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 SUMMARY. This article introduces a new Bayesian approach to the analysis of right-censored survival
 data. The hazard rate of interest is modeled as a product of conditionally independent stochastic processes
 corresponding to (1) a baseline hazard function and (2) a regression function representing the temporal
 influence of the covariates. These processes jump at times that form a time-homogeneous Poisson process and
 have a pairwise dependency structure for adjacent values. The two processes are assumed to be conditionally
 independent given their jump times. Features of the posterior distribution, such as the mean covariate effects
 and survival probabilities (conditional on the covariate), are evaluated using the Metropolis-Hastings-Green
 algorithm. We illustrate our methodology by an application to nasopharynx cancer survival data.

 KEY WORDS: Life history data; Metropolis-Hastings-Green algorithm; Right censoring; Time-dependent
 covariate effects.

 1. Introduction

 A central problem in survival analysis is to infer the temporal

 evolution of covariate effects and baseline hazards from life

 history data. The proportional hazards model of Cox (1972)

 is the most popular approach to this problem. This model,

 however, is not flexible enough for some applications. For in-

 stance, in cancer mortality studies, some covariate effects may

 diminish with time, and in many practical situations, a priori

 information is available that is difficult to include in a Cox

 model analysis. In such cases, a Bayesian approach to model-

 ing the conditional hazard function appears to be preferable,

 especially when limited data make nonparametric frequentist

 approaches impractical.

 In this article, we develop a nonparametric Bayesian ap-

 proach to the analysis of right-censored survival data. The

 approach will be illustrated using data on 181 nasopharynx

 cancer patients. One of the five covariates in this example is

 a measure of the extent of radiotherapy treatment. Our anal-

 ysis indicates that the treatment has a significant effect on

 survival, and this effect is essentially constant over the period

 of follow-up. The effects of several other covariates, however,

 are found to vary significantly over time.

 Our approach is based on a class of prior models for con-

 ditional hazard functions of the form

 h(t I z) = ho (t) exp(/3(t)'z), (1.1)

 where z is a p-vector of covariates. The baseline hazard func-

 tion ho(t) and covariate effect p3(t) will be specified as step
 functions with jump times that form a time-homogeneous

 Poisson process. Conditional on these jump times, the levels

 of log(ho(t)) and f(t) are modeled as independent Gaussian
 Markov random fields. Temporal variation of these processes

 will be controlled using a pairwise dependency structure for
 adjacent values.

 We briefly mention some related frequentist approaches. A
 simple extension of the Cox model has been considered by

 Anderson and Senthilselvan (1982), who proposed piecewise
 constant f(t) with a single jump. They analyzed a data set of
 cancer recurrence times and showed that the two-step model

 fits the data much better than the Cox model. The authors

 cautioned, however, that, in the presence of binary covariates
 and heavy censoring, allowing more than just a single jump in
 fi(t) can result in unstable estimates. Gore, Pocock, and Kerr
 (1984, Section 4.4) and Carter, Wampler, and Stablein (1983)
 modeled the changes in the covariate effects by assuming that

 log(fl(t)) is piecewise linear. A more general approach was

 developed by Zucker and Karr (1990) and Murphy and Sen
 (1991). They considered a model of the form (1.1) in which
 fi(t) is an arbitrary function of time. No assumptions were
 placed on the covariate effect f(t) and the baseline hazard
 function ho (t) apart from smoothness conditions. Zucker and
 Karr used a penalized partial likelihood approach, resulting in

 spline estimators, and Murphy and Sen used histogram sieve
 estimators. Lin and Ying (1994, 1995) and McKeague and
 Sasieni (1994) have developed additive risk variations of the
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 Cox model. For an extensive review of nonparametric frequen-
 tist approaches to inference from survival data, see Andersen

 et al. (1992).

 A review of Bayesian methods for survival data can be

 found in Sinha and Dey (1997). Most existing methods do
 not adjust for covariate effects, and the cumulative hazard

 function is specified using a process with independent incre-

 ments. In practical situations, however, correlated or smooth

 hazard function priors are more suitable. Gamerman (1991)
 considered the model (1.1) with the baseline hazard as a step
 function of the form

 k

 ho(t) ZI(Ti < t < Ti+ )h , (1.2)

 where 0 = Ti < r2 < < rk+l is a fixed grid of jump
 times. The log-baseline hazard levels Ai = log(hi) form a
 first-order autoregressive process, Ai+1 I Ai - N(Ai, a2), and
 a similar structure is used for the covariate effect 3(t). West
 (1992) considered a special case of this type of prior for mod-
 eling time-varying hazards and covariate effects. West used a

 random walk structure for (hi,/3-) and suggested a method
 of Bayesian model selection. Several authors have provided

 heuristic motivation for the choice of the fixed grid of jump

 times {T1,...,.T k+T}. Kalbfleisch and Prentice (1973) recom-
 mended that these jump times be selected independently of

 the data. In an example using cancer mortality data, West
 (1992) suggested shorter intervals over the first few years of
 follow-up and longer intervals in subsequent years, the ratio-
 nale being that there were more failure times available in the

 early stages.

 A more complete Bayesian approach is obtained by putting

 a prior distribution on the jump times, achieving a dense sup-

 port for the prior. In the absence of covariates, Arjas and
 Gasbarra (1994) modeled ho(t) as a step function of the form
 (1.2) with k = oc, where the jump times r2 < r3 <... form a
 time homogeneous Poisson process and the levels of the haz-

 ard rate {hi, i > 1} form a first-order autoregressive process.
 Estimation of the predictive hazard and survival functions

 was carried out using a modification of the Gibbs sampler al-

 gorithm to allow jump times to be added or deleted during

 updating. Arjas and Heikkinen (1997) introduced a related
 Markov random field model for the (prior) intensity of a non-
 homogeneous Poisson process, but they did not study it in the
 survival analysis context and adjustment for covariate effects
 was not considered.

 In this article, the baseline hazard function and the covari-

 ate effects are modeled as independent stochastic processes,
 with sample paths taking the form of step functions. The lev-

 els of these step functions form a Markov random field, spec-

 ified by its local characteristics (componentwise conditional
 distributions). A pairwise dependency structure for adjacent
 values of the log-baseline hazard function and the covariate

 effects is developed. The models proposed by Arjas and Gas-
 barra (1994) and Gamerman (1991) essentially arise as special
 cases. Increasing, decreasing, or bath-tub shape assumptions

 on the trend of the hazard rate levels can be easily imple-
 mented in our approach. Features of the posterior distribu-

 tion will be calculated using the Metropolis-Hastings-Green
 (MHG) algorithm (Metropolis et al., 1953; Hastings, 1970;
 Green, 1995).

 The article is organized as follows. Section 2 describes the

 model for simple right-censored survival times with covariates.

 The Metropolis-Hastings-Green algorithm used for sampling

 from the posterior distribution of the parameter of interest

 is described in the Appendix. The analysis of the nasophar-

 ynx cancer survival data is presented in Section 3. Section 4

 contains concluding remarks.

 2. The Model

 Let T1, . . . , Tn be nonnegative independent random variables
 with associated p-dimensional covariate vectors zj, j 1,...,

 n. Assume that the data may be subject to right censor-

 ing, i.e., we observe (XI, 61, Z), ... , (Xn, Sn, Zn), where Xj =
 min(Tj, Uj), Uj is the censoring time for the jth individual
 and 6j = I{Tj < Uj }. Our Bayesian approach consists of
 putting a prior distribution on the unknown baseline hazard

 function and p covariate effects.

 The structure of the conditional hazard function is giv-

 en by

 00

 ht|Z) = kri < t < ri+i)hi exp(i) (2.1)

 where 0 = rT < T2 < T3 < ... is an increasing sequence of

 jump times, hi is a baseline hazard level, and {fli, i > 1} =
 (i .... pip) Q, i > 1} is a p-dimensional process describing
 the effect of the covariate z. Let Tmax = maxi<j<n Xj and
 denote Ai- log(hi). We assume

 (1) the jump times T2, T3.... form a time-homogeneous
 Poisson process with rate a;

 (2) given that there are m - 1 jumps in the interval [0,

 Trnax], (Al, A2,. . . Am) is a Gaussian Markov random
 field, with a nearest neighbor structure, specified by its

 local characteristics, Ak I {Ai, i : k} - N(Vk, ok).

 It can be shown that the conditional mean vk = E(Ak I

 {Ai, i :$ k}) is given by

 Pk = Ak + Sk(Ak-I - /k-1) + rk(Ak+l - /k+i),

 where the hyperparameters Pk = E(Ak) represent the trend

 in the levels of the log-baseline hazard function and Sk, rk are

 the influences of the left and right neighbors of Ak, respec-
 tively. The models proposed by Arjas and Gasbarra (1994)
 and Gamerman (1991) essentially arise as special cases: use

 a constant trend and let ri -) 0 and si -+ 1. The joint dis-
 tribution of A1,... , Am (given m fixed) is completely deter-
 mined by its local characteristics provided they satisfy the
 following consistency conditions: Sk, rk are nonnegative, with

 Sk + rk < 1, and rkuk+l = Sk+lk (cf., Besag and Kooper-

 berg, 1995). Now we specify Sk, rk, and ok, the aim being to
 force the corresponding baseline hazard function to be rela-

 tively smooth. Of the two neighbors of Ak, the one correspond-
 ing to the longer interval should have the greatest influence

 on its mean, Vk. We propose using

 (/\k + /k+l)C
 Ak-1 + 2\k + Ak+1

 (Ak-1 + Ak)c

 Ak-1 + 2Ak + Ak+l

 2 2u2

 Aik-1 + 2A\k + A\k+1
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 where Z\k = Tk+l - Tk is the gap between the kth and (k +
 l)st jump times, 2 < k < m - la2 > 0, and 0 < c < 1.

 The influence parameters rl, si, rm, sm at the boundaries are
 defined as above but identifying the endpoints Al and Am
 as neighbors. It is readily checked that the above consistency

 2
 conditions are satisfied in this case. Other choices of rk, Sk, Uk
 are also possible.

 Arjas and Heikkinen (1997) used the Voronoi tessellation of

 {Ti} to specify the jump times in their model for the intensity
 of a nonhomogeneous Poisson process. This is technically ap-

 pealing because of the one-to-one correspondence it induces

 between Ti,.... ,Tm and the log-intensity levels Al,...,Am.
 However, we prefer using {Tj} as the jump times to facilitate

 comparison with the survival analysis models of Arjas and

 Gasbarra (1994) and Gamerman (1991).

 Given m, the joint distribution of (Al, A2,... Am) is Gaus-
 sian with mean vector film and covariance matrix (I-C)jiM,
 where fim = (i-ti, -.-tm), C (Cij)l<ij<m, Cii+i =ri,

 cii-I = si, M = diag(a, 2 a2... ,a ), and I is the identity
 matrix.

 The hyperparameter ar controls the rate of jump times, (ik)

 is the trend in the log-baseline hazard function, c controls the

 nearest neighbor interaction, and a2 represents the precision
 of the prior information. Choosing a value of c close to one

 amounts to vague prior knowledge of the trend parameters

 ik. For example, if ik = -t for all k, then Vk = i(l - c) +
 SkAk-l + rkAk+l and the influence of i-t on Vk vanishes as
 c -+ 1. For simplicity of presentation, we restrict attention to

 the case ik = i-t, which indicates a constant prior level in the
 mean of the log-baseline hazard function.

 To complete the prior specification of h(t I z), we assume
 that, conditional on the first m - 1 jump times T2 .... , Tm in

 the interval (0,Tmax) and independently of hl,...,hm, the
 p covariate effects (Plk,/32k,... ,3mk),k =1,2,... ,p, are in-
 dependent and, for each k, (flk,fl2k,... ., 3mk) is a Gaussian
 Markov random field, specified by its local characteristics. The

 same expressions for the influences ri, Si and conditional vari-
 ances a 2 used to model the baseline hazard levels are adopted
 for each covariate effect. The resulting trend, nearest neighbor

 interaction, and precision of the prior information hyperpa-

 rameters are denoted by (iik), Ck, and a2, respectively. For
 k = 1,.. ,p and i 1,. .. m, let

 Wik = Zjk)

 { j:Ti <Xj <TFi? ,3j =1}

 with Tm+l = Tmix and Wi = (WilWi2, - - Wip) - We as-
 sume noninformative censoring, which implies (cf., Ander-
 sen et al., 1992, p. 150) that the likelihood is proportion-
 al to

 n n ( Xj

 l (h (Xj |I z)) ]7 Jl exp {- j h(s zj)ds}

 (m

 exp { (NiAi + /34Wi)
 i=l

 /}mxFn

 Denote by Ck the matrix of spatial dependency parameters

 for the Markov random field I3mk = (fk. ... /*3mk)) P mnk
 (/ulk) * ,bAmk) its mean value, Mk = diag(u . a 2
 Bk = (I - C)-1Mk the covariance matrix of I3mk for k =
 1,...,p, and let 13m = (/3m1,/3m2,... ,i3mp). The posterior
 density of the m(p + 2)-dimensional parameter (Tm, Am, 1m)

 is proportional the product of the prior and likelihood,

 m(l+P) 1
 2 2

 x exp {-2 (Am - )'A (Am - )
 2

 1 71 Bk 2 exp (I8mk - k) Bk (8mk A-mk)}
 k=1

 {m

 x exp {(NiAi +/3Wi)
 i-1

 'rmax n

 -j~ma [ I(Xj > s)h(s zj)1ds}

 where A = M-1 (I - C).

 We have devised a Metropolis-Hastings-Green sampler to

 extract features of the posterior distribution, such as the mean

 covariate effects and survival probabilities (conditional on the

 covariates) (see the Appendix).

 3. Case Study

 The class of priors we proposed in Section 2 is used here to

 analyze a data set of nasopharynx cancer patients presented

 in West (1987). In Section 3.1, we describe the data set and

 review some previous analyses. The hyperparameters control-

 ling the class of priors are given in Section 3.2. In Section

 3.3, we compare our estimates with West's. In Section 3.4,

 we compare the predictive hazard and survival function esti-

 mates.

 3.1 Data and Previous Models

 West (1987) studied data on 181 nasopharynx cancer patients
 whose cancer careers, culminating in either death (127 cases)

 or censoring (54 cases), are recorded to the nearest month,
 ranging from 1 to 177 months. A variety of covariates is

 available for each subject, none of which are viewed as subject

 to change during the career of the patient. As mentioned in

 West (1992), alternative analyses of the data and some further
 exploratory investigations serve to indicate the importance of

 a subset of the covariates in explaining the observed variation

 in survival times. The analyses we present here are based

 on five covariates: (1) sex of the patient (O for male, 1 for
 female); (2) age of the patient at time t = 0, the start of
 monitoring of the cancer career of that patient (standardized
 to have zero mean and unit standard deviation across all

 patients in the study); (3) dosel, an average measure of the
 extent of radiotherapy treatment to which the patient has

 been subjected (also standardized, as with age); (4) tumor,
 a measurement of the extent of the cancer (in terms of an
 estimate of the number of cancerous cells), taking value 1, 2,
 3, or 4; (5) tumor2, a measure similar to tumor, taken from a
 different X-ray section, again taking values 1, 2, 3, or 4. These

 tumor variables are measures of tumor growth at the start of
 monitoring and hence are proxies for tumor lifetime. Higher
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 Figure 1. Posterior mean estimates of the log-baseline hazard function and sex effect.

 levels of each are expected to be consistent with increased

 hazards.

 West (1992) analyzed the data with the above set of covari-

 ates using a random walk structure for the log-baseline hazard

 function and the covariate effects (hi, /i) and obtained the
 Bayes estimates shown on the left of Figures 1-3. We propose

 an analysis of this data set based on model (2.1), in which the

 log-baseline hazard and the five covariate effects are allowed

 to vary over time.

 3.2 Prior Specification

 The analysis reported in West (1992) required the discretiza-

 tion of the time axis into intervals, with endpoints at every

 eighth observed death; this gives 16 intervals, with endpoints

 3, 5, 7, 9, 10, 12, 13, 16, 19, 21, 25, 29, 35, 45, 60, and oc,

 the final interval including just 7 observed death times and

 26 censored times. The prior mean number of jump times of

 the time homogeneous Poisson process is taken as 10.

 To allow comparison with the initial priors chosen by

 West (1992), the trend parameters of the log-baseline hazard

 function, sex effect, age effect, dosel effect, tumor effect,
 and tumor2 effect are taken to be -3, 0, 0.5, -0.5, 0.5, and

 0.5, respectively. The precision of the prior information for

 the log-baseline hazard function is taken as a = 1.5 and

 ai = 0.15, i = 1,... , 5, for the five covariate effects. Finally,
 the nearest neighbor interaction hyperparameters for the log-
 baseline hazard function and the five covariate effects are all

 taken as 0.98.

 3.3 Comparison of Bayes Estimates

 The solid lines on the left sides of Figures 1-3 represent the

 estimated posterior mean log-baseline hazard function and the

 posterior mean effects of the five covariates obtained by West

 (1992). The dotted lines represent one posterior standard

 deviation above and below the posterior mean. The plots on

 the right-hand side represent the proposed estimates.

 Log-baseline hazard. The posterior mean log-baseline

 hazard function at the top right of Figure 1 appears to be

 stable for t < 60 months and is slightly below the one

 obtained by West (1992) (top left of Figure 1). However,

 a sharp decrease in our estimate of the log-baseline hazard

 function occurs at about 80 months and differs remarkably

 from to stable trajectory obtained by West. This may not be

 surprising since the number of observed deaths in the interval

 (60,177] is only seven, compared with 120 below 60 months.

 Note also the departure of the posterior mean from the

 constant prior trend parameter At =-3, indicating that the

 data is swamping the prior information about the mean. Thus,

 the sharp decrease at 80 months reflects a genuine feature of

 the data that is not discernible using West's approach. The

 posterior standard deviation curves we obtained are close to

 the ones obtained by West for t < 60 months but become

 much wider afterward. This is due to the nature of our prior

 process for the jump times, which tries to detect any temporal

 variation using a random number of jump times, whereas West

 is estimating a single parameter for t > 60 months.

 Sex effect. The posterior mean sex effect at the bottom
 right of Figure 1 has a similar pattern as the one obtained

 by West (1992) for t < 70 months (bottom left of Figure

 1). After 70 months, the sex effect we obtained increases to

 a maximum value of approximately -1.75, at around 100

 months, then decreases later on. This may not be surprising

 since there are two observed deaths for females at times 96
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 Figure 3. Posterior mean estimates of tumorl and tumor2 effects.

 and 98 months and none afterward. In any case, the posterior

 mean sex effects obtained by West and us are negative, indi-

 cating consistently lower hazard for female patients relative

 to males.

 Age effect. The posterior mean age effect at the top right

 of Figure 2 has a bath-tub shape for t < 60 months, similar

 to the one obtained by West (1992) (top left of Figure 2). But

 then the age effect we obtained decreases to a minimum value

 at around 100 months, then increases. Again, this is due to

 the two observed deaths at times 96 and 98 months. Both of
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 Figure 4. Predictive hazard functions across levels of tu-

 monl for a male patient; West's (1992) estimate (left), pro-

 posed estimate (right).

 these two patients have ages below average, with 0.853 and

 1.759 SD below the mean. The last observed death time is 163

 months, with age 0.829 SD above average, causing, perhaps,

 the age effect to increase. In any case, the posterior mean

 age effects are positive, indicating increased hazards for older

 patients.

 Dosel effect. The posterior mean dosel effect shown at the

 bottom right of Figure 2 appears stable, favoring values

 around -0.2 across time. The proposed estimate of the dosel

 effect is slightly below the one obtained by West (1992) (bot-

 tom left of Figure 2), overestimating the strength of treatment

 effect in reducing hazards. Again, in any case, the dosel effect

 is negative, indicating the beneficial nature of the treatment.

 Tumori effect. The posterior mean tumor effect shown at

 the top right of Figure 3 is higher than the one obtained by

 West (1992) (top left of Figure 3) for t < 60 months but with

 a similar trajectory. This implies higher hazard rates relative

 to West's estimate. After 60 months, a significant increase in

 this effect is observed, as opposed to a decay to around zero for

 West's model. West noted that this decay could be anticipated

 in qualitative form by examining those patients with observed

 death times exceeding 6 years; there are very few such patients

 and the death rates are apparently unrelated to the tumor

 variable. Our estimated tumor effect increases to a maximum

 value at around 100 months. Again, we examined the two

 observed death times at 96 and 98 months. The levels of the

 tumor variable for these two patients are high, 3 and 4 (recall

 that the possible values of tumor are 1, 2, 3, and 4). This,

 perhaps, explains the increased nature of this effect. The slight

 decrease of this effect after 100 months could be due to the

 last observed death times at 135 and 163 months. The tumor

 levels for both patients are 2.0.

 Tuxmor2 effect. The posterior mean tumor2 effect at the
 bottom right of Figure 3 shows a similar pattern with the one

 obtained by West (1992) (bottom left of Figure 3) for t < 60

 months, with much higher values between 40 and 60 months.

 But then a similar pattern with tumor effect is observed

 after 60 months, which again could be explained by the two

 observed death times at 96 and 98 months. The levels of tu-

 o

 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
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 Figure 5. Predictive survival functions across levels of tu-

 monl for a male patient; West's (1992) estimate (left), pro-

 posed estimate (right).

 mor2 for these two patients are both 3.0. The last observed

 death times at 135 and 163 months have tumor2 levels of

 3.0 and 1.0, respectively. The similar pattern of the posterior

 mean effects of tumor and tumor2 suggests that a correlated

 prior process for the two effects is more realistic. This will be
 investigated in future work.

 3.4 Predictive Hazard ard Survival Curves

 Consider a hypothetical male patient of average age with
 tumor2 level of 0 and treated with the average level of

 dosel thus, the corresponding values of the covariates sex,
 age, and dosel are all zero. The right-hand side of Figure 4

 shows our proposed predictive hazard estimates for such a

 patient across the levels of tumor variable, i.e., 0, 1, 2, 3,
 4; lower hazards correspond to lower levels of tumor. The

 corresponding estimates of West (1992) are shown on the left

 side of Figure 4. Our proposed estimates have a shape similar

 to West's estimates but with much lower values between 70

 and 155 months or so. Below 60 months, both estimates are

 quite close, and this is reflected by the estimated survival
 curves shown on Figure 5.

 4. Concluding Remarks

 We have proposed a nonparametric Bayesian approach to
 inference from right-censored survival data. Our approach

 allows the inclusion of prior information on trends in the

 baseline hazard function and the covariate effects. The class

 of prior distributionss more flexible than those of earlier

 approaches; it extends the model proposed by Arjas and
 Gasbarra (1994) by including covariate effects and is more

 general than the approach considered by Gamerman (1991) in

 the sense that (1) the choice of the jump times is not based on

 heuristic considerations and (2) Bayes estimates are not step

 functions so that no ad hoc smoothing procedure is required.

 Although we did not do so, it would be easy to extend our

 approach to provide automatic specification of the degree of
 smoothing by placing a prior on the hyperparameters and
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 having them estimated simultaneously along with the baseline

 hazard and covariate effects.

 Another advantage of our approach is the computational

 method used to extract features of the posterior distribution.

 The Metropolis-Hastings-Green algorithm we developed can

 be extended to handle time-dependent covariates, whereas it

 is not clear how that could be done for the dynamic version

 of the Gibbs sampler used by Arjas and Gasbarra. In our

 case, only minor changes in the acceptance probabilities of

 the Metropolis-Hastings-Green algorithm are needed.

 We have illustrated our methodology by giving an analysis

 of a nasopharynx cancer survival data set. The proposed class

 of prior processes defining our model was flexible enough

 to allow the detection of subtle features in the log-baseline

 hazard function and covariate effects; in particular, we found a

 sharp decrease in the log-baseline hazard function at a certain

 time point, which cannot be seen using previous approaches.

 In future work, it would be worthwhile to extend our
 approach to allow nonlinear covariate effects. For example,

 a one-dimensional covariate z could be replaced by a step

 function -y(z) having levels specified by a Gaussian Markov
 random field.
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 REPSUMEP

 Cet article introduit une approche bayesienne nouvelle pour
 lanalyse de donnees de survies avec censure 'a droite.
 Le taux de risque d'interet est modelise par un produit
 de processus stochastiques conditionnellement independents
 correspondent a (1) une fonction de risque de base (2) une
 fonction de regression qui represented influence temporelle
 des covariables. Ces processus ont des sauts a des instants
 qui constituent un processus de Poisson homogene dans le
 temps, et possedent une structure de dependance entre paires
 de valeurs adjacentes. Les deux processus sont supposes
 conditionnellement independents etant donnes les instants
 des sauts. Les caracteristiques de la distribution a posteriori,
 telles que les effets moyens des covariables et les probabilities
 de survies (conditionnelles aux covariables), sont evaluees au
 moyen d'un algorithms de Metropolis-Hastings-Green. Nous
 illustrons notre methodologie par une application portant sur
 des donnees de survie dans le cancer du rhino-pharynx.
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 APPENDIX

 Metropolis-Hastings-Green Algorithm

 To simplify the description of the algorithm, we assume that

 p = 2 and a constant trend in the covariate effects. The
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 extension to more than two covariates is straightforward. The

 procedure for calculating features of the posterior distribution

 of (rm, Am, fmi, fm2) (note that here m is random) consists

 of running a reversible Markov chain on the state space

 S = Ui> 1Si, where Si = Di x RP' and Di = (X1, X2, * xi)
 o = X1 < X2 < * < Xi < Tf max}, using the Metropolis-
 Hastings-Green algorithm. Suppose that the current state

 of the chain is (Tm, Am, /ml, fm2) C Sm and denote by

 (T/ ,Am/ y m /3m 2) C Sm/ the next state of the chain.
 When m' = m, the update can be done using the classical

 Metropolis-Hastings algorithm; otherwise, some adjustments

 in the transition kernels are needed when transitions are

 made between subspaces of different dimension. Green (1995)

 generalized the classical Metropolis-Hastings algorithm by

 preserving reversibility of the Markov chain when moving

 between subspaces of different dimension. To simplify the

 description of the algorithm, let x = (Tm, Am, v ml, v m2) and
 denote by ir the posterior distribution of the parameter. We

 will consider five transition kernels Pi (x, A), i = 1,... , 5, with
 corresponding state-dependent mixing probabilities Pi (X)

 satisfying S1 I Pi (x) = 1. Denote Qi (x, A) = pi (x)Pi (x, A).
 We also need five symmetric measures i (dx, dx') such that
 (i dominates 7r(dx)Qi (x, dx') for each i. Finally, let

 fi (XiX ir(dx)Qi(xdx')
 ~i (dx, dx')

 The Metropolis-Hastings-Green algorithm updates the

 current state x of the Markov chain as follows:

 (1) Select a proposal kernel Pi with probability Pi (x);

 (2) Generate x' from Pi(x, );

 (3) Accept x' with probability min{1, fi(x', x)/fi(x, x')};
 otherwise, stay at x.

 It can be shown that the resulting MHG transition kernel

 is reversible with respect to ir (see Green, 1995). In the

 context of our problem, transition from (Tm, Am,!3mI, 3m2)
 to a new point (4M, AImk, /m$/I,0mQ/2) is accomplished by
 randomly selecting one of five types of moves (H, HI, H2,
 B, D). H, HI, and H2 correspond to a change of height of
 a randomly selected level of the baseline hazard function,

 the first covariate effect, and the second covariate effect,

 respectively. Moves B and D correspond to birth and death

 of some jump time. Denote by pmj, Pm , Pim2, Pm)I and pm the
 probabilities of selecting the five different types of moves H,
 HI, H2, B, and D when the current state of the Markov chain

 is (Tm, Am). Note that N(Tmax) = #{i: Ti < Tniax} has
 a Poisson distribution with parameter alTmax. The choice of

 the state-dependent mixing probabilities will be similar to the

 ones chosen by Green (1995). We take

 { P(N(Tmax) m=i) }

 pm y min { 1 P(N(Tmax> m) f

 with pm + p~m = 7, where 7r is a sampler parameter and -y is
 completely determined by 7r. Finally, we set pl = 0 and take
 pHm = PH1 = PH2. When selecting a move of type H, H1, or
 H2, the acceptance probability is the same as in the classical

 Metropolis-Hastings algorithm,

 min{1, (likelihood ratio) x (prior ratio) x (proposal ratio)},

 whereas if moves of type B or D are selected, the current state

 (Tm, Am, /ml, /m2) is mapped onto (Tm,,vAm' v ,m'l v2) by
 a one-to-one transformation r. The acceptance probability
 then takes the form

 min{1, (likelihood ratio) x (prior ratio)

 x (proposal ratio) x J(T)},

 where J(r) is the Jacobian of the transformation r. A detailed

 description of the various transitions and expressions for the
 acceptance probabilities is given below.

 Let

 S(Tl, T2, T3,'T4) = E (Xj -Tl) exp(T3zjl +T4Zj2)
 T 71 <Xj < 72

 + (T2-T1 ) E exp(T3zjl +T4Zj2).
 j: Xj > r2

 Move of type H. An index k is uniformly selected from

 {1, 2,..., m} and V is generated uniformly in the interval
 (-6,6), where 6 is a sampler parameter. The proposed new
 level for the log-baseline hazard rate is A' Ak + V.
 The proposed new point is ('TmxAm, mQlv|mQ2) with TM
 TmI3Mrl = Om 1,/rm2 = Om2, and A/ = Ai for i :A k.

 The likelihood ratio is

 exp {Nk (A -Ak ) + (ek _e k)S(Tk, Tk 1 v3klv/3k2)}

 The prior ratio is

 expf-ODH(A,M,uAmAv A) /2},
 where

 DH(A, t, Am, A) =akk(Ak -Ak)(Ak + A -2)
 ? 2akk-1(Ak-1 - )(Ak - Ak)

 ? 2akk+l (Ak+1 - M) (A' - Ak)

 The proposal ratio is one by symmetry of the proposal
 density.

 Move of type HI. An index k is uniformly selected from
 {1, 2,... , m} and V is generated uniformly in the interval

 (-6i6i), where 61 is a sampler parameter. The proposed

 new level for the first covariate effect is Qkl A kI + V.
 The proposed new point is (TIm A/, '3l 2) with Tm
 Tm, IA' = Am, Om2 = Om2, and Oil = Oil for i 7 k.

 The likelihood ratio is

 exp {Wk11 (k 1-Okl)

 - e_ Ak [S(,k,,Tk+,lk2)-S(TkTk+l?/kl/k2)]}

 The prior ratio is

 expf "H (Bl, M,1 O ml , Om'2)/21.

 The proposal ratio is one by symmetry of the proposal
 density. Similar expressions hold for moves of type H2.
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