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 Abstract: Random field models in image analysis and spatial statistics usually have
 local interactions. They can be simulated by Markov chains which update a single
 site at a time. The updating rules typically condition on only a few neighbor
 ing sites. If we want to approximate the expectation of a bounded function, can
 we make better use of the simulations than through the empirical estimator? We
 describe symmetrizations of the empirical estimator which axe computationally fea
 sible and can lead to considerable variance reduction. The method is reminiscent

 of the idea behind generalized von Mises statistics. To simplify the exposition, we
 consider mainly nearest neighbor random fields and the Gibbs sampler.

 Key words and phrases: Asymptotic relative efficiency, Gibbs sampler, Ising model,
 Markov chain Monte Carlo, Metropolis algorithm, parallel updating, variance re
 duction.

 1. Introduction

 Suppose we want to calculate the expectation nf of a bounded function / un
 der a distribution 7r on a K-dimensional space, based on i.i.d. copies X1,..., Xn
 from 7r. In the nonparametric setting, with nothing known about tc, the empiri
 cal estimator Enf = Ya=i f(Xl)/n has minimal asymptotic variance; see Bickel,
 Klaassen, Ritov and Wellner (1993). If the components of 7r are known to be
 independent, then Enf is no longer optimal, and a better estimator of irf is the
 generalized von Mises statistic

 = È «). n1 . .

 Since it is the expectation of / under the product of the marginal empiricals, Mnf
 has again minimal asymptotic variance if nothing is known about the marginal
 distributions. Note that the terms (X\l,..., Xl£ ) have law it: They are obtained
 by mixing the components from the different i.i.d. copies X1 = (X[,... ,X%K).
 In other words, the von Mises statistic is obtained by replacing values of the
 components by values with different time indices. This works because there are
 no interactions either among the K components or among values with different
 time indices.
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 The purpose of this paper is to show that there is a way of extending the
 idea behind the von Mises statistic to evolving random fields that are known to
 have only local interactions in space and time. Specifically, we consider Markov
 chain Monte Carlo (MCMC) samplers for random fields with nearest neighbor
 interactions on a lattice. We mainly study the Gibbs sampler, but our approach
 naturally extends to other samplers (e.g., Metropolis) that are important in image
 analysis and spatial statistics for computing features of the underlying random
 field models (see, e.g., Geman and Geman (1984), Besag and Green (1993),
 Johnson (1994), Künsch, Geman and Kehagias (1995) and Mollié (1996)).

 A well-studied aspect of MCMC is the rate of convergence of the chain to
 stationarity (see, e.g., Schervish and Carlin (1992) and Rosenthal (1995)). Here,
 however, we are interested in estimator variance, which can be more relevant
 than convergence rate as an optimality criterion (Grenander (1993), p.394), es
 pecially when the random field has relatively weak interactions so the sampler
 is rapidly mixing and convergence rate is no longer an issue. Indeed, simulation
 results of Johnson (1996) that apply in typical image analysis and spatial statis
 tics applications of the Gibbs sampler, show that convergence to stationarity is
 achieved fairly quickly provided the interactions in the underlying random field
 are moderate. Many authors have utilized estimator variance as an optimality
 criterion in the MCMC context, see Peskun (1973), Frigessi, Hwang and Younes
 (1992), Green and Han (1992), Liu, Wong and Kong (1994), Geyer (1995) and
 Casella and Robert (1996).

 We formulate our results in terms of the Gibbs sampler for a random field n

 with nearest neighbor interactions on a lattice with K sites. A common estimator
 for the expectation irf is again the empirical estimator Enf, now based on a
 realization A0,..., Xn of the Gibbs sampler Markov chain, which has stationary
 law 7r. Our goal is to find an estimator with smaller asymptotic variance than
 Enf- We propose a class of von Mises type estimators that average over terms
 of the form /(Aj1,... , Aj^), similar to Mnf. Here the sites on the lattice are
 labeled 1 ,...,K. Once more we can use collections î\,...,îk of time indices

 for which (AJ1,..., Xfê) has stationary law n. Now, however, because of the
 interactions, the time indices cannot be too far apart.

 The collections of time indices that can be used will be characterized in

 Section 2 in terms of "admissible update functions". In Section 3 we use these
 functions to define the class of von Mises type estimators that are expected to
 improve upon the usual empirical estimator. In Section 4 we carry out a simula
 tion study of the Ising model to assess the variance reduction of the competing
 estimators over that of the empirical estimator. Section 5 discusses extensions
 to other samplers and gives some recommendations on the choice of admissible
 update functions.
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 2. Admissible Update Functions

 We begin by describing general Gibbs samplers with deterministic sweeps on
 a square lattice. Let S = {0,..., k — l}rf be a square lattice of dimension d. For
 simplicity, take k to be even. The lattice has K — kd sites. Let E denote an arbi
 trary measurable state space. The configuration space is the product space Es.
 Let 7T(dx) be the law of a random field on Es. For a given site s, it can be factored
 into marginal and conditional distributions as n(dx) = m-s(dx-s)ps(x-s, dxs),
 where rr_s is obtained from x by omitting xs. The conditional distributions
 ps(x-s,dxs) are called the local characteristics of 7r. From an initial configura
 tion A0 a Gibbs sampler generates a Markov chain X°, X1,... with invariant
 law 7T (Geman and Geman (1984)). A Gibbs sampler with deterministic sweep
 is based on some specified ordering of the sites. It updates a configuration X
 according to the transition distribution Q(X,dx) = fis 'Ps(x<s, X>s,dxs), where
 x<s is the subconfiguration of all sites that come before site s.

 Let / be a bounded measurable function on Es. The usual estimator for the
 expectation 7rf = f ir(dx)f(x) of / under 7r is the empirical estimator Enf. For
 each s, the partially updated configuration (X<+ç\ X>s) also has stationary law
 7T and further "empirical" estimators are

 = (2.1)
 ft . 1 1=1

 A possible improvement over any of these estimators is the average

 Enf = ^Y.Kf; (2-2)
 see Geweke (1992) or Greenwood, McKeague and Wefelmeyer (1996) for discus
 sion. Can we do better if the field has only local interactions? We show that this
 is the case. For simplicity, we restrict attention to nearest neighbor interactions.

 The set of nearest neighbors of a site s is ds = {t: |t — s| = 1} with \t — s| =

 Y,j Itj - sj I. We use a free boundary, in which case the boundary sites have fewer
 than 2d neighbors. We assume nearest neighbor interactions, ps(x-s,dxs) =
 ps(xQs,dxs), i.e., the local characteristics at site s depend only on the nearest
 neighbors of s.

 A widely used updating scheme for nearest neighbor models respects the
 checkerboard pattern of the lattice in the sense that it updates first the sites
 with, say, even parity and then those with odd parity (e.g., Heermann and Burkitt

 (1992)). A single site s is updated using the local characteristic ps(xßs, dxs). Note
 that the sites in the neighborhood ds have opposite parity to s. Therefore, all
 even, or all odd, sites can be updated simultaneously. We write a configuration
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 x = (ye, y0). where ye and y0 are the subconfigurations of x on the even and
 odd sites respectively. Let X° = (Y°, Y1) be an initial configuration. The Gibbs
 sampler based on this updating scheme first creates a subconfiguration Y2 on
 the even sites, then a subconfiguration Y3 on the odd sites, and so on. Here,
 rather than counting the update of a complete configuration as a time step, we
 define a full time step to be the update of an even or an odd subconfiguration
 (by the clock of a parallel computer say). This means that the output of the
 Gibbs sampler is Y0, Y1, Y2,..., and the sequence of complete configurations is
 given by X° = (Y0, Y1), X1 = (Y2,Y3),....

 To motivate the construction of our estimators, we assume for now that the
 initial configuration X° is distributed according to the stationary law it. Then
 the Gibbs sampler Markov chain X°, X1,... is stationary. Now suppose that we
 replace a component X] of the configuration X1 by a future value X*+J. Which
 replacements leave the joint law of the configuration unchanged? We have already
 seen in Esnf an example of such replacements for the general case with possibly
 non-local interactions—we replaced the values X\ by X\+1 for t < s. We will see
 that for nearest neighbor models more general replacements are possible.

 It is convenient to describe such replacements by an update function I: S —>•

 {0,1,...}, with I(s) even for s even, and odd otherwise. An update function I
 describes a new configuration Z1 = (Ys^)ses in terms of the observed chain
 Y°jY1 ,Y2,... by specifying, for each site s, the time index i — I(s) of the
 value going into this configuration. For example, the initial configuration is
 X° = (Y0,YX) = Z1", where

 ^- î; : 7ïî: <2-3>
 and X1 is obtained from X° by shifting J° to yield X1 = Z!°+21 for i — 1,2, —
 We say that an update function is admissible if its values at any two neighboring
 sites differ by 1. A move picks a site s, then replaces I(s) by I(s) + 2, leaving
 I unchanged otherwise. A move is admissible if it preserves admissibility of
 the update function, see Figure 1. Note that an admissible move can be made
 at site s if and only if I(t) = I(s) + 1 for all t G ds. Note also that 7° is an
 admissible update function, and that all admissible update functions are built-up
 by applying finitely many admissible moves to 7°.

 The following proposition shows that for an admissible update function 7, the
 process ZI+2\ 7 = 0,1,.. . is distributed as output from another Gibbs sampler
 for TT. The sweep of this new Gibbs sampler is ordered by 7 in the sense that it
 first updates the sites on the lowest level of 7, then proceeds upwards layer by
 layer. In general, the new sweep does not respect the checkerboard pattern.

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 15:48:45 UTC
All use subject to https://about.jstor.org/terms



 VON MISES STATISTICS FOR RANDOM FIELDS 703

 i -h 2

 i + 1

 Figure 1. An admissible move at site s.

 Proposition. Suppose n has nearest neighbor interactions and Xl,i = 0,1,...
 is generated by a Gibbs sampler for 1r whose updating respects the checkerboard
 pattern of the lattice. If I is an admissible update function, then ZI+2l,i =
 0,1,... is distributed as a Gibbs sampler for 7r having sweep ordered by I.

 Proof. The basic idea is simple: note that an update at a site s is obtained
 by adding 2 to the current value of the update function at that site. Thus, the
 configuration ZI+2t is obtained from Z by applying (Gibbs sampler) updates
 site-by-site in the order of the sweep associated with I. A more formal version
 of this argument is as follows. Let Is denote the update function obtained from
 I by applying the moves at the sites before s in the order of the new sweep. If
 Is(s) = i, then since Is is admissible, Is(t) = i -1-1 for t G ds. The move at s
 replaces Is(s) — i by i + 2. Recall that Y^+2 = Z!s+2 was generated using the
 conditional law ps(Y^1 ,dxs) which equals ps(ZIZs^ dxs). Hence ZI+2 is obtained
 from Z1 using the Gibbs sampler with the new sweep.

 3. Von Mises Type Statistics

 Let 7T be the law of a random field with nearest neighbor interactions, and
 consider a Gibbs sampler with an updating scheme that respects the checkerboard
 pattern of the lattice. Suppose the Gibbs sampler has generated configurations
 X°,..., Xn. Let / be a bounded measurable function on Es.

 Call an admissible update function I a template if it uses part of the initial
 configuration X°, i.e., if min/ equals 0 or 1. If the Gibbs samplers for 7r are
 ergodic, then each template I gives a strongly consistent estimator for irf,

 i n—h+l

 E«/=—r-^ E S{Z™). n-h + 2 ,=0
 Here h is the height of /, i.e., the number of full time steps it straddles. This
 means that max / equals 2h - 2 or 2h — 1.
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 If the Gibbs samplers for n are geometrically ergodic, then E^f is also asymp
 totically normal. Its variance, however, can be substantially different from that
 of the usual empirical estimator Enf. Estimators with reduced variance might
 be obtained by averaging over some family of templates:

 En!= PfE®»/. lei

 where \I\ denotes the cardinality of I. It seems difficult, however, to determine
 theoretically those classes of templates that always lead to a variance reduction.

 Averaging over templates can be interpreted as symmetrizing Enf, as in a
 generalized von Mises statistic. In general we expect such estimators to have
 smaller variance for larger families of templates. However, there is a trade-off
 in terms of computational cost: for high templates we would need to store more

 configurations, and for large families we would need to evaluate / more frequently,

 which could be critical in large lattices or when f(x) is expensive to compute.
 What are good choices of X? Let us first consider the situation in which n

 is the law of an arbitrary random field, with not necessarily local interactions.
 Then we need a restricted definition of an admissible update function for the
 Proposition to hold. The corresponding templates will be just those used for
 the estimators E* f defined in (2.1), with sites t < s updated. For s even the
 template Is is

 0, t > s, t even,
 2, t < s, t even,
 1, t odd,

 I'(t) =

 see Figure 2. The template for s odd is similar:

 Is(t) = «
 1, t > s, t odd,
 3, t < s, t odd,
 2, t even.

 As discussed in Section 5, for other templates I, the configurations ZI+2t do
 not have stationary law -k in general. As long as tt is considered unknown,
 and we cannot exploit any special features of the function /, it makes sense to

 use the average of E^f = E^ f over all templates Is. This is the estimator
 Enf defined in (2.2). Note, however, that we do not have strict optimality, not
 even asymptotically, because the asymptotic covariance matrix of the E^f is
 not exactly circulant, in general, as pointed out in Greenwood, McKeague and
 Wefelmeyer (1996).
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 Figure 2. An admissible template when tt is arbitrary; Is for s even.

 As mentioned earlier, we recover the usual empirical estimator Enf by taking
 I to be the one template 1° defined in (2.3). An intermediate choice of 1 is 1°
 together with the template

 rl/„ï = J2' seven'
 11, s odd,

 corresponding to a half-updated configuration. Greenwood, McKeague and We
 felmeyer (1996) show that one always obtains an asymptotic improvement over
 Enf by using both 1° and J1. This choice of X yields the estimator Gnf =
 UEjîf + E'n'f).

 We return to nearest neighbor interactions. To make use of the nearest
 neighbor assumption, we must go beyond the templates just described. For large
 lattices it may not be computationally feasible to use all templates. If one uses
 only a few templates, they should be well spaced to reduce correlation between
 different E^f. The higher the templates we allow, the better we can space them.
 However, high templates require more storage: To calculate E^f for a template
 I of height h, we must store h configurations at a time.

 A good choice of templates also depends critically on the function /. We
 illustrate this with a simple case, a function f(x) = fst{xs,Xt), with fixed sites
 s and t exactly r bonds apart. The rth nearest neighbor correlation in the
 simulation study in Section 4 is an average of functions of this form. For such
 a function, two templates give asymptotically equivalent estimators E^fst if on
 s and t the differences between the templates are the same. This leaves r + 1
 essentially different templates,

 I(s) = /°(s) and I(t) =
 I(s) = I°(s) and I(t) = I°(t) +2i, I(t) < r + 1;
 I(t) = I°(t) and I(s) = I°(s) + 2i, I(s) < r + 1.

 What are good choices of templates for functions fst!
 Let us again first consider the situation where n is the law of an arbitrary

 random field, with not necessarily local interactions. There are essentially two
 templates. If r is even, they are

 I(s) — I(t) =0 and I(s) — 2, I(t) = 0, s < t, if s and t are even,
 I(s) = I(t) = 1 and I(s) = 3, I(t) = 1, s < t, if s and t are odd.
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 If r is odd, s is even and f is odd, the two templates are

 I(s) = 0, I(t) = 1;
 I(s) = 2, /(f) = 1.

 We write G^fst for the average of E^fst over the two templates corresponding to
 s and f. For instance, when r is odd, G^fst = Gnfst and the two templates 1° and
 J1 are the best choice. The estimator is not quite equal to Enfst, which
 does not exploit any special features of the function. Simulations in Greenwood,
 McKeague and Wefelmeyer (1996) show that the latter can be slightly worse. A
 possible explanation is that it does not assign equal weights to the two essentially
 different templates.

 We return again to nearest neighbor interactions. If r = 1, we cannot do
 better than use Gnfat. The nearest neighbor assumption cannot be exploited. If
 r = 2, we can do better than G^fst, the best non-nearest neighbor choice. The
 full von Mises type estimator is based on three templates. For even s and t they
 are

 I(s) = /(f) = 0;
 I(s)= 2, /(f) = 0;
 /(s) — 0, /(f) =2,

 see Figure 3. For odd s and f they are

 I(s) = /(f) = 1;
 I(s) = 3, /(f) = 1;

 1(8) = 1, /(f) = 3.

 If r = 3, the best non-nearest neighbor choice is again Gnfst-, based on the two
 templates 1° and I1. The full von Mises type estimator is based on four templates.
 We expect the two highest of these templates on their own to be better than the
 two templates 1° and I1, because they are better spaced. If r is too large to use all
 r + 1 templates, we suggest choosing a well-spaced subset to reduce correlation
 between the E^fst- Good choices are the two highest templates, or the two
 highest together with the two lowest.

 Figure 3. The three essentially different templates for r — 2 and s, t even.
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 4. Ising model simulations

 In this section we evaluate the performance of some of the proposed von
 Mises type estimators when applied to Gibbs and Metropolis samplers for the
 Ising model.

 The state space is E = {+1,-1}, representing two spin orientations. Un
 der the Gibbs distribution 7r, a configuration x € Es has mass proportional to

 exp(—H(x)), where the energy function H is given by H(x) = — ßJ2(s,t)1 xs%t
 Here ß is the inverse temperature and the sum is over unordered pairs (s,t) i
 of nearest neighbors s,t. The updating scheme first updates the even sites in a
 raster scan, then the odd sites. For more about the Ising model see, e.g., Winkler
 (1995).

 We consider the rth nearest neighbor correlation f(x) = Yl(s,t)r %sxt/N. The
 sum is over all unordered pairs (s,t)r of rth nearest neighbors s,i, and N is the
 number of these pairs. This function is an average over functions fstixsixt) =
 xsxt. Functions of this form were discussed above. We denote 7r/ = pr, the
 expected rth nearest neighbor correlation. The decay of pr as r increases is an
 important descriptor of the spatial structure of the random field and is widely
 studied by physicists.

 By Mnf we denote the full von Mises type estimator, averaging on each
 pair (s,t)r over all r + 1 different templates. By Hnf we denote the von Mises
 type estimator which uses only the two highest templates on each pair (s,t)r.

 We compare these estimators with Enf and with G* f = Yl(s,t)r Gjîfst/N, the
 average over the best non-nearest neighbor choices of Section 3. For r odd,
 the latter reduces to Gnf.

 Variance reductions of these estimators over the usual empirical estimator
 are reported in Tables 1-4. The results are for a 100 x 100 lattice with free
 boundary, and are based on 1000 runs of the Gibbs and Metropolis samplers.
 For the Metropolis sampler, the proposal at each site is a spin flip. The variance
 a2 of the usual empirical estimator Enf is given in units of 10~6. Each run of
 the sampler consisted of a burn-in of 20 sweeps followed by n = 10 sweeps used
 for estimation of pr. For each entry in the tables, the estimator was calculated
 on the basis of these 10 sweeps for each of 1000 independent runs, and then the
 empirical variance over the runs was calculated. Simulation results of Johnson
 (1996) indicate that 20 sweeps provide an adequate burn-in for the values of ß
 considered here.

 The expected rth nearest neighbor correlation pr naturally decreases with
 r; the decrease is stronger for small ß, i.e., high temperature. In terms of the
 variance of the empirical estimator Enf, the Metropolis sampler is better at low
 temperature (ß > 0.3), and the Gibbs sampler is better at high temperature
 (ß = 0.1). The improvement of Metropolis over Gibbs at low temperature is
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 about the same for different r, i.e., for different functions /, and it increases
 with ß. For ß = 0.4 the variance of Enf is about 25% less under the Metropolis
 sampler than what it is under the Gibbs sampler.

 Table 1. ß = 0.1. Percentage variance reductions over the usual empirical estimator.

 Gibbs sampler  Metropolis sampler
 r = 2  r = 3  r = 4  r = 5  r = 2  r = 3  r = 4  r — 5

 Pr  0.015  0.0024  0.0004  0.00007  0.015  0.0024  0.0004  0.00007

 a2  3.39  2.26  1.60  1.24  9.57  2.49  5.00  1.55

 Enf  12%  31%  18%  28%  28%  53%  49%  28%

 G*f  35%  38%  25%  35%  66%  72%  57%  72%

 Hnf  50%  48%  48%  47%  31%  -33%  63%  -58%

 Mnf  57%  63%  69%  74%  93%  87%  98%  94%

 Table 2. ß = 0.2.

 Gibbs sampler  Metropolis sampler
 r = 2  r = 3  r = 4  r = 5  r = 2  r = 3  r = 4  r = 5

 Pr  0.07  0.02  0.007  0.003  0.07  0.02  0.007  0.003

 a2  7.85  5.43  4.23  3.21  8.98  3.65  4.78  2.31

 EJ  4%  8%  8%  8%  16%  20%  30%  10%

 G*f  16%  13%  13%  9%  44%  23%  33%  22%

 Hnf  37%  37%  45%  38%  67%  2%  43%  22%

 Mnf  33%  34%  46%  43%  81%  79%  90%  88%

 Table 3. ß = 0.3.

 Gibbs sampler  Metropolis sampler
 r = 2  r = 3  r = 4  r = 5  r = 2  r = 3  r = 4  r = 5

 pr  0.17  0.09  0.05  0.03  0.17  0.09  0.05  0.03

 (T2  24.5  24.8  23.4  20.5  15.8  14.7  15.0  12.0

 Enf  2%  1%  3%  0%  8%  3%  10%  1%

 G*J  2%  2%  2%  1%  10%  4%  8%  3%

 Hnf  11%  13%  19%  17%  35%  40%  49%  41%

 Mnf  9%  10%  14%  12%  33%  35%  49%  49%

 Table 4. ß = 0.4.

 Gibbs sampler  Metropolis sampler
 r = 2  r = 3  r — 4  r = 5  r = 2  r = 3  LO II II 5

 Pr  0.39  0.30  0.23  0.19  0.39  0.30  0.23 0.19

 a2  122  204  273  285  93.2  148  197 241

 Enf  0%  0%  0%  0%  0%  0%  1% 0%

 G*J  0%  0%  0%  0%  0%  0%  1% 0%

 Hnf  1%  0%  2%  3%  1%  4%  8% 7%

 MJ  1%  0%  1%  1%  1%  3%  5% 4%
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 VON MISES STATISTICS FOR RANDOM FIELDS 709

 As anticipated, the full von Mises estimator Mnf has the best general per
 formance of all the estimators considered. At low temperature, however, it can
 be slightly worse than Hnf, even though that estimator is based on only two
 templates. To see why, note from the proof of the Proposition that a template
 produces output from a sampler with a sweep that does not in general respect
 the checkerboard pattern of the lattice, so the asymptotic variance of the corre
 sponding empirical estimator can be different from that of the usual empirical
 estimator. High templates represent the strongest departures from checkerboard
 updating, and are the most likely to produce changes in the variance. An extreme
 example of this occurs with the Metropolis sampler at high temperature and for
 odd-order nearest neighbor functions, where Hnf has variance much larger than
 that of the usual empirical estimator. Although Mnf also uses high templates,
 the other templates compensate for the poor performance of the high templates
 in this case.

 The full von Mises estimator Mnf and the best non-nearest neighbor choice
 G*nf have smaller variance under the Metropolis sampler than under the Gibbs
 sampler at all temperatures. This is in contrast with the usual empirical esti
 mator, which has smaller variance under Gibbs than under Metropolis at high
 temperatures.

 The improvement of Mnf over G*J and Enf is greater under Metropolis
 than under Gibbs, probably due to weaker correlations in the Metropolis chain
 and hence between E^f with distinct I. The improvement is less pronounced
 at lower temperatures, for which the correlations in the field and hence in the
 chain are stronger. The best overall performance is obtained from the Metropolis
 sampler in conjunction with Mnf.

 5. Discussion

 We have introduced a class of von Mises type statistics for estimating features
 of a local interaction random field via MCMC. Our simulation study has shown
 that the proposed estimators can produce significant variance reduction over the
 usual empirical estimator. We now discuss features of the random field and the
 sampler that are essential for our approach, and those that can be generalized.
 We also give some recommendations on how to choose the templates for a von
 Mises type estimator.

 Admissible update functions. In general, if an update function I is not ad
 missible, then the stationary law of Z1 is different from 7r, and the estimator
 E^f is not consistent for nf. Inadmissible update functions are obtained from
 admissible update functions by inadmissible moves. A move at a site s, from I
 to I' say, can be inadmissible in two ways: we may not have I(t) = I(s) + 1 for
 all t £ ds, or the move may be too high, I'(s) > I(s) + 2. In both cases, the value
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 zl ^ is not generated by conditioning on Z^\t € ds, but on future values, so
 Zr is not distributed as it would be under the Gibbs sampler, i.e., the condi
 tional distribution of Z\ given Z[_s fails to agree with the local characteristic
 Ps{Z_s,dxs) of it. -S '

 Respecting the checkerboard. We have restricted attention to sweeps that
 update first the even and then the odd sites, or vice versa. This is not necessary,
 but any sweep that does not respect the checkerboard pattern is worse in terms
 of statistical efficiency (there are fewer admissible update functions). An extreme
 case is a sweep which always picks a site adjacent to the previous one. Then the
 templates Is give the only admissible update functions, and our approach gets
 nothing out of the nearest neighbor assumption.

 Nearest neighbor interactions. We have considered a random field with near
 est neighbor interactions, for which the lattice can be partitioned into two sets
 of sites such that each set contains no two neighboring sites. More general local
 interactions may also allow a similar partitioning, perhaps into more than two
 sets. The minimal number of such sets is the chromatic number; see Grenander
 (1993, p.382). A good sweep would go through one such set at a time. Of course,
 the higher the chromatic number, the fewer admissible moves.

 Gibbs samplers. When the Gibbs sampler updates a given site, it does not
 use the present value at that site. It is easy to check that the Gibbs sampler is
 the only single site updating scheme with this property which is also in detailed
 balance with 7r. The property is, however, not essential for our approach. We
 may also use single site updating rules that use the present value at the site as
 long as they are local, in the sense that they condition only on values at nearby
 sites. Examples are the Metropolis algorithm and many other Glauber dynamics
 (reversible spin flip updates) for Ising models, see Neves and Schonmann (1992,
 pp.334-336).

 Nearest neighbor functions. For functions depending only on certain sites,
 one should pick templates differing on these sites. We have already discussed
 functions depending on just two sites. More generally, if f(x) = /a(xa) depends
 only on the sites in A, two templates I and I' give essentially different estimators

 E^f and f only if I and /' differ on A, and not just by a shift. If A contains
 many sites or sites lying far apart, there are many essentially different templates.

 Again, templates should be chosen well spaced to reduce correlation between the
 corresponding estimators.

 Weighted averages over templates. An optimal weighted average of the es
 timators E^f would require estimation of their asymptotic covariance matrix.
 This can be done using the method of batch means as discussed in Geyer (1992).
 Such a weighted average may not be worth the effort, however, and we suggest
 using simple averages over a well-chosen (possibly quite small) class of templates.
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 Surprisingly, the asymptotic variance of the E^f can change considerably with
 the choice of template (see the Metropolis sampler results in Section 5), and
 can be higher or lower than that of the usual empirical estimator. The greatest
 variance reduction is achieved by using templates that are well-spaced (in terms
 of the area between the update functions) and thus less correlated. Estimation
 of the variances/covariances is feasible but again inconvenient. In general, we
 recommend the use of a combination of (well-spaced) high and low templates, to
 safeguard against placing excessive weight on templates with large variance.
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