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 SUMMARY. This article develops omnibus tests for comparing cause-specific hazard rates and cumulative
 incidence functions at specified covariate levels. Confidence bands for the difference and the ratio of two
 conditional cumulative incidence functions are also constructed. The omnibus test is formulated in terms of
 a test process given by a weighted difference of estimates of cumulative cause-specific hazard rates under
 Cox proportional hazards models. A simulation procedure is devised for sampling from the null distribution
 of the test process, leading to graphical and numerical techniques for detecting significant differences in the
 risks. The approach is applied to a cohort study of type-specific HIV infection rates.
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 1. Introduction

 In longitudinal studies, where individuals are subject to fail-

 ure from a number of competing risks and the eventual failure

 can be attributed to precisely one of the risks, it can be of in-

 terest to compare the various hazards when they are adjusted

 for covariate effects. Comparisons of this type are useful, e.g.,

 in the design of vaccines for the human immunodeficiency

 virus (HIV).

 The global HIV pandemic is characterized by the circula-

 tion of many HIV genotypes (Louwagie et al., 1993). In order

 for an HIV vaccine to be efficacious in a particular geographic

 region, it may be necessary to match the genotypes of the HIV

 antigens contained in the vaccine to the local HIV genotypes

 that pose the greatest risk of HIV infection (Heyward, Os-

 manov, and Esparza, 1992; Moore and Anderson, 1994). For

 instance, in the hope of obtaining broad vaccine protection,

 the ongoing HIV vaccine efficacy trial in Bangkok is testing a

 vaccine matched for the local circulating HIV type 1 (HIV-1)

 subtypes B and E (Berman, 1998). In general, when prepar-

 ing for an HIV vaccine efficacy trial in a particular region, it

 is important to compare the infection rates of locally circu-

 lating HIV genotypes to guide prioritization of HIV antigen

 types for inclusion in the tested vaccine. Moreover, to make

 comparisons of genotype-specific infection rates for this pur-

 pose interpretable, it is important to adjust the comparison

 for risk factors of HIV infection.

 The methods developed in this article are motivated by a

 prospective study of a cohort of female prostitutes in Senegal,

 which forms a candidate population for a new HIV vaccine

 trial. Two types of HIV (HIV-1 and HIV-2) are known to cir-

 culate in Senegal, and the methods are applied to compare

 their infection rates, with adjustment for risk factors such as

 age and the frequency of sexual contacts. In addition, the

 methods are applied to compare covariate-adjusted male-to-

 female per-contact transmission probabilities of the two virus

 types. This is accomplished with our testing procedure by

 adjusting for the differing prevalences of HIV-1 and HIV-2

 in the exposing male partner population entered as a time-

 dependent covariate. Understanding differences in transmissi-

 bilities between viral genotypes may be useful for forecasting

 the evolution of the global HIV pandemic and for improving

 the design of HIV vaccines and treatments.

 We consider a competing risks framework in which indi-

 viduals are at risk from k types of failure and covariate mea-

 surements on each individual are available. Within this frame-

 work, we provide graphical and numerical methods for com-

 paring any two of the k cause-specific hazard rates, or cumula-

 tive incidence functions, at a specified covariate level. We use

 the standard formulation of the competing risks model, which

 assumes the existence of a latent failure time T3 correspond-

 ing to each failure type j = 1, . . . , k. The observed time of

 failure is given by X = minj Tj, which may be right censored.
 When X is uncensored, the cause of failure 6 E {1, .. ., k} is

 observed along with a p-vector Z representing the covariate
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 information. For simplicity, we restrict attention to a time-

 independent covariate, but a time-dependent covariate Z(t)

 can be handled with only minor changes. The conditional dis-

 tributions of the latent failure times given the covariate are in

 general not identifiable from data on (X, 6, Z), even in the ab-

 sence of censoring. Instead, statistical interest focuses on the

 conditional cumulative incidence function Fj (t I z) = P(X <
 t, 6 = j I Z = z) and the conditional cause-specific hazard rate
 Aj(t I z) = lime o P(t < X < t + E, 6 = i I X > t, Z = z)e,
 both of which are estimable from the competing risks data

 (see Prentice et al., 1978).

 We use Cox proportional hazards models to specify each

 Aj (t I z) and assume that the censoring is conditionally in-
 dependent of the latent failure times given Z. Under these

 assumptions, we develop a graphical method, along with a

 formal procedure, for testing the null hypothesis

 Ho: Al (t I zo)=A2(t ZO), 0 < t < r,

 where zo is a specified p-vector of covariate levels and [0, T]

 is the time interval of interest. The following alternative hy-

 potheses will be considered:

 Hi: Al (t |zo) =,4 A2 (t lZO), 0 < t < -r

 H2: Fl(t zo) < F2(t ZO), 0 < t < r

 H3: Al(t zo) < A2(tl ZO), 0 < t < r

 with strict inequality for some t E [0, r] in H2 and H3. The

 hypothesis Ho is equivalent to equality of the corresponding
 cumulative incidence functions over [0,-] because Fj(t I z) =
 jf Aj(u I z)Sx(u I z) du, where SX(t I z) = P(X > t I Z = z)
 is the conditional survival function of X. The hypotheses H2

 and H3 are ordered alternatives expressing the notion that

 cause 2 is more serious than cause 1, with H3 being the more

 restrictive alternative. H2 is appropriate for a comparison in

 terms of absolute risk and H3 in terms of risk intensity. We

 are interested in developing omnibus tests that are consistent

 against all departures from Ho in the directions of H1, H2,
 and H3.

 There is a large literature on the problem of testing the

 equality of two cause-specific hazard rates, but at least one

 of the following assumptions has been required: independent

 competing risks, no covariates, no censoring, or parametric

 models. Nonparametric tests that allow censoring and de-

 pendent competing risks but no covariates have been consid-

 ered by Aly, Kochar, and McKeague (1994), Sun and Tiwari
 (1995), Lam (1998), Hu and Tsai (1999), Luo and Turnbull
 (1999), and Sun (2001), among others. Cox proportional haz-
 ards models have been widely used in the competing risks

 context (cf., Holt, 1978; Prentice et al., 1978; Larson, 1984;
 Benichou and Gail, 1990; Andersen, Hansen, and Keiding,
 1991; Lunn and McNeil, 1995; Cheng, Fine, and Wei, 1998).
 As far as we know, however, omnibus tests for the compari-

 son of two cause-specific hazard rates have not been studied
 in this context.

 The article is organized as follows. In Section 2, we de-

 velop test statistics for detecting departures from Ho in the
 direction of the alternatives H1, H2, and H3. In Section 3, we
 derive confidence bands for the difference and ratio of two con-

 ditional cumulative incidence functions. Section 4 describes

 the results of a simulation study assessing the accuracy and
 power of the proposed tests. The application to data on HIV

 infection rates is presented in Section 5. Theoretical results

 are placed in the Appendix.

 2. Test Procedure

 2.1 Preliminaries

 Let C denote the censoring time. The competing risks model

 data are assumed to be given by n independent replicates
 of (X,6,Z), where X = min(X, C), 6 = 6I(X < C), and
 I(.) is the indicator function. It is also assumed that C is

 conditionally independent of T1,.. ., Tk given Z. The latent

 failure times Tj do not have to be independent, but we do

 require that P(Tj = T1) = 0 for j 7& 1. The cause of failure
 6=j whenX=Tj.

 The conditional cause-specific hazard rates Aj(t I z) are
 specified by separate Cox proportional hazards models (Cox,
 1972; Andersen et al., 1991),

 Aj (t I z) = A0j (t) exp(i z),

 where Aoj( .) is an unspecified baseline hazard function and
 i3j is a p-vector of regression parameters for the jth cause of
 failure. The partial likelihood score function for /3j is

 n

 Uj W) = E S ji(Zi - W) Xi)))
 i=l

 where \ji = I(Si = j) and

 - Z~1 Yj (t) exp (fl'Zi) Zi
 -(/3,) = Z=1Y (t)exp (,'Zi) Yi(t)= I(Xi > t).

 The denominator of Z(fl, t) is denoted S(?) (fi, t) in the sequel.
 The maximum partial likelihood estimator /j is the solution
 to the estimating equation Uj (fi) = 0. Under some mild
 regularity conditions (Andersen et al., 1993, Chapter VII),

 3f 112(flj)(fli - /3) is asymptotically zero-mean normal
 with identity covariance matrix, where Ij(/3) is minus the
 derivative matrix of Uj(,3). The /3j are asymptotically inde-
 pendent. The counting process Nji(t) = zjjI(Xi < t) records
 observed failures of type j. The jth cumulative cause-specific

 hazard function Aj (t I z) = fO Aj (u I z) du can be estimated
 by

 Aj (t I z) = Aoj (t) exp(/35z),

 where the leading term is the Nelson-Aalen-type estimator

 Aoj (t) =0 S(?) 1dN(j u)

 These estimators are special cases of estimators studied

 by Andersen et al. (1991) in connection with proportional
 hazards models for the transition intensities of nonhomoge-
 neous Markov chains.

 2.2 Test Process

 Our approach is based on a comparison of the cumulative
 cause-specific hazard estimators at the specified covariate
 level zo, using general predictable locally bounded nonnega-
 tive weight processes W(.),

 L t

 L(t) = / (u) (A2 (du I zo )- Al (du I zo )) -
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 The weight process provides a flexible way to control the

 relative importance attached to differences in the cause-

 specific hazards at different times and is useful for controlling

 instability in the tails. Some examples of weight processes are

 discussed in Section 2.5.

 A plot of the test process L(t) is helpful in looking

 for possible departures from Ho, with a tendency for large
 absolute values under H1, large positive values under H2,

 and an increasing trend under H3. This can be seen from

 the identity Fj(t I z) = foAtj(u I z)Sx(u I z)du. However,
 these plots can be difficult to interpret due to fluctuations in

 the test process that occur even under the hypothesis of equal

 cause-specific hazards.

 In the Appendix, we show that L(t) converges in distri-

 bution under Ho to a zero-mean Gaussian process provided

 W(t)/nl/2 converges uniformly in probability over [0, T] to a
 bounded function. Yet the limiting covariance is complicated,

 so this result does not immediately translate into a workable

 test procedure. For that purpose, we develop a simulation

 method for approximately sampling from the null distribution

 of L(t), adapting the procedure presented in Lin, Wei, and

 Ying (1993) for checking adequacy of the Cox proportional

 hazards model. This procedure was also used by Cheng et

 al. (1998) to obtain confidence intervals and bands for the

 predicted conditional cumulative incidence function Fj(t |
 ZO).

 2.3 Sampling from the Null Distribution of the Test Process

 First, we need a representation of the test process in terms of

 the basic martingales

 at

 Mji(t) = Nji(t) - Yi(u) exp(3jZi)ZAo(u) du.

 Using Taylor series expansions of exp(3 zo.) and Uj (fj )
 around I3j, the process L(t) is seen, under Ho, to be
 asymptotically equivalent to the process L2 (t) - L (t), where

 n 00

 Lj (t) = t, 3j)/I-1(/3j) ] (Zi - ZZ(l3, u)) dMji(u)
 i=1

 ~ ft W (u) exp (fl'o) d
 + E Jo S(o) 0 ) (i(u)

 and

 (tv /3) =2 W(u)(zo-Z(3, u))(A1 (du I zo) +A2(du zo)).

 The process L* (t) used to simulate L(t) is defined by

 replacing Mji (u) in the first and second terms of Lj (t) by
 GjjNj3 (u) and GjiNji (u), respectively, where {Gji, Gji: j =
 1, 2; i = 1, ... , n} are independent standard normal variables.

 Realizations of L* (t) are approximate draws from the null

 distribution of the test process. More specifically, under Ho,
 the conditional distribution of L* (t) given the observed data is
 the same in the limit as the unconditional distribution of L(t)
 (see the Appendix). The method works essentially because

 Mji(t) has mean zero and variance E{Nji(t)}.

 An alternative version of L*(t), with the same asymptotic

 properties, is obtained by replacing Mji(u) by GjiNji(u) in
 both terms of Lj (t); this is closer to the method proposed by
 Lin et al. (1993). However, we prefer the first method because
 it better reflects the asymptotic independence of the two

 terms in Lj (t) (see the proof of Theorem 1 in the Appendix
 for more details).

 2.4 Test Statistics

 For formal procedures, the following test statistics are

 suggested for detecting departures from Ho in the direction
 of H1, H2, H3:

 Di= sup IL(t)I, D2 = sup L(t),
 O<t<-r O<t<-r

 D3= sup {L(t) -L(s),
 O<s<t<T

 respectively.

 2.5 Choice of Weight Process

 The simplest choice is Wi (t) = n1/2, which reduces the
 test process to the normalized difference of the estimated

 cumulative cause-specific hazard functions,

 L(t) -/;i(A2(t I zo) - Al(t I Zo)).

 This may be a good choice for the graphical procedure, where
 ease of interpretation is important. The variance of L(t)
 increases with t, however, so for a formal test, it is preferable
 to use a decreasing weight process that gives less weight to
 the tail, such as

 n

 W2(t) = >ZI(Xi > t
 i=1

 A more sophisticated weight process that achieves a similar
 effect is

 Z)-1/2
 W3 (t) = S (t- I zo )"l/2 exp(i3'zo) exp(12o)-l

 where Sx (t I zo) is the Cox model-based estimator of the
 conditional survival function of X (see Andersen et al., 1993,
 p. 509). In this case, the asymptotic distribution of L(t) is of a
 relatively simple form; the variance function V(t) simplifies to
 the conditional cumulative incidence function F1 (t I zo) (see
 Theorem 1 in the Appendix). For k = 2 and no covariates,
 W3(t) reduces to a weight process considered by Aly et al.
 (1994, Section 3.1) and makes the test statistics D1, D2, D3
 asymptotically distribution free.

 Another relatively simple choice is W4(t) = nl/2S X(t- _
 zo), which gives the normalized difference of the estimated
 cumulative incidence functions,

 L(t) = V/;(F2(t I zo) - i(t I zo)),

 where F-(t I ZO) = fO SX(u- I zo)Aj(du I Zo).

 2.6 Remarks

 Within the Cox model setting and under mild conditions on
 the weight process, the tests based on D1, D2, and D3 are
 consistent against any departure from Ho in the direction
 of their respective alternatives (see the remark following the
 proof of Theorem 1 in the Appendix).
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 When the covariate is one dimensional, it is feasible to

 use a nonparametric model for Aj (t I z). In that case, a
 nonparametric estimator (McKeague and Utikal, 1990) of

 Aj(t I zo) should be used in place of Aj(t I zo) in L(t).
 This alternative version of L(t) can be shown to converge in

 distribution to a time-changed Wiener process and provides

 the basis for an asymptotically distribution-free test of Ho.
 However, the nonparametric approach fails in general due

 to the curse of dimensionality. An alternative approach for

 covariates with a moderate number of components would be

 to use an additive risk model in place of the Cox model,

 as in Shen and Cheng (1999), who developed simultaneous
 confidence bands for cause-specific cumulative incidence

 functions.

 In some applications, it may be of interest to test Ho
 simultaneously over a range of values Z of the covariate
 level zo. Our approach extends readily to this setting with

 the test process L(t) = L(t,zo) and its simulated version

 L*(t) = L*(t, zo), now indexed by (t, zo) E [0, r] x Z, and the
 test statistics D1,D2,D3 replaced by their maximal values
 over zo E Z.

 Hu and Tsai (1999) recently considered the problem of
 finding optimal weight functions for a class of linear rank tests

 of Ho in the absence of covariates. The resulting test statistics
 are optimal against local Lehmann alternatives. A Lehmann

 alternative in our setting means A2 (t I z) = Ao1 (t) exp(-y +
 f2lz) for some constant -y, so Ho (H3) is equivalent to -y +
 (fl2 -f1)'zo = 0 (> 0). Thus, Ho can be tested by fitting
 a model of Holt (1978) because -y, f1, and f2 are regression
 parameters in a cause-specific hazard model having common

 baseline hazards. However, the class of Lehmann alternatives
 is too restrictive for many applications (see the discussion

 of the relative merits of log-rank and Kolmogorov-Smirnov-
 type tests in Andersen et al. (1993, pp. 390-395)); in the HIV
 application, e.g., there is no reason to believe that the HIV-
 1 and HIV-2 cause-specific hazard rates are proportional to

 one another. The proposed omnibus tests should be more

 powerful against the types of alternatives that are likely to

 occur in practice. In some applications, it may be plausible

 that a covariate has the same effect on the two cause-specific
 hazards, i.e., the regression coefficients are the same in both

 Cox models (Lunn and McNeil's (1995) duplication method
 B provides a simple way of testing this). Such structure
 can be exploited to improve efficiency. This can be done by

 reformulating the two Cox models in terms of failure-type-

 specific covariates and a single vector of regression coefficients

 (cf., Andersen et al., 1993, p. 478). The second sampling
 method described in Section 2.3 is then used to sample from

 the asymptotic null distribution of the test process. The

 processes Lj (t) are asymptotically dependent in this case, and
 the statement of Theorem 1 needs to be modified accordingly.

 3. Confidence Bands

 In this section, we construct confidence bands for the differ-
 ence and the ratio of two conditional cumulative incidence

 functions. A consistent estimator of the difference 6(t) =
 F2(t I zo) - F1(t I zo) can be obtained from L(t) using W4(t)
 as the weight process, i.e., S(t) =F2(t I zo) - Fi(t I zo) =
 L(t)/nl/2. From the proof of Theorem 1 in the Appendix,

 it follows that the process n1/2(S(t) - 6(t)) converges in
 distribution to the (null) limiting distribution of L(t). The

 earlier Monte Carlo procedure based on L* (t) can be used

 to estimate an upper a/2-quantile, ca/2(t), of the limiting
 distribution of IL(t)1. An approximate 100(1 - c)% pointwise
 confidence band for 6(t) is then given by 6(t) ? Ca/2 (t)n-1/2.
 A simultaneous band for 6(t) can be found by suitably scaling

 the pointwise band, i.e., 6(t) ? acc/2(t)n-1/2, t E [0,'r],
 where a > 1; here the Monte Carlo procedure is used to

 adjust the constant a to furnish the desired 100(1 -a)%
 simultaneous confidence level. Such bands are illustrated in

 Figure 5. Alternatively, the transformation approach of Cheng

 et al. (1998, p. 221), henceforth CFW, could be adapted for

 this purpose. A simultaneous band for the ratio p(t) = F1 (t

 zo)/F2(t I zo) can be based on the estimate 1(t) = F1(t I
 zo)/F2(t I zo). Approximate draws from the joint asymptotic
 distribution of n1/2(Fj(t I zo) - Fj(t I zo)), j = 1,2, are
 obtained from the simulated processes U (t), j = 1, 2, given

 by expression (2) of CFW. Using the functional delta method

 (Andersen et al., 1993), it can be shown that the distribution

 of the process n1/2(1(t) - p(t)) coincides in the limit with
 conditional distribution of

 U*(t) = Ur*(t)/F2(t I zo) + U2*(t)Fp(t I zo)/F2(t I ZO)2

 given the data, where 0 < t1 < t < t2 and it is assumed

 that F2(ti I zo) > 0 and t2 < inf{t:P(X > t) = 0}. A
 simultaneous confidence band for p(t) can then be constructed
 as in CFW (p. 221), with the obvious modifications of U*(t)
 replacing Uk(t; zo) and 1(t) replacing Fk(t I zo).

 4. Simulation Study

 We designed simulations to study the performance of the
 proposed test procedure under various scenarios relevant to

 the application in the next section. Key questions to be

 addressed are whether the nominal size accurately matches

 observed levels at moderate sample sizes; which weight

 function gives the best performance in terms of power; and
 how a trend in the baseline hazard function, say due to

 heterogeneity in biological susceptibility to infection, affects

 the size and power.

 We considered a p = 2 dimensional covariate Z, having
 independent components uniformly distributed on [0, 1], and
 we specified zo = (0.5,0.5). The k = 2 latent failure times
 were taken to be conditionally independent with conditional

 cause-specific hazard functions given by Cox models of the

 form Ai(t I z) = t9j exp(z +z2) for various choices of Oj > -1,
 j = 1, 2. Note that the conditional distribution of Tj given Z
 is Weibull with shape parameter O9 + 1. The baseline hazard

 is decreasing and convex if -1 < O9 < 0, constant if Oj = 0,
 increasing and concave if 0 < Oj < 1, and increasing and
 convex if 1 < Oj. The various baseline hazards being compared
 are plotted over [0, 'r] in Figure 1.

 The censoring C was taken to be exponentially distributed

 with decay parameter adjusted so 15-30% of the observations
 were censored in [0, r]. The size and power of the test based
 on D2 at the nominal 0.05 level were estimated from 1000

 independent samples, with critical values obtained in each
 sample from 1000 realizations of L*(t).

 The results, reported in Table 1, show that the observed

 levels for D2 quite accurately match the 0.05 nominal level of
 the test and trends in the baseline hazard functions have no
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 Figure 1. Weibull baseline hazard functions used for the simulation study, plotted over the relevant interval [0, i-] in each
 case. Values of 6? correspond to the solid line and values of 62 to the other lines.

 appreciable effect on accuracy. Similar results, not reported

 here, were found for the tests based on D1 and D3. The weight

 functions W2 and W3 gave better performance than W1 and
 W4 in terms of power; this was expected because W1 and
 W4 do not down-weight observations in the tail, where there

 tends to be a sharp increase in the variance of the cumulative

 baseline hazard estimate.

 5. Application: Comparison of HIV-1 and HIV-2

 Infection Rates

 In 1985, the Senegalese government in collaboration with the

 Harvard School of Public Health began a prospective cohort

 study in self-identified female prostitutes in Dakar, Senegal

 (Kanki et al., 1990, 1992; Kanki, 1999). Cohort participants

 were followed through regular visits to health clinics for vary-

 ing time intervals between February 7, 1985, and November

 1, 1999. At each clinic visit, women were tested for infec-

 tion with human immunodeficiency virus types 1 (HIV-1)
 and 2 (HIV-2). Covariates measuring risk for HIV infection

 were also collected, including nationality, age at cohort en-

 try, calendar date at entry, years of registered prostitution

 at entry, average number of sexual partners per week, ex-
 tent of condom use, and infection with sexually transmitted

 diseases (STDs) other than HIV. The last three covariates

 are time dependent. This prospective study of 1948 initially
 HIV-uninfected women provides excellent data for comparing

 type-specific hazard rates of the two viral competing risks of

 infection. For interpretability, it is important to adjust the

 comparison for risk factors. In addition, we apply the tests

 to assess if the male-to-female per-sexual contact transmis-

 sion probability (the infectivity) of HIV-1 differs from that
 of HIV-2. This can be done by adjusting the comparison of

 HIV-1 and HIV-2 crude hazard rates for differences in the

 HIV-1 and HIV-2 prevalence rates in the exposing male part-

 ner population. To accomplish this within the framework of

 the tests developed here, we include the log ratio of HIV-2 ver-

 sus HIV-1 prevalence in the infected male partner population
 as a time-dependent covariate. For the ith woman t years into

 follow-up, this ratio was calculated as the HIV-2 versus HIV-
 1 prevalence ratio in all female sex workers under follow-up

 at the calendar time corresponding to t. These calculations

 included sex workers HIV infected and uninfected at entry,

 totaling 3141 women. By fixing the level of the log partner

 prevalence ratio covariate at zero, the statistics D1 and D3
 test the null hypothesis of equal HIV-1 and HIV-2 infectiv-
 ity versus two-sided and one-sided alternatives, respectively.

 Studies showing that HIV-1 has a shorter asymptomatic pe-
 riod (Marlink et al., 1994), a higher viral load (Albert et al.,
 1990; Popper et al., 1999), and a higher perinatal transmission
 rate (Poulsen et al., 1992; Abbot et al., 1994; Adjorlo-Johnson
 et al., 1994) support the hypothesis that HIV-1 is more het-
 erosexually infectious than HIV-2.

 During the follow-up period, 199 prostitutes became in-

 fected with HIV, 127 with type 1 only, 66 with type 2 only,
 and 6 with both types. The time to infection was calculated as
 the time from entry into the cohort to the midpoint between
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 Table 1

 Observed levels and powers of test for equality of conditional

 cause-specific hazard rates based on D2 at nominal level 0.05

 n = 100 n = 200

 01 02 W1 W2 W3 W4 W1 W2 W3 W4

 1.2 1.2 0.056 0.052 0.057 0.054 0.046 0.046 0.045 0.041
 1.1 0.105 0.112 0.115 0.103 0.149 0.158 0.158 0.153
 1.0 0.180 0.200 0.204 0.186 0.298 0.321 0.319 0.303

 0.8 0.8 0.063 0.061 0.070 0.057 0.057 0.059 0.059 0.064
 0.7 0.144 0.159 0.166 0.150 0.158 0.169 0.169 0.158
 0.6 0.282 0.296 0.300 0.291 0.430 0.479 0.479 0.462

 0.4 0.4 0.054 0.046 0.052 0.048 0.052 0.054 0.052 0.054
 0.3 0.166 0.172 0.184 0.167 0.257 0.301 0.303 0.284
 0.2 0.375 0.446 0.448 0.407 0.642 0.722 0.717 0.679

 0.0 0.0 0.050 0.052 0.059 0.052 0.059 0.061 0.061 0.059
 -0.1 0.247 0.333 0.330 0.280 0.393 0.505 0.507 0.451
 -0.2 0.654 0.815 0.814 0.739 0.898 0.981 0.980 0.949

 -0.4 -0.4 0.052 0.061 0.065 0.059 0.057 0.046 0.045 0.050
 -0.5 0.441 0.824 0.830 0.675 0.644 0.982 0.982 0.901
 -0.6 0.866 1.000 1.000 0.999 0.968 1.000 1.000 1.000

 the last HIV seronegative visit date and the first seropos-

 itive visit date. Among the six dual-infected women, three

 had first tested seropositive for both viruses; these women

 were assumed to have a simultaneous HIV-1 and HIV-2 sero-

 (a) HIV-1 and HIV-2 cumulative incidence functions
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 conversion date. Since these cases violated an assumption of

 the test, they were not used in the analysis. As shown in Fig-

 ure 2, in which no adjustment was made for covariate effects,

 the cumulative incidence of HIV-1 exceeded that of HIV-2,

 and the infection hazard of each type peaked after 5 years
 and then waned.

 Most women in the initially HIV-uninfected cohort were

 Senegalese (73.2%) or Ghanaian (14.0%), with average age

 30.4 years (range 19-56 years), average 2.7 years of registered
 prostitution (range 0-26 years), and average date of cohort

 entry 5.16 years after the study start date of February 7,
 1985 (range 0-14.45 years). The mean number of partners

 per week was 6.8 (interquartile range 3.5-8.0). Condom use
 was entered as a binary covariate with levels always and some-

 times or never, with 76.1% reporting sometimes or never, and

 STDs was entered as a binary covariate with levels no STD or
 at least one STD, with 50.9% testing positive for at least one

 STD during follow-up. Missing values for the time-dependent
 covariates were filled in by nearest observed values within a

 subject's longitudinal profile of clinic visits. At the 0.05 signif-
 icance level, univariable Cox models identified four risk factors

 for HIV-1 infection: non-Senegalese nationality, Ghanaian na-
 tionality, later date of cohort entry, and older at cohort entry

 Figure 2. Senegal cohort study. No adjustment for covar-
 iates. a. Estimated HIV-1 and HIV-2 cumulative incidence

 functions with 95% pointwise confidence limits. b. Nonpara-
 metric Epanechnikov kernel estimates of the HIV-1 and HIV-
 2 hazard rates from smoothed estimates of the cumulative
 cause-specific hazard functions (Ramlau-Hansen, 1983); nor-
 mal approximation 95% pointwise confidence limits calculated
 by transforming the symmetric confidence limits (Andersen et
 al., 1993, p. 249).
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 Table 2

 Significant risk factors in Cox models for HIV-1 infection, for HIV-2
 infection, and for HIV-1 versus HIV-2 infection of 1948 female

 prostitutes participating in the Senegal cohort study from 1985 to 1999

 Covariate Estimatea (SE) p-Value p-Value (PH)b

 HIV-1 Senegalese -0.470 (0.218) 0.030 0.17
 Ghanaian 0.619 (0.263) 0.017 0.075
 Date of entryC 0.107 (0.027) <0.001 0.21

 Age at entryd 0.026 (0.014) 0.054 0.028

 HIV-2 Senegalese -0.595 (0.281) 0.032 0.99
 Ghanaian 0.737 (0.333) 0.024 0.93
 Date of entry -0.127 (0.045) 0.004 0.30
 Senegalese

 x date of entry 0.265 (0.115) 0.021 0.63
 Age at entry 0.054 (0.017) 0.0017 0.17

 HIV- 1 e Date of entry 0.234 (0.053) <0.001 0.96

 a Estimated coefficient in the univariable Cox model.

 b p-Value for test of proportional hazards (PH) based on the method of Grambsch
 and Therneau (1994).

 c The covariate calendar date of cohort entry was calculated as the years since

 February 7, 1985, the date the first participant enrolled in the cohort study.

 d Age in years at cohort entry.
 e Fit by the duplication method B of Lunn and McNeil (1995).

 (Table 2). The same variables were significant univariable risk

 factors for HIV-2 infection, with hazard ratios of compara-

 ble magnitude to those for HIV-1 with the exception that

 an earlier date of cohort entry predicted an increased risk of

 HIV-2 infection. The interaction between Senegalese nation-

 ality and the date of cohort entry was also significant, with

 a later date of entry predicting an increased risk of HIV-2

 infection for Senegalese sex workers and a decreased risk for

 non-Senegalese sex workers. The only covariate that predicted

 a significantly differential HIV-1 versus HIV-2 infection risk,

 as assessed by a recoded Cox model (method B of Lunn and

 McNeil (1995)), was the calendar date of cohort entry. There-
 fore, it would be reasonable to apply the tests that assume

 each covariate other than the date of entry has the same effect

 on the HIV-1 and HIV-2 hazard rates. However, to minimize

 assumptions, we applied the tests that allow each covariate to

 have a different regression relationship with the HIV types.

 First, we applied the tests to compare cause-specific hazard
 rates adjusted for the significant risk-factor covariates without

 4- Wl

 2 - A -- .. ....t --- ------------- ------------- ------------

 0 - C.'..'.'.'...'...'.'....'.'...'....'..'.'.'.I. ....
 2 ~ ~~~~~~~~~~~~~.. .......

 D2 = 3.86, p = 0.004 .............. ..........
 D3 = 3.98, p = 0.004

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 follow-up time (years)

 4- W2

 2-

 .. = ===~~~~~~~~~~.........

 2 D2 = 1.18, p = 0.007

 4 D3 = 1.29, p = 0.005

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 follow-up time (years)

 20

 1 0 . fn.----- ............---..-----.----.--------.------.-.-.-.----. _~~~~~~~~~~~~~~~ . .. . .. . .............. ' ,. ... . . . . . . . ,,, n,; W ~~~~~.-t,.... ...;.. .:..:: , ::::::
 -1 D2= 17.51, p 0011

 2C D3 = 18.03, p = 0.010
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 follow-up time (years)

 Figure 3. Senegal cohort study. The test process L(t) (solid

 line) and 10 realizations of L* (t) (dashed lines) for the weight

 processes W1 (t), W2 (t), and W3 (t), with adjustment for co-
 variates nationality (Senegalese versus else), date of cohort

 entry, the interaction of nationality and date of cohort entry,

 and the age at cohort entry at level zo = (Senegalese, 5.16

 years, 5.16 years, 30.4 years).
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 4- W1

 A--- - -~~~~~~~~~~~............ ...........i.,------- ........-.=..
 ...........,->.......

 0~~~ ~~ i''1- rs...'..!.t*;............. ........,;;;- .:......

 D2 = 3.87, p = 0.004 ..............

 D3 = 4.02, p = 0.003

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 follow-up time (years)

 4-W2

 D2 = 1 .18, p = 0.009

 ii-131 0.004

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 follow-up time (years) oj .~~~~~~~~~ ~~~~. ........ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ................ - . ;- - - -- '- ---- ----: --- -::::::::::: . ......:::::
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 4D2 = 1.1, P =0.009

 D3 = 4.79, p = 0.002

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 follow-up time (years)

 Figure 4. Senegal cohort study. The test process L(t) (solid
 line) and 10 realizations of L* (t) (dashed lines) for the weight

 processes W1 (t), W2(t), and W3(t), with adjustment for co-

 variates nationality (Senegalese versus else), date of cohort

 entry, the interaction of nationality and date of cohort entry,

 the age at cohort entry, and the log HIV-2/HIV-1 partner
 prevalence at level zo = (Senegalese, 5.16 years, 5.16 years,

 30.4 years, 0).

 adjusting for the relative HIV-2 versus HIV-1 partner preva-

 lence. The covariates were Senegalese nationality, date of co-

 hort entry, the interaction of Senegalese nationality with date

 of cohort entry, and age at cohort entry (Ghanaian national-

 ity was excluded because it was highly correlated with Sene-

 galese nationality). Tests of Ho versus H2 and H3 applied at
 covariate level zo = (Senegalese, 5.16 years, 5.16 years, 30.4

 years) indicated a significantly greater type 1 hazard rate and
 cumulative incidence function (Figure 3).

 Second, we applied the tests to compare the infectivity of

 HIV-1 and HIV-2 by also adjusting for the log ratio of HIV-

 2 versus HIV- 1 prevalence in partners over time. The tests

 applied at covariate level zo = (Senegalese, 5.16 years, 5.16

 years, 30.4 years, 0) showed significant differences (p-values

 < 0.01; see Figure 4). The tests repeated for many other

 levels of the covariates also indicated significant differences.

 From a public health perspective, it is of interest to estimate

 the difference between the HIV-1 and HIV-2 cumulative in-

 cidence functions for various covariate subgroups. The con-

 (a) without adjustment for the relative partner prevalence
 E

 0

 8 0.2-

 X.-----. pointwise limits , -

 > 0.1- ~~~~~~-~~~- simultaneous limits , ~~~~~~~~~~~~~............ ....... .......... C) simultaneous limits ....
 2 0.1

 Xi .... .........

 8
 0.1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 follow-up time (years)

 0 (b) with adjustment for the relative partner prevalence
 E

 0.2-

 pointwise limits | ...-..t
 _' | ---- - simultaneous limits ...... , -
 ? 0.1-

 C 0.00 . ....... 6
 .2 ~ ~ ~ ~ ~ ~ ~ -- -, -- - - - - - -- -

 e 0 1 2 3 4 5 6 7 8 9 6 8 10 12 13 14 15 a

 0 follow-up time (years)

 Figure 5. Ninety-five percent pointwise and 90% simulta-
 neous confidence bands for the difference in conditional HIV

 type-specific cumulative incidence functions. a. Conditions

 on the set of covariates listed in the legend to Figure 3. b.

 Conditions on the set of covariates listed in the legend to
 Figure 4.

 fidence bands displayed in Figure 5 were computed via the

 first procedure described in Section 3 for the same covariate

 subgroups as in Figures 3 and 4. Based on the 90% simultane-
 ous bands, we find the probability of HIV-1 infection exceeds
 that of HIV-2 by up to 0.18 over the follow-up period (cf.,
 Figure 2a).

 To check the proportional hazards assumption for each HIV

 type, we applied Grambsch and Therneau's (1994) diagnostic
 test based on rescaled Schoenfeld residuals. The test did not
 reveal any serious departures from proportional hazards ex-

 cept for the relationship between the HIV-1 hazard and the

 age at cohort entry (p-value 0.028, Table 2). The diagnostic
 plot suggested that the relationship was approximately cubic,

 and quadratic and cubic age terms were marginally significant

 in a Cox model. The tests that also adjusted for the quadratic
 and cubic age covariates gave comparable results as the earlier

 tests. These analyses show that, under adjustment for covari-

 ates that measure exposure and susceptibility to HIV-1 and to
 HIV-2 infection, the risk of infection and the male-to-female

 infectivity was greater for HIV-1 than for HIV-2. Elsewhere,
 we present a more complete analysis of the Senegal cohort
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 data for the purpose of comparing the infectivity of the virus

 types. The finding of higher HIV-1 infectivity has important

 implications for epidemiological modeling and for the design

 of HIV vaccines.
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 REJSUMEJ

 Cet article traite du developpement d'un test omnibus pour
 comparer des taux de deces specifiques et des fonctions d'inci-
 dence cumulee, pour des niveaux specifies des covariables. Des
 bandes de confiance, pour la difference et pour le rapport des
 deux fonctions d'incidence cumulee, sont aussi proposes. Le
 test omnibus est presented comme une procedure obtenue a
 partir d'une meme difference ponderee des estimateurs des
 taux cumules specifiques sous un module de taux proportion-
 nels de Cox. Une procedure de simulation est proposee, pour
 un echantillonnage sous l'hypothese nulle du test, conduisant
 a des techniques numeriques et graphiques permettant de
 mettre en evidence les carts significatifs entre les risques.
 Cette approche est appliquee a l'etude, sur une cohorte, des
 taux d'infection specifique par l'HIV.
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 APPENDIX

 The theorem below is established under standard regularity
 conditions that can be found in a form suitable for our set-

 ting in Andersen et al. (1993, conditions VII.2.1 and VII.2.2).
 In addition to these conditions, we suppose there exists a

 bounded nonnegative function w(t) such that

 sup jn-1/2W(t) - w(t)j -' 0 (A.1)
 O<t<r

 in probability. Let s(O)(/3, t), z(/3, t), and Ej denote the limits

 of S(?) (/3, t)/n, Z(/3, t), and the matrix 7Tj (/3j)/n, respectively,
 and define

 at

 i (t,fl) =2 j -(u) (zo-z(/3, u)) (A 1 (du I zo) + A2 (du I zo)).

 THEOREM: (a) The limiting distribution of the test process
 L(t) under Ho is that of the zero-mean Gaussian process

 4'(t, 31)'(j + 4'(t, 32)'t2 + B(V(t)), (A.2)

 where the three terms are independent, (j is distributed N(0,
 1) B (.) is a standard Wiener process, and

 V(t) = I ( exp(/3i zo) +exp(/31 zo)
 2 ts(0)(f1,U) S(O)(f2,U))

 x (Al (du I zo) + A2 (du I zo))

 (b) The limit of the conditional distribution of L* (t) given the

 observed data coincides with the limiting distribution of L(t)
 under Ho.

 Proof. (a) Under Ho, we can decompose the test process as

 L(t) = j W(u)(exp(/3zo) - exp(/32zo))AO2(du)

 t

 + j W(u) exp(23 zo) (AO2 (du) - A02 (du))

 to

 - j W(u) (exp(/ zo) - exp(/3 zo))Ao1 (du)

 rt

 - j W(u)exp(/3'zo)(Aoi(du) - Aoi(du)).

 The condition (A.1) on W(t) can be used to show that, un-

 der Ho, the process 4'(t,/3)/nl/2 converges to 4(t,/3) uni-
 formly in probability over [0, r]. Using a Taylor series expan-
 sion of exp(/3zo) around /2, the sum of the first two terms in

 the above decomposition of L(t) is seen to be asymptotically
 equivalent to

 rt

 v/;E(p2-02)'4'(t,/2) + jw(u)exP(/32zo)dQ2(U), (A.3)

 where

 Qj (t) = V/i(Ao j (t) - Ao (t))

 + Z(13j - 3j)' 2(/3j, u)Aoj (du).

 The sum of the last two terms in the decomposition of L(t)
 has a similar representation. By a theorem of Andersen et al.

 (1993, p. 504), the two terms in (A.3) are asymptotically in-
 dependent; the limiting distribution of the first term is that of

 f4t, /32)'%2, and the limiting distribution of the second term is
 that of a zero-mean Gaussian martingale with variance func-
 tion V2(t), where

 s xp(2o) /3>) V (t = w2 (U) exp(-tOj (u) du.

 Due to orthogonality of the basic martingales M1i, M2j cor-
 responding to failure types 1 and 2, which do not occur si-

 multaneously, the first two terms in L(t) are asymptotically
 independent from the last two. The sum of the two indepen-
 dent Gaussian martingale parts is equal in distribution to

 a continuous Gaussian martingale, or time-changed Wiener
 process, with variance function Vi(t) + V2(t) = V(t) under
 Ho. This completes the proof of (a). For (b), first note that
 L*(t) consists of a sum of four terms that are conditionally
 independent given the data. Also, as we have seen above, the
 corresponding terms in L(t) are asymptotically independent.
 Thus, it suffices to show that the conditional distribution of

 each term in L* (t) given the data is the same in the limit as
 the unconditional distribution of the corresponding term in
 L(t). This follows directly by applying the argument of Lin et
 al. (1993, Appendix 1) to each of the four terms.
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 Remark. The tests based on D1 and D3 are consistent

 against their respective Cox model alternatives, provided w(t)

 is bounded away from zero on [0, r]. The same holds for D2
 provided, in addition, that w(t)/SX(t I zo) is a decreasing
 function of t E [0, i]; the weight function W4(t) furnishes
 such an example. This can be seen by extending the proof of

 Theorem 1 to obtain, under any Cox model departure from

 Ho, that L(t) = -(t) + n1/2R(t), where q(t) converges in dis-
 tribution to a process of the form (A.2) and R(t) converges

 uniformly in probability on [O r] to
 It

 r(t) = w(u)(A2(du zo) - A(du I zo))
 to

 = Jo w(u)Sx(u I zo) '(F2(du I ZO) -F1(du I zo)).

 Also note that r(t) $ 0 for some t under H1, r(t) > 0 for some

 t under H2, and r(t) - r(s) > 0 for some s < t under H3 (cf.,
 Aly et al., 1994, Appendix).
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