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Abstract

Median regression analysis has robustness properties which make it an attractive
alternative to regression based on the mean. In this paper, the missing information
principle is applied to a right-censored version of the median regression model, lead-
ing to a new estimator for the regression parameters. Our approach adapts Efron’s
derivation of self-consistency for the Kaplan—Meier estimator to the context of median
regression; we replace the least absolute deviation estimating function by its (esti-
mated) conditional expectation given the data. The new estimator is shown to be
asymptotically equivalent to an ad hoc estimator introduced by Ying, Jung and Wei,
and to have improved moderate-sample performance in simulation studies.

Key words: Least absolute deviation, martingale, heteroscedasticity, counting processes,
kernel conditional Kaplan—Meier estimator, Cox proportional hazards.

1 Introduction

In survival analysis it is frequently of interest to estimate median life length at given
covariate levels. In this paper we consider a right-censored version of the median regression
model in which the median is specified as a linear function of covariates.

Median regression offers an appealing alternative to the popular Cox proportional hazards
(PH) and accelerated failure time (AFT) approaches to survival analysis, with robustness and
ease of interpretation being the principal benefits. Extracting information on median survival
from PH and AFT analyses is complicated; for PH models, bootstrap techniques are needed
(Burr and Doss, 1993); for AFT models, it is not possible to estimate the intercept parameter
effectively in the presence of right censoring (Meier, 1975). In median regression, on the



other hand, information about median life length is directly available once the regression
parameters are estimated.

We study the problem of fitting a heteroscedastic median regression model from right-
censored data. Let T" be the response of interest, Z a p+ 1 dimensional covariate whose first
component is taken to be 1, and suppose

T = ['Z+e, (1.1)

where 3 is an unknown vector of regression parameters. The joint distribution of the obser-
vation error € and the covariate Z is unknown, but the conditional median of € given Z is
known to be 0. The statistical problem is to estimate the true value of § based on a random
sample of observations from the distribution of (X, §, Z), where X = T'AC, C is a censoring
variable, and 6 = I(X = T). It is assumed that T and C are conditionally independent
given Z.

This median regression model for censored data was developed by Ying, Jung and Wei
(1995), henceforth YJW, who proposed an ad hoc estimator for the regression parameter (3
under the assumption that C is independent of 7, or that Z takes discrete values. In earlier
work, Newey and Powell (1990) found an efficient estimator for 5 in the special case in which
C is always observed. Robins (1996) developed an extension of the model to allow surrogate
marker information, and constructed locally efficent estimators at a parametric submodel.
For uncensored data, Jung (1996) obtained an efficient estimating function for the median
regression parameters based on quasi-likelihood. Recently, Yang (1999) considered the case
in which the observation error € is independent of 7, and constructed relatively simple
estimators in this case.

We propose a new estimator for the regression parameter  for the general case in which
the censoring C' and the observation error € can depend nonparametrically on the covariate.
The idea is to replace the least absolute deviation (LAD) estimating function, which is
not available in the censored data context, by its (estimated) conditional expectation given
the observed data. Our approach is an application of the missing information principle
of Orchard and Woodbury (1972), see also Laird (1985). The missing information principle
(MIP) gives a heuristic strategy for constructing estimators in missing data problems: replace
a full-data estimating function or estimator by its estimated conditional expectation given
the observed data. When applied to a parametric score function, the MIP amounts to a
single iteration of the EM-algorithm (Dempster et al., 1977).

For estimation of a survival function from right censored data, application of the MIP pro-
duces an asymptotically efficient nonparametric maximum likelihood estimator (NPMLE)—
the Kaplan—Meier estimator. Indeed, the conditional expectation of the full-data empiri-
cal distribution function given the observed data produces Efron’s (1967) self-consistency
equation which has the Kaplan-Meier estimator as a unique solution; iterations of the
self-consistency equation form an EM-algorithm. For general missing data problems, ev-
ery NPMLE of the full-data distribution is self-consistent, and, conversely, there exists a
self-consistent estimator which is a NPMLE, see Tsai and Crowley (1985) and Gill (1989).
A self-consistency equation may have a wide class of solutions, some of which may be in-



consistent; in some cases iteration is needed to solve the equation, e.g., for interval censored
data, see Groeneboom and Wellner (1992). The MIP has been discussed in the context of
the accelerated failure time model by Lai and Ying (1994).

In the present setting, application of the MIP leads to an estimating equation which
involves the conditional distribution function of 7' given 7, and in general this function
would need to be estimated nonparametrically. To avoid the curse of dimensionality, we shall
restrict attention to discrete covariates, or assume a Cox PH model for the conditional hazard
function of T' given Z. For discrete covariates, we show that our estimator is consistent,
asymptotically normal, and asymptotically equivalent to YJW’s estimator. We compare
the moderate-sample performance of the two estimators via simulation, and show that our
estimator offers considerable improvements.

The paper is organized as follows. In Section 2 we introduce the proposed estimator of
the median regression parameter 3. In Section 3, we present our numerical results. The
asymptotic properties are described in Section 4. In Section 4.1, we state the theorem on
the asymptotic consistency and asymptotic normality of the proposed estimator. A proof of
the theorem is given in the Appendix following Section 4. In Section 4.2, we show that the
ad hoc estimator of YJW is asymptotically equivalent to our estimator based on the MIP.

2 Proposed estimating equation

In this Section, we recall YJW’s estimating function and introduce the proposed alter-
native based on an application of the MIP. Throughout the paper, (X;, 6, Z;),i = 1,...,n
denotes a random sample of observations from (X, §, Z) under the model (1.1).

For uncensored data, the LAD estimator of 3 is obtained by minimizing Y1 ; |T; — 8'Zi],
or by solving the LAD estimating equation

n 1

> (I(Z; > 03'Z;) — —) Z; = 0. (2.1)

=1 2

A “root” of this estimating equation is a minimizer of the Euclidean norm of the estimating
function. For censored data, under the assumption that C' and Z are independent, YJW
proposed the following adjusted estimating equation:

I(Xi25lzi)_l> Zi ~ 0 2.2
> (T2t -5)z ~ o (2.2)

where G is the Kaplan—Meier estimator of (G, the survival function of C'. The rationale given
by YJW for this estimating equation is that (X > §{Z) has expectation G(3,Z)/2, where
0o 1s the true value of 3. When the censoring is dependent on the covariate 7, and Z takes
only finitely many values, YJW instead proposed the estimating function

v = (IXi > P8'Z) 1Y
5:00) = <—@( i 2) z, (2.3
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where é(t, z) is the local Kaplan-Meier estimator of G(t,z) = P(C > t|Z = z), the condi-
tional survival function of C given 7.

Our approach is to apply the MIP to the uncensored LAD estimating equation (2.1). The
idea is to replace the unobservable I(T; > ('Z;) by an estimate of its conditional expectation
given the data. It can be shown that (cf. Efron (1967), p. 840, equation (7.4))

F(B'Z;, Z;)

+ (1 —6;)1(X; < ﬁ'Zi)m,

where F(t,z) = P(T > t|Z = z) is the conditional survival function of T' given Z.
The new estimating equation has the form

n
=1

where F; is an estimate of E;. The function F in (2.4) is unknown and needs to be estimated
nonparametrically or semiparametrically by an appropriate estimator F. If Z takes only
finitely many values, we suggest estimating F'(¢, z) by the local Kaplan-Meier estimator; this
case is considered in detail in Section 4. For a one-dimensional covariate (p = 1), Dabrowska’s
(1989) kernel conditional Kaplan—Meier estimator can be used to estimate F(¢,z) nonpara-
metrically. For p > 3, we recommend a Cox PH model based estimate of F', see Andersen et
al. (1993, p.509); this estimator of F' is used in the numerical examples in the next section.
We arrive at the estimating function

D) 7

5.0) = 3 ({rxzpz)+ oz

and define ﬁA to be a minimizer of the Euclidean norm of S, ().

It is difficult to estimate F' nonparametrically because of the curse of dimensionality.
This is a common problem with estimation in high dimensions—the higher the dimension
the more spread apart are the data points, and the larger the data set required for a sensible
analysis. For that reason we recommend using a Cox PH model to estimate F' when p > 3.
This creates a potential conflict with the median regression model because the conditional
median under the Cox PH model is not necessarily a linear function of Z, so B may be
inconsistent if the Cox PH model is misspecified. Nevertheless, the conditional median is
a smooth function of 5'Z, where [ is the PH model regression parameter (under the mild
condition that the baseline hazard function of the PH model is positive everywhere). The
median regression model therefore appears as the first step in a Taylor series approximation
to the median of the Cox PH model. In Section 3 we find that this approximation is adequate
in simulations; use of a Cox PH model for F' apparently has no detrimental effect on the
performance of ﬁ

In general, YJW'’s estimator requires the conditional survival function G of C' given Z
to be estimated nonparametrically, so the curse of dimensionality is unavoidable there as
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well. YJW focused on the case that the censoring is independent of the covariate, but this
assumption is too strong for most survival analysis applications. A less restrictive approach
is to use a Cox PH model based estimate for G this is the version of YJW’s estimator we
use for comparison with the proposed estimator in the next section.

Theoretical results obtained in Section 4 show that the two estimators are asymptotically
equivalent in the case of discrete covariates. The choice of which estimator to use should
therefore primarily be based on a comparison of their moderate-sample performance. In
practice, when dealing with high-dimensional covariates, the adequacy of the Cox PH model
based estimates of F' and G should also be taken into consideration.

Robins (1996) addressed the curse of dimensionality by assuming (1) a parametric model
for the conditional distribution of € given Z, and (2) a Cox PH model for the conditional dis-
tribution of C' given Z. His estimator is asymptotically efficient under (1) and (2), remains
consistent if the model in (1) is misspecified, but is inconsistent if the model in (2) is mis-
specified. Robins was able to use high-dimensional surrogate marker information to further
increase estimator efficiency, but his approach appears difficult to implement in practice.
Yang (1999) avoided the curse of dimensionality by restricting attention to the homoscedas-
tic case in which the observation error € is independent of Z (so the covariate only influences
the survival time though its median), and found relatively simple ad hoc estimators of the
regression parameters in that case.

3 Numerical results

In this section we report some simulation results comparing the moderate-sample perfor-
mance of the proposed estimator to that of YJW’s estimator. Throughout, Cox PH models
are used to estimate both F' and G, as discussed above. We consider three scenarios for the
simulation model:

1. The conditional hazard function of T' given Z follows a Cox PH model, but the con-
ditional hazard of C' given Z is misspecified, i.e., departs significantly from a Cox PH
model.

2. The conditional hazard function of T given Z is misspecified but the conditional hazard
of C' given Z follows a Cox PH model.

3. The conditional hazard functions of 7" and C' given Z are both misspecified.

In each simulation example we used Z = (1,Z2)", with Z, uniformly distributed on
[1,2]. The means and root mean squared errors (RMSE) of the estimators are based on
10,000 Monte Carlo replications at a given sample size. A grid search over the rectangle
(—2,2) x (—1,3) was used to locate the solution of each estimating equation.

For scenario 1, the conditional distribution of T" was taken to be exponential with param-
eter log(2)/zz. This gives a median regression model (the conditional median of T given Z is
Bz where 3y = (0,1)"), and also a Cox PH model (with covariate log 22, regression parameter



—1, and baseline hazard log(2)). The conditional hazard function of C' given Z was specified
as A.(t|z2) = 0.25m(z2) where m(z) = min(z, 3 — z), which is a strong departure from a Cox
PH model. The factor 0.25 was used to calibrate the censoring rate at about 40%. The Cox
PH model based-estimates for F' and G both used log 25 as the covariate. From the results
in Table 1, we see that the bias in the YJW estimator is large. The proposed estimator has
negligible bias and lower RMSE.

Table 1. Comparison between the proposed estimator and YJW'’s estimator. T|Z ~
exponential(log(2)/z2), and A.(t|z2) = 0.25m(z3). The true value of the intercept is 0,
and the true value of the slope is 1. Sample size is 100 and censoring rate is about 40%.

FEstimator Intercept Slope

Mean RMSE | Mean RMSE
Proposed | 0.0184 1.0146 | 1.0038 0.7265
Ying et al. | —0.1137 1.0800 | 1.1098 0.7898

For scenario 2, the conditional distribution of the failure time 7" was taken as either
N(z2,0.5), or z5 + U, where U is uniform on the interval [—0.5,0.5]. In each case we have
a median regression model with true value of 5, = (0,1)’, but departure from a Cox PH
model. A Cox PH model was used for the censoring: A.(t|z2) = 0.25z9, which is a Cox PH
model with covariate log 25, regression parameter 1, and baseline hazard 0.25. As before, the
factor 0.25 was used to calibrate the censoring rate at about 40%. The results in Table 2
show that, despite misspecification, the proposed estimator outperforms the YJW estimator
in terms of having lower RMSE. The bias in the proposed estimator is lower in one case and
slightly more in the other case.

Table 2. Comparison between the proposed estimator and YJW’s estimator. The distri-
bution of T given Z is misspecified, but distribution of C' given Z is specified correctly by
a Cox PH model. The true value of the intercept is 0, and the true value of the slope is 1.
Sample size is 100 and censoring rate about 40%.

Simulation Estimator Intercept Slope
model Mean RMSE | Mean RMSE
T|Z ~ N(22,0.5) | Proposed | 0.0015 0.5441 | 1.0038 0.3644
Ac(t|z2) = 0.2525 | Ying et al. | —0.0375 0.6643 | 1.0402 0.4538

T\Z ~ 2+ U Proposed 0.0035 0.2990 | 0.9793 0.2004
Ao(t]z2) = 0.2525 | Ying et al. | —0.0108 0.3732 | 1.0135 0.2518

We also considered the examples of Table 2 with increased sample size, n = 200, see
Table 3. The proposed estimator still has lower RMSE than the YJW estimator, but its bias
is considerably more than YJW’s in the second example.



Table 3. Comparison between the proposed estimator and YJW’s estimator. Distribution
of T given Z misspecified, but distribution of C given Z specified correctly by a Cox PH
model. The true value of the intercept is 0, and the true value of the slope is 1. Sample size
is 200 and censoring rate about 40%.

Simulation Estimator Intercept Slope
model type Mean  RMSE | Mean RMSE
T|Z ~ N(z2,0.5) | Proposed | —0.0256 0.4001 | 1.0248 0.2707
Ao(t]z2) = 0.2525 | Ying et al. | —0.0303 0.4724 | 1.0312 0.3229

T\Z ~ 20+ U Proposed | —0.0528 0.2486 | 1.0618 0.1827
Ac(t|z2) = 0.2525 | Ying et al. | —0.0096 0.2788 | 1.0103 0.1874

We next considered five different examples for scenario 3, see Table 4. The failure time
was taken as uniform or normal. The censoring time was taken as uniform, normal, or with
hazard m(z;)/4; Cox PH models are misspecified in each case. The proposed estimator
outperformed the YJW estimator in all these examples.

Table 4. Comparison between the proposed estimator and YJW’s estimator. Conditional
distributions of T" given Z and of C given Z are both misspecified. The true value of the
intercept is 0, and the true value of the slope is 1. Sample size is 100 and the censoring rate
is about 40%.

Simulation Estimator Intercept Slope
model Mean RMSE | Mean RMSE
T\Z ~ 20+ U Proposed | —0.0158 0.2992 | 1.0189 0.2065

Ao(t]z2) = 0.25m(22) | Ying et al. | —0.0110 0.3434 | 1.0087 0.2264

T[Z ~ 23(2U + 1) | Proposed | —0.0518 0.7385 | 1.0342 0.5249
Ao(t|22) = 0.25m(22) | Ying et al. | —0.0659 0.8563 | 1.0519 0.6146

T|Z ~ z(2U + 1) Proposed | —0.0012 0.9309 | 1.0301 0.6943
ClZ ~ 204+ U Ying et al. | —0.2070 1.0325 | 1.1444 0.7464

T|Z ~ 252U + 1) | Proposed | 0.0395 0.7982 | 0.9692 0.5539
C|Z ~ N(25,0.5) | Yinget al. | 0.0505 0.4245 | 0.9853 0.2686

T\Z ~ 20+ U Proposed | —0.0328 0.3057 | 1.0066 0.2075
C|Z ~ N(z2,0.5) Ying et al. | 0.0505  0.4245 | 0.9853 0.2686

Finally we considered examples 1 and 2 of Table 4, but with higher censoring rates, see
Table 5. The first example has censoring rate about 55%, the second about 75%. In both
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cases, the YJW estimator has lower RMSE than the proposed estimator. Note, however,
that the YJW estimator has a much higher bias than the proposed estimator in the second
example. It appears that neither estimator performs well under high censoring rates.

Table 5. Comparison between the proposed estimator and YJW’s estimator. Conditional
distributions of 7' given Z and of C' given Z are both misspecified. The true value of the
intercept is 0, and the true value of the slope is 1. Sample size is 100. Censoring rate is
about 55% for example 1, and about 75% for example 2.

Simulation Estimator Intercept Slope
model Mean RMSE | Mean RMSE
T\Z ~ 20+ U Proposed | —0.0432 0.3655 | 1.0576 0.2828

Ao(t|z2) = 0.5m(22) | Ying et al. | —0.0152 0.4146 | 1.0113 0.2768

T|Z ~ z(2U + 1) Proposed 0.3905 1.2056 | 0.7579 0.8841
Ao(t]z2) = 1.33m(z2) | Ying et al. | 0.4058  1.1534 | 0.5793 0.8571

4 Large sample results

We shall assume that the true value G, of 8 is in the interior of a bounded convex region D.
In addition, we will need the following conditions (cf. YJW, Appendix A):

1. The covariate vector Z is bounded, say ||Z|| < L, where || - || is Euclidean norm.

2. For § € D, there exists a constant ¢; such that P(X > t1|Z) > 0 and 5'Z < ¢, with
probability 1.

3. The derivatives f(t,z) and g(t, z) respectively, of —F(t, z) and —G(t, z), with respect
to t are uniformly bounded in (¢,z) € (—o0,t1] X [=L, L]. The conditional survival
function of T', namely F(t,z), is bounded away from zero over the region (—oo,#;] X

L, L.

4. The matrix F[ZZ'f(0|Z)] is positive definite, where f(t|z) = f(t + 5)z, z) is the con-
ditional density of e =T — (3 Z given Z = z.

For simplicity we only consider the large sample properties of ﬁA in the case that Z
takes finitely many values. Denote the possible values of 7 by 2z, £ = 1,..., K, and
assume each occurs with positive probability. Let n; denote the number of 7;,; = 1,... n,
taking the value zj,. Rewrite the sample (X;,6;,7;),i =1,...,n as (X;,0;%),5 = 1,...,ng,
for k = 1,..., K, where (X, ;) corresponds to (X;,8;) with covariate Z; having the
value 2. Let F(t,2) be the (local) Kaplan-Meier estimator based on the pairs (X, 6,1),
j = 1, ey ML



We will find it convenient to introduce some counting process notation. Let N]“A(t) =

I X <t 05 = 1), N5 (t) = [(X,L <t 0 = 0), Yi(t) = (X > t), Mj(t) = Nj(t) —

J A%(s)Y;r(s) ds, and Mg(t) = Nj(t) — J5 A6(s)Y;i(s) ds, where AY(s) and Af(s) are the
hazard functlons of T}y, and Cik, respectlvely Let My = Y55 My, M§, = 375 Mg,
= 375, Yji. Note that Y(¢ )/ ne—syi(t) = P(X; > t|Z; = 2), uniformly in ¢ > 0. Also,

denote H(t z) =1-G(t,2).

4.1 Consistency and asymptotic normality

Theorem 1 Under conditions 1-4, the estimatorﬁ 1s consistent and asymptotically normal:
nt/? (@—60) 2 N(0,A'T(A™Y)), where A = —E[ZZ'f(0|1Z)] and T is the covariance
matriz of T, given in (A.14).

The proof of Theorem 1, given in the Appendix, is based on YJW’s approach in proving
asymptotic normality of their estimator. Note that the estimating function S, (5) is dis-
continuous and non-monotone. As such, neither the usual Taylor expansion method, often
used in analyzing a maximum likelihood estimator, nor a contiguity argument can be used.
Therefore, for proving the asymptotic normality, we first establish local linearity of S,, in
the n~1/? neighborhood of B;. Next we show asymptotic normality of n~!/25,(8;). The
asymptotic normality of ﬁA then follows from these two results.

4.2 Asymptotic equivalence of the proposed and YJW estimators

From Theorem 1, we see that the asymptotic covariance matrix of \/ﬁ(ﬁA — fBy)is A7Ir AL
In this Section, we further show that YJW'’s estimator 3*, defined as a minimizer of I1SE(B)]],
is asymptotically equivalent to our estimator based on the MIP. We state this result in the
following theorem.

Theorem 2 Under conditions 1-4, 3 and 3* are asymptotically equivalent: HB — ﬁA*H =
op(n~1/?).

Proof.  Using the local linearity of n 1/25,1(@)) (cf. Appendix A.2) and n=12S8*(By) (cf.
Appendix C of YIW), and the facts n 1/25,1([3) = 0,(1), and n~Y/2S*(3*) = 0,(1), we have
\/EA(B - 50) — _nil/QSn(ﬁU) + O]?(l)

\/EA(ﬁ ﬁ(]) — _nil/gs;;(ﬁ(]) + 017(1)7

where the matrix A = —E[Z7Z'f(0]Z)] is the same under both estimation procedures. Tt is

sufficient to show that ’nfl/Q(Sn(ﬁ(J) — S;;(ﬂ“))i() as n — oc.
First, we give some useful identities for completing the proof. Note that A} + A{ is the
hazard function of X;;, = min(T}, C;;). It follows that

[ ) L Gl 2 (41)

e () e )T GGk ) /2

9

~
*




From

/ﬂéz’“ dMji(s) /532’“ dN7,(s) _ /*33” A (3) (X > 5)

B s
J—oo yk(S) J—oc yl( ) J e yk(s)
— ( ik < 504, ik = 0) /ﬁ(’]zk/\Xjk )‘Z(S) o
yi(Xn) s ur(s)
we have,
/‘/3621« dM]“I.(S) + dek(S) _ ](Xjk < ﬁ(']zk) _ /-ﬂ{,zk/\Xjk M .
—0 yk(s) y],(X]k) J—ac yk(s)
I(Xje < Bhm) 1= ylBhz A Xja)
yi(X;) ue(Bhze A Xji)

= 17G(ﬁ/zk-zk 2 . ,
~ Gz T Xk 2 oz

[(Xjx > Byzr)

- 4.2
GBhon 1) 2 42
From (2.3), we note that

TNTTIR = PO ( (I]Zka Zk) - G(ﬁE'Zk,Zk)
15=1 (ﬁ(lzl,;zl\) 2 G(ﬁézk,zk)G(ﬁézk’zk)
( 02k 21) — G(Byzi, 21)

é(ﬁ()zk, 21)G(Bo 2, 21)

K ny X > IZ 1
n 50 Z [ L ﬁo L) P(X//s Z ﬁ[/]’zk)

_|_

(P(Xji > Bozr) — T(Xjn = Byzr))|,
and as n — oo,

K QB z) — G(Bhzn, 21) &
2y, Gk 2) V2 PR SN P(X e > Bha) — T(X e > Bhan)) -0,
Z C(B) 2k, 24) (B 2k, 24 Z me mer

Using a martingale representation for (G — G)/G (cf. Gill (1980)), we have

K ng

Y3 [ (X > Boz) 1 G(Byzr, 24) — G(Byzr, 1)
k=1j=1 OA'k’ ~k) 2 G(ﬁ(llzl‘u Zl\‘)G(ﬁ(’)zka Zk)

_ i - [M )k [ MOy
1 G(ﬁ(l)zkazk) 2 > yk( ) ]
ﬂ(’)zk sz(S)

12 S wls)

P(Xji > Boz) | + 0p(n'?)

2

T 0,(n*1?), (4.3)

where the last equality is obtained by using (4.2).
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Now, from (4.3) and (A.13), we have

R o ioK'“ (X < Bher, 6 =0) 1
s s = S {2 e TS0 ).

k=17=1

+_Z',
2" wils)

1 Bo = 2k
/ k G(57 k) dMI”]‘(S)}‘FOp(]-)

Noting that G(s, z1.)/yr(s) = 1/F(s, z1), we have

/ﬂézk G(s, z1) dM(s) = I(Xjx < Bozr, 6 = 1) B /'ﬂ{’zk/\xj’k AR(s) ds
ik

16 F(Xjx, 21) oo F(s, 21)
(X < Byzr, bip = 1) B ( 1 B 1)
F(Xjk, 2k) F((Boze) N Xjks 21)
—2+1 if X1 > Bz
= Q0 I(X;x<Blzd,,=1)
v JI;’ﬂ(Xj.lf-,Zk)L - F(X]l 2k) +1E X < fyz
—1 if Xjp > Byzi
- I(Xj7‘7<,6’6z7,5]‘, :0) .
N }'(Xj.:-,zk)k +1 if Xj; < ﬁ(']zk

Thus, nY/2(S,(6) — S(B)) = 0,(1) and § — §* = o,(n 1/2). The two estimators are
asymptotically equivalent. O

4.3 Some remarks

For the discrete case, let a; = P(Z = 2;,) = lim,,_,oc(ny/n). Then, A = — K | apzi2, £(0]21).
From (4.3), the asymptotic covariance matrix of n=1/25%(8,) is

f: z;zk Boze Nit(s)

2 ] %) ds. (4.4)

Thus, the asymptotic covariance matrix of \/ﬁ(ﬁ* — fy) is given by

e M(s)
—oe Yr(S)

(éakzkziv,f(ozk» (LX;CLAZLZL ! ds) (éakzkzztf(mzk))l, (4.5)

which, by the asymptotic equivalence ofﬁA to E*, is also the asymptotic covariance matrix of

V(8 — Bo).
In the one sample case, i.e., K = 1, the expression given by (4.4) is equal to
Boz1 A’l’(s)

— ds.
4 J—oc y(S)
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Thus, the asymptotic variance of \/ﬁ(ﬁA — fp) and \/ﬁ(ﬁAx — 0p) is equal to

r 1 /‘ﬂnzl Xf(s)d
P )~ o)

which is the well-known result on the asymptotic variance of the median divided by 2%; see
for example, Doss and Gill (1992).

Finally, for the independent case where censoring distribution does not depend on co-
variates, we point out that YJW’s formula (A.3) and the first display following it have a
wrong sign. We now make this point for the discrete case. Let Y;(t) = I(X, > t), M*(t) =

" (I(X < 1,8, = 0) — [ N(3)Yi(s)ds), V() = T, Yift) and y(t) = lim, . Y(t)/n,
and let é, G, Q) and ¢ be defined as in YJW’s paper. Note that the following martingale
representation for G — G holds:

?

G(t) - (1) = G [ CAMAS) | iy,

—eo Y(8)
We have
™ G~ G L dMe(s) TS
[~ Goca 1ew = /m@@)/x o) 100 +oy(n'”)
- _n e 1 > dQ(t) (o) 4 o (/2
= =/ v5/ G M)+ apln'”)
Since
/'(>C dQ(t) _ n,li I(s < BoZ; < X;)Z, o i I(s < BoZ; < X,)Z; + 0,(1)
s é(t) i—1 é(ﬁuzz') i—1 G(BoZ:) g
P L BBz > 521 = %q(s),
we have
n mé(t)_Gt) ! OO@ °(s) + o, (nt/?
[ Scw W 3 | M) e,
and
_1/ZS (ﬂU) — —1/2§; [I()é(;]gi))ZJ . %} ZZ %n—l/Q /;O:c %dMC(S) + Op(l).
Appendix
A.1 Consistency of [3
Define
S.(8) = i(F(ﬁ’Zi,Zi) —1/2) Z. (A.1)

i=1
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It is easy to see that

5u(8) = XA P(X, 2§22 + P(Ci < 82 Z)F(8'7:,2) — 1/2} 7.

i—1
Following the arguments in YJW (Appendix A), we first establish that supg, p, In"1S,.(8) —
nilgn(ﬁ)ﬂiﬂ] We may write

n

Su(B) = Su(B) = Y (I (Xi>pZ)— P(X; > B'Z|2)) Z;
=1
4 Cwy o E(8Z, %)
+ ; ([(X, < B'Z;,0; = 0) F(Xi, 7)

— P(Cs < 877 F(B' 7, Z,;)) Z.

By some elementary probability arguments, the first summation above is 0(n1/2+€) a.s., as
n — oo, uniformly in 3 € D, for every € > 0.
With probability 1, the second summation is equal to
n [(X1 < ﬁIZi,(Sj = 0)

; ﬁ*(X“ 7)) (F(6'Z;, ;) — F(B'Z;, Z;)) Z;

+ zl r( 7, 7)1 ;(i zza) =) e, < gy
-SSR bt - r st

FL A% < 2 =0 ﬁ(xt, Z) F(Xt, 77)%
+§¥W”%Zﬂm&;gi%;m)Aﬂa<ﬂzwﬂz_

The first two summations are both o(n!/?*¢) a.s., as n — oo, uniformly in 3 € D. For the
third term, note that

R e e R e
:Ef“kﬁ§g<TW}—/fﬁ%%%ﬁﬁmz) (A.2)
— P(C < §'2|2),

where H(t,z) = P(C < t|z) and the intergration is with respect to ¢. Thus, the third term
is o(n'/?7¢) a.s., as n — oo, uniformly for 3 € D. Hence,

sup [n715,(3) = 15, (8)] % ofn 112+ 250, (A3

13



Since the matrix E[ZZ'f(0|7)] is positive definite, we have

n

8 n
Au(B) = nflﬁsn(ﬁ) =—n"'> f(8'Z, 2)2:Z = —n D> f((B = Bo) Zi| Z:) Z: 2] (A4)
-1 i=1

is nonpositive definite and, with probability 1, A, (5y) — E[ZZ f(0]2)], which is negative
definite. Because S,(8y) = 0, it follows that the sequence n~'S,(6) is bounded away from
zero a.s. for any § # [By. From (A.3), we have n~ 13, (ﬁ)—>0 Hence, ﬁ—>ﬁ0 as n — oo.
Furthermore since n 1HS (B)|| = o(n~1/*t), from the expansion n’lsn (6) —n1S,(B) =

(ﬁ)(ﬁ ﬁo) where (3 is on the line segment between § and 3, we have Hﬁ Boll =
O( 71/2+6)' 0

A.2 Local linearity of S,,(3)
Let A= —FE[ZZ'f(0|Z)]. Aswe have seen in the previous subsection, A is the limit of A,,(5;).
Local linearity for S,,(3) means that for any fixed constant ¢ and all 3 in ||8 — Go|| < en™1/3,

Su(B) = Su(Bo) +nA(B — By) + 0, (max(n'/,n[|8 — By]])) - (A.5)

Asymptotic normality of B in any n~'/3-neighborhood of 3, follows from (A.5) and asymp-
totic normality of n~1/2S, (Bo) (shown in the next subsection).

n

Sn(B) — Sn(Bo) = Z: (I(Xs > B'Z) — 1(Xi > By Zi) Z

; _ o002, 2) L w5 o FBZ0 201,
+2;[ (X <8128 = 0) (78— 1 < 26 = 0) 7 (| 2 (A6

The second summation in (A.6) is equal to

n Z .

2.

p W{ (Xs < 6'Z:,6 = O)[F(5' 25, Z) — F(0'Zs, Z:)]

—I(X; < 56th, 6 = 0)[F(56Zi, Z;) — F(ﬁf)Zn Z;)]
+I1(X; < 3'Z;,6, =0)F(8'Z,, Z;) — I(X; < B, Z;,0; = 0)F (B, Z;, th)}

n Z
= {F(i (Xi < 8'Z;,6, =0)

= F(Xi, Z)

X [(F(6'Z:, Zi) — F(B'Zi, Z)) — (F (B0, Zi) — F(ByZ:, Zfz))]} (A.7)
Z X“Z) [I(X; < 37,6 =0) — I(X; < By Zi,6i = 0)]

< [P(8i% 7) ~ F(BaZs 7)) (A38)
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n Z/Il
S
=1

F(Xn Zt)
< (X, < 874,60 = OV F(8' Zs, 72) — 1(Xs < B 7, 8: = O)F (8,7, zi)]}. (A.9)

By Lemma 1 of YJW, under conditions 1-3, the summation (A.7) is equal to o,(n'/?), for

||ﬁ — 6()” < en V3,
The summation (A.8) is bounded by

0p(n™127) Z 1[(X; < 3'%Z;,6; =0) — I(X,; < BZ:,6; = 0)]
2=1
(o)

1,(71*1/2“)01,(712/3), for ||3 — Bo|| < en '3 by Lemma 2 of YJW
1/2
0,(n"7).

The summation (A.9) is equal to

s wal

1=1

Here, the first term is o0,(n'/2) by conditions 1-3 and Lemma 2 of YJW. Hence,

n

Su(B) — Su(bo) ZZ[ (Xi > 0'%:) — 1(X; > By Zi)) Zi + 0,(n'?)

+Z F( X“ Z,) I(Xi < 8'Zi,6; = O)F(5'Zi, Zi) — 1(Xi < ByZi, 6 = 0)F(ByZi, )]

n

/ 1 / — l. . _1 .
= > {I (Xi > p'Z:) + mf()ﬁ < B'Z;,6; =0)F(8'Z;, Z;) Q}Z@ (A.10)

=1

n 1 1
- I(X; > B0Z;) + =—————=1(X; ' 78 = 0VF (B Z:, 7)) — _}Zi (n1/2).

By (A.2), the conditional expectation of the term in the second summation in the de-
composition (A.10) given Z; is equal to

, ) I(X; < B)Zi,6; = 0) } 1}
> | 7. .7 i .
{p (Xi > ByZi|Z:) + F(B)Z:, Z;) E FX,. Z) |Z Z;

1
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Subtracting and adding the conditional expectation of the term in the first summation in
the decomposition (A.10) given Z; and using (A.2), we have

n

Sn(B) = Su(Bo) =D {[I (Xi > B8'Zi) — P(Xi > f'Zi| Z)]

=1
](XZ < ﬂ/ZZ', 51' - 0)
F(X;, Z;)

= {[[ (X, > ByZ:i) — P (Xi > ByZi| Z:)]
=1

V(87 Z,.)[ P(Ci < 5’242,)} }Z

, [X,<51Z,,5,:0

- P(Ci < 81212,)| } 2

5 {P (X; > B'Z,\Z)) + F(0'Zi, Z)P(C; < B Z:) — %}Z”
i=1

By conditions 1-3 and Lemma 2 of YJW, the first two summations are equal to op(n1/2)j
for || — Bo|| < en™'/3. So

Sn(B) — Sn(Bo) = Su(B) 4 0,(n'/?). (A.11)

Let A, () be as given in (A.4). Taking Taylor’s expansion of S,(8) at 8, and applying
the strong law of large numbers, we have

Sn(B) = nAn(B0)(8 — Bo) + op(nlF — Boll) = nA(B — Bo) + op (|8 — Boll),

uniformly for || — By|| < en™!/3. This, together with (A.11), implies (A.5). O

A.3 Asymptotic Normality of B

We first show the asymptotic normality of n=1/23,,(3;). We may write S,,(30) = X1 Sn, (50),
where

I(Xjh < ﬂé?«’k, ik =0) A(ﬁ(l]zkyzk)} 1) -

( ka'zk) 2

Sy (Bo) Z <{ (X > Bozr) +

Note that G(t,z) = P(C > t|Z = z) and H(t,z) = 1 — G(t,z). We give the following
decomposition for S,,, (5y):

n

Snk(ﬁ()) = {(](Xj k > ﬁ(l]zk) — G(ﬁ(l]zka Zk)/Q)Zk

-1
( L<ﬂ02A, ix=0)
]kazk)

+(F (5021-,,2%) — F(Byzr, 2))P(Cjx < Byzrlzr)zs

- P(C/L < /8(,)2/«|Zk:))ﬁ1(ﬁ[ljzka Z]“)Zk
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= > {2 B - GG, ) /D

J=1
[ < ks =0 ~
+ ik /30 ko Dk ) — P(Cji < 562k|2k))F(562k,, 2k) 2k
//\;Zk)
—I-(F(ﬁozk, zk) — F(Byzk, 21)) P(Cj1 < Bhzilzr)zk
1 1 N
—|—<A — )]X,-.¢< ‘2, 0 = 0)F 'z:,z:z:}.
P FXoma) (X < Bozr, 8j6 = 0)F(Byzr, 21) 2

By the well-known martingale representation for Kaplan-Meier estimator, we have

VAP (t,2) = F(t,2)) = ~F(t, ) [ 12 @MES) oy, (A12)

— Yi(s)
Thus,

1 1 )
= — [(XL <6l2ka5'.k:0)
= (F(Xj,k; z) (X 2k) ’ v

o ny F(Xi-k’zk) — F(Xj,knzk)[(X,L < ﬁ()"k Ok = 0)
_ 7.k Ry VR T

=1 ﬁ(Xj.‘k: 20) F (X1, 21)
kX dMY(s) I( X1 P 0 =10
_ / knk_l %(8) T(Xjr < Byze, S ) + 0, (n'?)
j=1v—°° yk(S) F(Xj,kazk)
koo (s < X)) 1( X, ler 0 =0
— / nkfl (5 = .I-,/\-) ( gk < ﬁUzkﬂ 5.k ) dM’li(S) +0p(n1/2)
j e yi(s) F (X 1)
oo 1 2 I(s < X )I( X < Bhzi,0i =0
:/ nkfl ( — ]J/) ( 7,k 50 ky O3k )dMu( )+0p( /‘7)
J—0o0 yk(S) =1 F(X;j.k:a Zk)

where, conditional on Z = z,

ny [ <X < _ 0
T(57Zk,) = lim nL*IZ S _IF]:(Xﬁ(]ZL’ 5.k )

k=20 1.k Zk)

B ([(8 <Xjr < 50%7 ik =0) ’z )

= k
F(Xj, 21)

B E(I(S < Cjx < Byzr, Cix < Tjx) )

e 2k

F(Cjk, 21)

_/Bokp 7L>C|ZL)
(¢, zx)

= H(Byzn, 21) — H(s, 21)-

dH(c, z1,)
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Now, applying the martingale representation to the third term of the decomposition for

Sn,(Bo) and using the definition H (8 z, z1) = P(Cjx < B)zk|21), we have

nr

Sw(Bo) = > {(I(Xj,k > Boz) — G(Byzr, 21) /2) 21
=1
[(Xj,k < ﬂézk, 5j,k = 0) p p
< F(X]k’Zk) - H(ﬁ(]zkaZk:))F(ﬁ(]Zkazk:)zk}

2k dMu
—F(ﬁ(IJZ]“Zk) /BUA'ka‘*L /
k)

6(]k7"(

e [ S ),

J—oc y],( )
Note that F(8zs, 2) = 3. We have
2k [(XL < ﬂ/ 2k, 05 = 0) 1
S'n - I(X;. > ! ) L 0%k 73, _ _:|
+(B0) = {[ (X > Bozr) + 27 (X, 0 20) 5 2},
1 Bozk (r(s,z1)  H(Byzn, 2k) ’ 1/2
—|——Zﬁ/ < — )de".s}%—o nl/?
27 e U i(s) Yi(s) ile) )
il [(XL < ﬁ/ 2L 5,‘.]‘: = 0) 1
— T(X., > / : Js 0~k ¥y, . _:| )
1{[ (Xin 2 Boza) + 2F (X, 1, 21) 2|

1 Bozx H z
g [T dagy (o)) 4 gy n1)

2 o0 yk;( )
Let
(X, < B)Z:;,6, =0) 1
= |I(Xi > BZ, = —]Zj
i [( 2 P2+ 3R, 7) 27
1 boZi  H(s,Z;
——Z,;/ MdMi“(s).
2 J—oc P(X, Z S|Z7;) )
Then

dom+ op(n'/?
i1

(A.13)

(A.14)

(A.15)

This implies that n=1/25,,(3,) is asymptotic normal with mean zero and asymptotic covari-

ance matrix I' = E(Tiqul)-

It follows from the local linearity property for S, (5) that \/ﬁ(ﬁ — By) is asymptotically

normal with mean zero and covariance matrix AT A~ 1. O
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