and deposited somewhere else. This might be
represented by random eddy flux vectors but it is not
implemented in the current configuration. Thus, there
are several open questions regarding parameterization
of tracer transport in the ocean (or atmosphere, or
many other systems) that might be investigated. Our
study provides the answer to a simple version of the
problem, and a basis for further investigation.

We extend the approach and use thermal wind rela-
tions to construct a multilayer model. Integrating ther-
mal wind equations with respect to z over the entire
water column produces a flow field that contains eddies
and is not necessarily consistent with observed tracer
maps. We avoid these problems by imposing thermal
wind weakly in a local fashion. As a consequence, the
vertical structure of the flow departs from the one de-

FIG. 22. Zonally averaged posterior mean zonal velocities (solid
curve) in the western basin � two posterior std devs (shaded area)
and estimated zonal mean velocities from float data (dots) in the
intermediate water, for � � 27.45 neutral-density layer.

FIG. 23. Vertical structure for the zonal velocity u at 20°W. (a) The posterior mean. (b)
Here, u is determined by integrating thermal wind equations.
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rived by integrating thermal wind relations, revealing a
strongly depth-dependent flow field. Alternating zonal
jets extending vertically over 1000 m or more are still
the main feature of the flow field. We understand that
we make a subjective choice to impose thermal wind
relations weakly to provide the vertical structure of the
flow. We do account for thermal wind error in this
manner, but in our approach we assume that the depths
of each isopycnal are known. A further stage in our
analysis will relax this assumption, building thermal
wind into the dynamical model and working with an
updated density field.
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APPENDIX

Bayesian Approach, MCMC Moves, and
Acceptance Probabilities

The aim of our paper is to estimate � � (u, K, C
S),
given measurements of tracer concentration C. We are
pursuing a Bayesian approach that consists of two ma-
jor steps. The first one is the model specification, which
has two components: a prior model for the parameters
� and a model for the data C (conditional on �). The
data model (or observation model) has the general
form Data � f(�, error). Assumptions of distributions
of errors lead to the likelihood function L(C|�). The
prior model describes all the (subjective) information
the user has about the parameters (prior knowledge).
Formally, this amounts to specifying the prior density
�(�). Acquisition of information (the data) will modify
the prior model into the posterior �(�|C), according to
the Bayes Eq. (5). The posterior density is the proposed
solution: a probability measure on the space of the pa-
rameters �. It allows us to quantify which sets of pa-
rameters are more or less likely and to compute a mean
value, a variance, or other measures of uncertainty. The
drawback is that �(�|C) is not normalized, and in most
cases, such as the one presented in this paper, the nor-
malizing constant is intractable. Thus, formally summa-
rizing �(�|C) is impossible; however, using MCMC
techniques, we can numerically draw samples from this
distribution.

The second step in the Bayesian approach consists in
constructing a Markov chain, which explores the state
space of � in a manner consistent with �(�|C). A very
popular method to do so is a Metropolis random walk.
The chain is started in a state �0, selected arbitrarily.
From the current state �j the chain moves to �j�1 �
�j � r with probability

��
j�1|
j� � min�1,
	�
j�1|C�

	�
j|C� �,

or stays put, �j�1 � �j, with probability 1 � �(�j�1|�j).
The sequence �j, j � 0, 1, 2, . . . constitutes a realization
of the Markov chain. Here r is a uniform (zero mean)
variable, and �(�j�1|�j) is called the acceptance prob-
ability. Standard Markov chain theory (Tierney 1994)
provides sufficient conditions for the random walk Me-
tropolis algorithm to converge to the target distribution
�(�|C). Once the chain has converged, which we de-
termine by examining trace plots (as in Fig. 11), subse-
quent output is used to obtain inversion results. In prac-
tice, however, several other types of moves (rather than
simple random walk) are designed to improve the qual-
ity of the posterior sample. We describe all these moves
formally as reversible jumps (Green 1995). From the
current state � we propose to move to �� � F(�, r), F
being a nonrandom operator and r having a given den-
sity q. The new state �� is accepted with probability

��
�|
� � min�1,
	�
�|Data�q�r��

	�
|Data�q�r� | ��
�, r��

��
, r� |�,

where r� is the unique value such that � � F(��, r�) and
Data is a generic notation for tracer data C in the quasi-
3D setup or tracer data combined with thermal wind
data G for the multilayer setup. We combine classical
random walk–type moves with several new scaling
moves such as

���, ��z��� � �r�, ��z��r�, ���x��, ��y��� � �r��x�, r��y��,

���x��, ��y��� � �r��x�, ��y��r�.

For such moves, the Peclet number will vary strongly.
These moves allow the Markov chain to jump quickly
between states for which the advective–diffusive bal-
ances are different.
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