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 Given a Markov chain sampling scheme, does the standard empirical
 estimator make best use of the data? We show that this is not so and con-

 struct better estimators. We restrict attention to nearest-neighbor random
 fields and to Gibbs samplers with deterministic sweep, but our approach
 applies to any sampler that uses reversible variable-at-a-time updating
 with deterministic sweep. The structure of the transition distribution of

 the sampler is exploited to construct further empirical estimators that are
 combined with the standard empirical estimator to reduce asymptotic vari-
 ance. The extra computational cost is negligible. When the random field is
 spatially homogeneous, symmetrizations of our estimator lead to further

 variance reduction. The performance of the estimators is evaluated in a

 simulation study of the Ising model.

 1. Introduction. Suppose we want to calculate the expectation of a

 bounded function f under a distribution X on some space D. If D is of high
 dimension, or if v- is defined indirectly, it may be difficult to calculate the
 expectation rTf = ff(x) T(dx) analytically or even by numerical integration.
 The classical Monte Carlo method generates i.i.d. realizations X0,..., X'
 from T- and approximates 7-f by the empirical estimator

 1 n-1
 Enf =-Ef(X).

 n i=O

 The estimator is strongly consistent and asymptotically normal. Often, how-
 ever, this Monte Carlo method is difficult to implement. One reason is that
 high-dimensional distributions are hard to simulate. Additional difficulties
 arise when v is defined indirectly, as in many Bayesian modeling situations,
 or only known up to a normalizing constant, as is usually the case for random
 fields.

 The Markov chain Monte Carlo (MCMC) method generates a Markov chain
 X0, X1, .. ., with 1T as invariant law. Again, the empirical estimator E?f is
 used to approximate XTf. If the chain is ergodic, the estimator is consistent; if
 the chain is geometrically ergodic, the estimator is asymptotically normal.
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 Over the last ten years, the special MCMC scheme known as the Gibbs sam-
 pler has become an important tool for estimating features in high-dimensional
 distributions ,T. The method originated with the study of interacting particle
 systems, such as the Ising model in statistical physics, where it is known as
 the heat bath algorithm. The Gibbs sampler is also used in image analysis
 [Grenander (1983) and Geman and Geman (1984)], Bayesian statistics [Smith
 and Roberts (1993)], spatial statistics [Besag and Green (1993) and Graham
 (1994)], expert systems [Pearl (1987) and Spiegelhalter, Dawid, Lauritzen and
 Cowell (1993)], incomplete data problems [Tanner and Wong (1987)] and hi-
 erarchical models [Gelfand, Hills, Racine-Poon and Smith (1990)].

 There is a trade-off between speed of convergence of the Markov chain to

 stationarity and asymptotic variance of the empirical estimator. The asymp-
 totic variance depends only on the stationary law of the chain. It is common to
 calculate the empirical estimator after a "burn-in" has reached approximate
 stationarity, and one may switch at that point from a sampler with good rate
 to a sampler giving small variance. Speed of convergence of various MCMC
 schemes has been studied by Schervish and Carlin (1992), Chan (1993), Tier-
 ney (1994) and Ingrassia (1994). Athreya, Doss and Sethuraman (1996) give a
 proof of the convergence in general state spaces. For general Markov chains,
 see Meyn and Tweedie (1993). Some comparisons of the rates of different
 MCMC schemes may be found, for example, in Frigessi, Hwang, Sheu and
 Di Stefano (1993) and Amit and Grenander (1991). Grenander (1993), Chap-
 ter 7, compares random and deterministic sweep strategies in terms of rates.
 He notes (page 394) that estimator variance can be more relevant than con-

 vergence rate as an optimality criterion. The question of which Markov chain
 sampling scheme minimizes the asymptotic variance of the empirical estima-
 tor is studied by Peskun (1973), Frigessi, Hwang and Younes (1992) and Green
 and Han (1992), among others.

 Here we consider a complementary question: given a Markov chain sam-
 pling scheme, does the empirical estimator make best use of the sample? We

 will see that this is not so and will construct considerably better estimators
 in the case of the Gibbs sampler with deterministic sweep. Our approach will
 apply to any MCMC scheme with deterministic sweep and reversible local up-
 dating, in particular to local Metropolis-Hastings samplers with deterministic
 sweep.

 Specifically, let D = Vs with S a finite lattice and V a state space that
 may be discrete or continuous. The Gibbs sampler is described in terms of the

 one-dimensional conditional distributions pj(x8, dx,) of IT(dx), where x_S is
 obtained from x by omitting xs. A deterministic sweep through the lattice is
 fixed by ordering the sites Sl, ... Sd. The transition distribution

 d

 Q(x, dy) = psj(Ys<j, xsej dys),
 j=l

 with s<j = (sl, .. ., sj-,), has invariant law v. From an initial configuration
 XO the sampler generates a Markov chain XO, X1, . . . using the transition law
 Q. In the transition from Xi to Xi+1 it updates, sequentially, the values at
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 THE GIBBS SAMPLER EMPIRICAL ESTIMATOR 1435

 all sites sI, ... ,Sd. The sequence X?, X1, ... can be viewed as a sequence of
 images or configurations on the lattice, that is, an evolving random field.

 The empirical estimator E?f based on the Gibbs sampler is often consid-
 ered as optimal when no information (apart from the simulated chain) about
 7 is used. For classical i.i.d. Monte Carlo this is true-the empirical estimator
 has minimum asymptotic variance. This follows from a result of Levit (1974);
 see also the recent monograph of Bickel, Klaassen, Ritov and Wellner (1993).
 A similar result for Markov chains is due to Penev (1991): If one uses only
 the information that the data comes from a Markov chain and no model as-

 sumption about Q, then the empirical estimator has minimum asymptotic
 variance. This seems to support the popular impression that the empirical
 estimator makes best use of the data.

 We will argue now that the specific structure of the transition distribution
 of the Gibbs sampler with deterministic sweep (that it is a composition of re-
 versible variable-at-a-time updates) can easily be exploited to construct new
 "empirical" estimators that can be combined with EO f to produce consider-
 ably better estimators. The sampler updates the lattice site by site; view each
 update as a new image or configuration that differs form the previous one only
 at the updated site. The sampler generates, on its way from Xi to Xi+l, an
 intermediate chain of configurations, which we write as

 Xi= (X+1,X ), j=1,...,d- 1.

 At "time" i.j only the sites sl, .. ., sj have been updated in the (i + 1)th pass.
 Interpolating the intermediate configurations into the chain X?, X1,..., we

 obtain afine chain X?, X01, ..., XO.(d-1), X1, X.11, ... indexed by the fine time
 scale. Under the stationary law, every intermediate configuration Xi j has
 distribution iT. From each of the d - 1 interpolated chains X0?i, Xl'i,... we
 obtain a new "empirical" estimator

 1n-i

 EJf= - L f (Xl.), j=l,..d -1. n n i-

 If the chain is ergodic, all the EJ f are consistent; if the chain is geometrically
 ergodic, they are asymptotically normal.

 Any convex combination of these empirical estimators is likely to result in

 an improved estimator unless f depends on only one component, say xl. In
 practice, one often uses the average

 Gd f d
 j=O0

 This is just the empirical estimator on the fine chain and is analogous to the
 "empirical estimator" used for random sweep. Geweke (1992) conjectures that
 Gd f is efficient. Our simulations indicate that, at least in balanced situations,
 equal weights are close to optimal. We show, however, that equal weights
 are not strictly optimal, not even asymptotically. If one were to pursue the
 optimal linear combination, the weights would usually depend on vi and would
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 have to be estimated. The decrease in asymptotic variance would have to be
 balanced against the computational cost of estimating the optimal weights. It
 is therefore of interest to identify situations where one can do better than the

 single empirical estimator E? f, without estimating weights.
 Consider the lattice with just two sites, S = {1, 2}. The fine chain is

 X?, X0.1, X1, X11, .... We have noted that under the stationary law each
 configuration in the fine chain has distribution Ir. We show that when d = 2
 the fine chain is time-reversible, in the sense that the stationary joint law of
 X?, X01, ..., Xn.1 is the same as Xn1, Xn', ..., X?. This means that under
 the stationary law the empirical estimator E? f has the same distribution as

 1n-1 1n-1
 Elf =-E f(X-1) = E f(Xi+l, xi). n n niXo ni==O n

 Since the asymptotic variance does not depend on the initial distribution,
 the two estimators have the same asymptotic variance, and the best linear
 combination is

 Gnf = l(Eof +Elf).

 The estimator Gn f is the empirical estimator computed from the fine chain.
 We show in Greenwood, McKeague and Wefelmeyer (1995) that Gnf can-
 not be further improved by any other estimator, except by using information
 about 7, for example, by using the one-dimensional conditional distributions

 pS(x-s, dxs) in a method akin to Rao-Blackwellization; see Smith and Roberts
 (1993), subsection 4.2.

 An important application of the two-step Gibbs sampler arises from a
 nearest-neighbor random field on a finite square lattice. The nearest-neighbor
 structure allows us to construct a two-step sampler by first updating all even
 sites and then all odd sites arranged in a checkerboard pattern. Even sites
 have only odd neighbors, so the conditional law of an odd site depends only
 on the values at even sites, and vice versa. The interpolated configurations
 X i- are generated from the configurations Xi by updating just the even sites.
 The estimator Gnf introduced above is the best linear combination of the
 two empiricals based on XO, X1, ... and on X0 1, X11l,.... The checkerboard
 pattern has been widely used to perform Monte Carlo simulations on parallel
 computers; see, for example, Heermann and Burkitt (1992).

 Nearest-neighbor models arise in condensed matter physics [e.g., Binder
 (1992)], lattice approximations to quantum fields [due to Guerra, Rosen and

 Simon (1975); also see Simon (1974)], lattice gases [Israel (1979)] and else-
 where. In such applications, homogeneities are likely to be present. When the
 random field is spatially homogeneous, that is, invariant under translations,

 can we find a better estimator than Gnf? Suppose that IT is invariant under
 a translation T on the lattice S with periodic boundary conditions. Additional
 empirical estimators are

 1n-i 1n-1
 Ef oT=-f(TX), Ef o T =- f (TXil).

 n i==o n i=o
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 Now we ask whether equal weights give the optimal linear combination of

 the four empirical estimators E? f, E'f, E? f o T, Enf o T. To answer this
 question, we identify the field on Vs with a "two-dimensional" field on Vse x

 Vso as before, where Se and SO are the sets of even and odd sites, respectively.
 Translations on Vs are of two types, those that take even into even and odd
 into odd sites, and those that take even into odd and odd into even sites. They

 are transformations from the "two-dimensional" field VSe x VSo onto itself of

 the form T(x1, x2) = (T1xl, T2x2) and T(x1, x2) = (T21x2, T12x1). We call
 them parallel and transverse transformations.

 We show in general that the average of E? f, El f, EOf o T, El f o T is op-
 timal. In fact, if v is invariant under a parallel or transverse transformation,
 the variances of all empirical estimators E? f o Ti and El f a T involving arbi-
 trary powers of T are equal. We describe various optimal linear combinations
 of them. Homogeneous nearest-neighbor fields on a two-dimensional square
 lattice are invariant under the group generated by horizontal and vertical

 translations. We apply our results to write optimal estimators that combine
 all the translations or any subgroup of them.

 The paper is organized as follows. Section 2 recalls the central limit theorem
 for empirical estimators on general Markov chains; Proposition 1 describes
 the best linear combination of the "empirical" estimators when the transition
 distribution is invariant under some transformation. Section 3 considers the
 two-step Gibbs sampler and introduces the "empirical" estimator Enf based
 on the interpolated chain; Theorem 1 shows that the best linear combination
 of E? f and Enf is the average. Section 4 continues the study of the two-step
 Gibbs sampler when X is invariant under a parallel or transverse transforma-
 tion T; Theorem 2 shows how best to combine "empirical" estimators En f ? Taj
 and El?f o Ti involving powers of T; Theorem 3 extends this to deal with
 powers of two transformations. Applications to nearest-neighbor fields are in
 Section 5.

 2. Markov chains and invariance. In this section we consider a geo-

 metrically ergodic Markov chain and empirical estimators based on it. If there
 exist transformations that leave the transition distribution invariant, then we
 can construct additional "empirical" estimators and find the best linear com-
 bination of these estimators. The use of group invariance is explored in the
 i.i.d. setting, for example, by Bickel, Klaassen, Ritov and Wellner (1993). Our
 results will be applied to the Gibbs sampler and a certain class of transforma-
 tions in Sections 3 and 4.

 Let Q(x, dy) be a transition distribution with invariant distribution r(dx)
 on a measurable space D. Fix an arbitrary initial distribution and let
 X0, ..., Xn be observations from the corresponding Markov chain. Assume
 that the Markov chain is geometrically ergodic, that is, ergodic (positive
 Harris recurrent) and there exists a positive constant r < 1 and a measurable

 function h on D with 71hl < oc, such that IlQn(x,.)-T < h(x)rn forall
 X E D, where 11 denotes the total variation distance.
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 For a bounded measurable function v(x, y) on D x D, consider the expec-
 tation of v under the joint invariant distribution,

 Ev(X0, X1) = 7Qv = if IT(dx)Q(x, dy)v(x, y).

 The notation E for expectation, =d for "equal in law" and - for "distributed
 as" will always be with respect to the stationary law of the chain.

 The Markov chain Xi = (Xi, Xi+') has invariant distribution ITQ
 and is geometrically ergodic, which follows from the geometric ergodicity
 of Xi and since the n-step transition distribution of Xi is Pn(x, dy) =
 Qn-1(x2, dy1)Q(yl, dy2) for x, y E D x D. The empirical estimator

 1 n-i
 Env =-E v(Xi, Xi+')

 n i=O

 is strongly consistent for -TQiv.
 The next lemma follows from a suitable central limit theorem for Markov

 chains; apply Theorem 2 of Chan and Geyer (1994) to Xi. Geometric ergodicity
 can be replaced by weaker conditions; see, for example, Meyn and Tweedie
 (1993), Chapter 17, and the discussion in Tierney (1994).

 LEMMA 1. Let the Markov chain be geometrically ergodic. Let vj(x, y),
 j = 1, ..., m, be bounded measurable functions on D x D. Then the estima-

 tors En v , j = 1, ..., m, are jointly asymptotically normal with asymptotic
 covariances

 lim n Cov(En v j, En Vk)
 n --- on

 = E(vj(X, XI) - Evj(X0, X1))vk(X0, XI)

 + {E(vj(X?, X1)-Evj(X, Xl))Vk(Xr-l, X')
 r=2

 + E(Vk(X0, XI) - Evk(X0, Xl))Vj(Xr-1 Xr)}.

 We will often make use of the fact that the asymptotic covariance depends
 only on the law of the stationary chain.

 Consider a bimeasurable transformation T on D that leaves Q(x, dy) in-
 variant in the sense that Q(x, dy) = Q(Tx, T dy). This forces v to be invariant
 under T. To see this, let B be measurable and write

 7(TB) = JT(dx)Q(x, TB) = J I(Tdx)Q(Tx, TB)

 = f iT(Tdx)Q(x, B).

 Hence iT(T dx) is invariant under Q. Thus, since the invariant distribution is
 unique, 7T(T dx) = 7(dx). Invariance of Q under T also implies that, for the
 stationary chain,

 (2.1) (X0 Xl Xr) =d (TX0,..., TXr).
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 For example, for r = 1,

 7(dx) Q(x, dy) = r(T dx) Q(Tx, T dy).

 Of course, if the chain X?, X1, ... is ergodic or geometrically ergodic, so is
 TX,O 'TX 1.

 The following simple lemma describes the best weights for a linear combi-
 nation of estimators in terms of their covariance matrix.

 LEMMA 2. If X is an m-dimensional random vector with nonsingular co-
 variance matrix X, then the variance of a linear combination b'X is minimized

 over vectors b with Ym 1 bi = 1 by

 with 1= (1,..., 1)'. If E. has equal row sums, then bj = 1/m for all j.

 Note that circulant matrices have equal row sums.
 Consider a bounded measurable function f(x) on D. The corresponding

 empirical estimator is

 ln-1

 E?nf f (Xi).
 n i.o

 If the chain is ergodic, then E? f is strongly consistent for 7r f . To any bimea-
 surable transformation T on D that leaves 1- invariant, there corresponds an
 "empirical" estimator

 1 n-I
 EofoT= -E f(TX').

 n n

 It is consistent as before with f (x) replaced by f (Tx). The same is true for any

 power Ti of T. Suppose that Q is invariant under T. Under the stationary
 law, any convex combination of such "empirical" estimators has smaller risk

 with respect to convex loss functions than the usual empirical estimator; use
 (2.1) and Brillinger (1963).

 The following proposition answers the question of how best to use linear

 combinations of such estimators if the powers form a cyclic group.

 PROPOSITION 1. Let the Markov chain be geometrically ergodic, with Q in-
 variant under T. Suppose the asymptotic covariance matrix of E? f o Ti, j =
 0, . . ., m -1, is nonsingular and Tm = TO for some m > 2. Then the best linear
 combination of E?f o TJ, j = O, ..., m-1, in the sense of minimum asymptotic
 variance, is

 -0 1 r-i
 Enf=- E f o Ti.
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 PROOF. For any j and k, the pair E?f o Tk, E? f o Ti is the pair
 EO f, EO f ? T(ij-k)mod m evaluated with the chain X?, X1, ... replaced by the
 chain TkXO, TkXl .... By (2.1) and Lemma 1, the asymptotic covariances
 of the two pairs above agree. Therefore, the asymptotic covariance matrix of

 E?nf o Ti, j = 0, ..., m - 1, is circulant, and the result follows by Lemma 2. C

 -0

 REMARK. The asymptotic variance reduction of En f is small if f is nearly
 invariant under T. In the extreme case, f = f o T, we have En f = EO f and
 no improvement. On the other hand, even if we use only one power of T, say
 T itself (m = 2), the improvement may be dramatic if f is far from invariant
 under T. In the extreme case, if f is anti-invariant, f-7rf = -(f o T- rf o T),
 we have 1(E f + E? f o T) = 7f. Then our estimator has asymptotic variance
 0, and the relative efficiency of E? f is 0. We shall discuss this further in
 reference to a specific example in Section 4.

 3. Two-step Gibbs samplers. In this section we introduce an alternative
 "empirical" estimator that exploits the structure of the transition distribution
 of two-step Gibbs samplers, and we find the best linear combination of the
 usual empirical estimator and the new one. Versions of the two-step Gibbs
 sampler are the auxiliary variable method of Swendsen and Wang (1987) the
 data augmentation algorithm of Tanner and Wong (1987), and the successive
 substitution sampler of Gelfand and Smith (1990). A specific example of the
 two-step Gibbs sampler, to capture-recapture estimation, is given by George
 and Robert (1992).

 Let ir(dx) be a probability measure on a product space D = D, x D2. It can
 be factored into marginal and conditional distributions in two ways:

 7(dx) = m1(dx1)p2(xl, dx2) = m2(dx2)p1(x2, dxl).
 The Gibbs sampler is defined as follows. At stage 0, pick XO = (X?, X?) from

 some initial distribution on D. At stage i, generate Xi p1(X2-7, dx) and
 then X2 - p2(Xi, dx2). The sequence X?, X1, ... is a Markov chain on D
 with transition distribution

 Q(x, dy) = p1(x2, dy1)p2(yl, dy2).

 The probability measure XT is invariant under Q. Consider a bounded measur-
 able function f(x) on D. As in Section 2, if the chain is ergodic, the empirical
 estimator E? f is strongly consistent for iTf.

 We view the sampler as an evolution of the configuration, updating the
 two sites one at a time. On its way from X' to X?l+, the sampler creates
 an intermediate configuration which, as in the Introduction, we denote by
 Xi-' = (Xi+l, X2). The fine chain X?, X0 1, X1, ... is again a Markov chain.
 This chain is not time-homogeneous, but has transition distributions that are
 periodic of order 2, namely

 Q1(x, dy) = P1(X2, dy1)rX2(dY2),

 Q2(x, dy) = P2(Xl, dY2)ex1(dy1),
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 where Ex is the point mass at x. The transition law of the original Gibbs
 sampler chain is Q = Q1Q2. It is well known and easy to check that Q1 and
 r- satisfy the detailed balance equation

 (3.1) T(dx)Q1(x, dy) = Q1(y, dx)mrr(dy),

 similarly for Q2. That is, under the stationary law, XI and X01 are reversible:

 (3.2) (X0, X0 1) =d (X0.1, X).

 In particular, X0 1 =d X? - 1 and the "new" empirical estimator

 1 n-i
 Elf = - E f(X'.)

 n n =
 i=O

 is strongly consistent for 7Tf. Note that, despite (3.2), the Gibbs sampler chain
 is not time-reversible unless the components of X- are independent, because

 the transition law of the time-reversed chain (in which sites are updated in

 the opposite order) is Q* = Q2Q1 Q
 Extending the proof of (3.2) inductively (this only works for two-step sam-

 plers), we obtain that the stationary fine chain is reversible:

 (3.3) (X0 X01, ... , r)=d (X'-1, xr-l, ... X0).

 We can extract alternate components from (3.3) to obtain that the reversed
 interpolated chain has the same stationary law as the original Gibbs sampler:

 (3.4) (X0, X1, ..., Xr) =d (Xr.1, X(r-1).1 X0.1)
 In essence, this argument works because the updating ..., Q1, Q2, Q1, ... in
 reverse order is again ..., Q1, Q2, Q1, Note that the argument breaks
 down for d > 2 because none of the time-reversed interpolated chains (that
 update using a cyclic permutation of Qd, .., Q1) have the transition distri-
 bution Q = Q1, . . ., Qd of the original Gibbs sampler.

 The result of this section is that the best linear combination of Eo f and

 fE f in the sense of asymptotic variance has equal weights. We already know
 from (3.4) that E? f and El f have equal variances under the stationary law.

 THEOREM 1. If the Gibbs sampler is geometrically ergodic, then the best
 linear combination of E? f and E1f is

 Gnf = 2 (Ef + E f).

 PROOF. Trivial algebra or Lemma 2 shows that equal weights are optimal
 if E?f and Elf have equal asymptotic variances. First consider E f. Apply
 Lemma 1 with both vj and Vk equal to v?(x, y) = f(x). The asymptotic vari-

 ance of Enf is a sum of centering terms (Ev?(XO, X1))2 = (7rf)2 and of the
 terms

 Ev?(X, Xl)v0(Xr-l, Xr) = Ef(XO)f(Xrl).
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 Similarly, with both vj and Vk equal to v1(x, y) = f(y1, x2), the asymptotic
 variance of Elf is a sum of centering terms (Ev1(X0, X1))2 = (Ef=(X?1))2
 (ITf )2 and of the terms

 Ev1(X0, Xl)vl(Xr-l, Xr) = Ef(XO l)f(X(r-1) l)

 = Ef(X(r-1).l)f(XO.l).

 By (3.4), the asymptotic variances of E? f and Elf are equal. C1

 Theorem 1 extends immediately to any two-step variable-at-a-time up-
 dating scheme for which each step satisfies detailed balance (e.g., local
 Metropolis-Hastings algorithms).

 The estimator Gnf suggested in Theorem 1 cannot be improved asymp-
 totically, except by using information about i. This follows from an efficiency
 result for Gibbs samplers, based on a version of the Haijek-LeCam convolution
 theorem, which we prove in Greenwood, McKeague and Wefelmeyer (1995).
 The asymptotic variance of Gn f is 2 o2( 1 + p), where o2 is the asymptotic vari-

 ance of EO f or El f and p is their asymptotic correlation coefficient. There is
 a reduced asymptotic variance for all p < 1; the reduction is 50% when p = 0.

 SIMULATION. Take IT to be the uniform distribution on the triangle
 {x: x1, x2 > 0, x1 + x2 < 1}. The conditional law p1(xl, dx2) is uniform
 on the interval (0, 1 - x1), similarly for P2. Let f(x) be the indicator of the

 smaller triangle {x: x1, x2 > 0, X1 + X2 < 3O that 7rf = 9 Based on
 1000 runs of the Gibbs sampler with n = 1000, our estimator Gn f gave a
 19% reduction in variance over the empirical estimator Eof. The additional
 computation time for Gnf was negligible. This example will be used for other
 simulations in Section 4.

 REMARK. Theorem 1 does not generalize to d-step Gibbs samplers for
 d > 2. Recall from the Introduction that the fine chain is X?, X01, ... .
 X(d-1), X1, X1 , .. ., and there are d consistent empirical estimators EJ f,
 j = 0, ..., d - 1. To see that equal weights need not be optimal, take d = 3
 and choose IT with the first component independent of the other two. Then the
 updates at sites 2 and 3 arise from a two-step Gibbs sampler, and Theorem 1
 is applicable provided f depends only on the last two components. Thus the
 best linear combination is ' (El f + E2 f), which differs from the average of
 the three:

 3(Eof +Elf + E2f) = 2E1f + 'E2f.

 This counterexample also shows that equal weights are not optimal even if I
 is exchangeable; take IT to have i.i.d. components. Note that in this case equal
 weights are not optimal, even though the asymptotic variances are equal,
 since then the higher-order terms in (2.1) vanish and X?0i - 7. Moreover, a
 continuity argument implies that suboptimality of equal weights occurs for
 general f and IT, contrary to a remark of Geweke (1992) that equal weights
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 are asymptotically efficient. To estimate the optimal weights, apply Lemma 2
 in conjunction with a consistent estimator (based on the original output from

 the Gibbs sampler) of the asymptotic covariance matrix E of E?f, ..., Ed-1 f.
 Consistent estimators of E are available from, for example, Geyer (1992), who
 discusses the methods of batch means and window estimators. However, sim-
 ple averages of more than just two of the EJ f can perform well; see the sim-
 ulation study in Section 5.

 The equal asymptotic variance property of the empirical estimators EJ f

 does not hold in general; we have constructed examples of d-step Gibbs sam-

 plers with d > 2 and functions f for which the asymptotic variances of the
 EJ f do not coincide.

 A d-step sampler can be treated as a two-step sampler by merging the first j

 components and also the last d - j components for some 1 < j < d. Theorem 1

 can be applied to the resulting two-step sampler provided Q1Q2 ... Qj and
 Qj+1 .. Qd are reversible. This holds for the samplers of nearest-neighbor
 random fields studied in Section 5.

 4. Two-step Gibbs samplers and invariance. We continue to study

 the Gibbs sampler for a distribution -rr(dx) on a product space D = D, x D2.
 If r has symmetries, can they be used to improve the estimator GJ f that we
 introduced in Section 3? As in Section 2, we describe symmetries in terms of

 transformations that leave 7 invariant. Applications to Markov random fields
 on a lattice suggest two types of transformations which we call parallel and
 transverse. These give rise to further "empirical" estimators that we combine
 with estimators arising from the interpolated chain.

 We call a transformation T: D1 x D2 DI x D2 parallel if it is a di-
 rect product T(xl, x2) = (Tlxl, T2x2); we call it transverse if T(xl, x2) =
 (T21x2, T12x1). Note that the composition of two transverse transformations
 is parallel, and the composition of a parallel with a transverse is transverse.

 First we treat parallel transformations. Suppose that T is parallel and

 leaves IT invariant. We can write

 7(dx) = m1(dx1)p2(x1, dx2) = m2(dX2)Pl(X2, dxl)

 and

 IT(T dx) = ml(T dx)p2(Tlxl, T2 dX2) = m2(T2 dX2)p(T2X2, T1 dxl).

 Hence

 (4.1) ml(dxl) = ml(Tl dxl), m2(dx2) = m2(T2 dx2)

 and

 (4.2) pJ(x2, dxl) = pl(T2x2, T1 dxl), P2(X1, dx2) = p2(Tlxl, T2 dx2).

 Consider the transition distribution of the Gibbs sampler, Q(x, dy) -

 PI(X2, dYl)P2(Yl, dy2). By (4.2), the transition distribution is invariant
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 in the sense of Section 2: Q(x, dy) = Q(Tx, T dy). The transition distribu-

 tions from XO to X01 and X0 1 to X1, respectively, are Q1 and Q2, defined in
 Section 3. By (4.2) the joint law of XO and X0 1 is

 ir(dx) Q1 (x, dy) = Ig(T dx) Q1 (Tx, T dy).

 Continue with the step from X01 to X1 and so on to obtain

 (4.3) (X0, X01,..., Xr) =d (TX?, TX01, .. ., TXr).

 Now suppose that T is transverse and leaves 7T invariant. We can write

 ir(T dx) = ml(T21 dX2)p2(T2lx2, T12 dxl) = m2(T12 dxl)p1(Tl2Xl, T21 dX2).

 Comparing with the factorizations of IT(dx),

 (4.4) m1(dxl) = m2(T12 dxl), m2(dx2) = m1(T21 dx2),

 and

 (45) PX(x2, dxl) = P2(T2lX2, T12 dxl),
 P2(x1, dX2) = pl(Tl2xl, T21 dx2).

 By (4.5) we obtain for the joint law of XO, X01:

 ,7(dx) Q 1(x, dy)

 = ml(dx1)p2(xl, dx2)pI(x2, dYl)e-2(dY2)

 (4.6) = m2(T12 dxl)p1(Tl2xI, T21 dx2)p2(T2lx2, T12 dYl)8T2lX2(T21 dY2)

 = ET21Y2(T21 dX2)P2(T2lY2, T12 dxl)p1(Tl2Yl, T21 dy2)m2(Tl2 dy1)

 = Q (Ty, T d x)T(T dy).

 Continue with the step from X0 1 to X1 and so on to obtain that the trans-
 formed time-reversed fine chain has the same stationary law as the original
 fine chain:

 (4.7) (X0, X01, ..., Xr) =d (TXr, TX(r-l).l,..., TXO).

 Suppose that T is invariant under a transformation T that is either parallel
 or transverse. Since both XO and X01 have stationary distribution IT, we
 have, under ergodicity of the original chain, two strongly consistent empirical

 estimators for 7f:

 n-i
 Ef o T = -E f(TX'),

 i=o

 1 n-i
 ElfoT= -= f(TX ').

 i=o

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 16:15:25 UTC
All use subject to https://about.jstor.org/terms



 THE GIBBS SAMPLER EMPIRICAL ESTIMATOR 1445

 The same is true if we replace T by powers of T. We show now that the best

 linear combination of all these estimators is the average if the powers of T

 form a cyclic group.

 THEOREM 2. Let the Gibbs sampler be geometrically ergodic. Let iT be in-
 variant under a parallel or transverse transformation T. Suppose the asymp-

 totic covariance matrix of E?f o Ti, E f o Ti, j = 0, ..., m - 1, is non-
 singular and Tm = To. Then the empirical estimators E? f o Ti, Elf o Ta,
 j = 0, ..., m - 1, have equal asymptotic variances, and the best linear combi-

 nation is

 Gnf = EGnf o TJ.
 m1

 PROOF. Let T be parallel. The proof for T transverse is similar. Order
 the estimators in pairs Eof o Ti, Elf o Ti, j = 0, ..., m - 1. The covariance
 matrix has m m 2 x 2 submatrices. Our strategy will be to show that it is

 block-circulant of the form:

 oA A1 A2 Al
 A1 Ao ... A3 A2

 A2 A3 Ao A1

 A1 A2 ... A1 Ao,

 where AO, A1 ... are circulant 2 x 2 submatrices. Such a matrix has equal row
 sums. The result will then follow from Lemma 2.

 First we show that the submatrices in row 0 are circulant. The first subma-
 trix on the main diagonal has equal elements on its diagonal by Theorem 1

 and is clearly symmetric, hence circulant. Now consider the (0, 1) submatrix.

 We look first at its diagonal. By Lemma 1, applied with vj(x, y) = f(x) and
 vk(X, y) = f (Tx), the asymptotic covariance of EO f and E? f o T is, aside from
 centering terms, a sum of the terms

 Evj(X?, X)vk(Xr-l, Xr) + Evk(X, Xl)vj(X r, Xr)
 = Ef(XO)f(TXr-l) + Ef(TXO)f(Xr-l).

 The corresponding terms in the asymptotic covariance of E' f and El f o T are

 Ef(XO-l)f(TX(r-1).l) + Ef(TXO-')f(X(r-l).l)

 = Ef(X(r-1).l)f(TXO l) + Ef(TX(r-l)fl)(XO).

 By (3.3) the asymptotic covariances are equal.

 We now look at the off-diagonal elements of the same (0, 1) submatrix.
 Similarly to the above, aside from centering, the asymptotic covariance of
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 Enf and E$f o T is a sum of the terms

 Ef(XO l)f(Txr-l) + Ef(TXO.l)f(Xr-l)

 The corresponding terms in the asymptotic covariance of E' f and El f o T are

 Ef(XO)f(TX(r-1).l) + Ef(TXO)f(X(r-1).l)

 = Ef(X(r-1).l)f(TXO) + Ef(TX(r-1)l)f(XO).

 By (3.3) the asymptotic covariances are equal.

 The (0, j) submatrix is the same as the (0, 1) submatrix with T replaced
 by Ti. Hence it is also circulant. By (4.3),

 (X0, X01, ..., Xr) =d (TkXO, TkXO1,..., TkXr).

 As in the proof of Proposition 1, one sees that the blocks on each diagonal are

 equal, and it follows that the covariance matrix is block-circulant. D

 Note that equal asymptotic variances of the empirical estimators does not
 imply the optimality of equal weights per se; Lemma 2 shows that the best

 weights depend on the asymptotic covariances as well.
 In the covariance matrix in the above proof, omit every second row and

 column. The resulting covariance matrix is circulant. Hence, if ir is invariant
 under a transformation T that is either parallel or transverse and Tm =
 T?, and if the asymptotic covariance matrix of the estimators Enf o Ti
 j = 0, . . ., m - 1, is nonsingular, then the best linear combination of them is

 the average, E f . Similarly, the best linear combination of Elnf oTJ, j = 0,...,
 -1

 m - 1, is the average, Enf.
 If XT is invariant under several transformations, we can do better than in

 Theorem 2. For simplicity, we consider only two transformations T and U

 and give conditions for the best linear combination of all the corresponding

 "empirical" estimators to be the average.

 THEOREM 3. Let the Gibbs sampler be geometrically ergodic. Let IT be in-
 variant under two commuting transformations T and U, each of which is
 either parallel or transverse. Suppose the asymptotic covariance matrix of

 Enf o UJ2TJ,, Enf o UJ2TJ1, il = 0, ...,ml-1, J2 = 0, --.m2- 1, is non-
 singular and Tml = T?, Um2 - U?. Then the empirical estimators E5 f o

 UJ2TJ1, Enf o UJ2TJ, 11 = 0,..., ml -1, j2 = 0,..., m2 -1, have equal
 asymptotic variances, and the best linear combination is

 1 m 2-1 m2G- 1
 m , Gnf oUi2Ti1

 MlM2 ji=0 j2=0

 PROOF. Let T and U be parallel; the proof for other combinations of par-
 allel and transverse transformations is similar. The covariance matrix has
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 M2 m2 blocks, each consisting of ml ml 2 x 2 submatrices. Our strategy will
 be to show that it is block-circulant of the form:

 A1 A2 B1 B2 B1 B2

 A2 A1 Bi 1 ... BMI B

 B1 Bmi A1 A2 C1 C2
 B2 B1 A2 A1 ... Cm

 in which each block is a block-circulant matrix having circulant 2 x 2 subma-
 trices denoted by A1, A2, . . . or B1, B2, ... and so on. Such a matrix has equal
 row sums. The result will then follow from Lemma 2.

 Recall that an m x m matrix A is circulant if the elements in each diagonal
 are equal and A1j = Amjl for j = 1,...,m.

 We prove first that the 2 x 2 submatrices are circulant. The (il, j1) subma-
 trix of the (J2 ji) block equals the (jl 7 j') submatrix of the (0, 0) block, with
 TJ i, TAj replaced by Til, U4i2 TA and f replaced by f OUJ2. The (0, 0) block
 is the covariance matrix of Theorem 2. In particular, its 2 x 2 submatrices are
 circulant.

 Now we prove that the blocks in row 0 are circulant. Consider the (0, 12)
 block. We show that its (j1, il + j1) submatrix equals the (0, jl) submatrix.
 Since the submatrices are circulant, it suffices to compare the upper rows. The
 upper left elements are the asymptotic covariances of the pairs EO f , E f o
 Uj2 TJl and E?f o Ti1, E?f O UJ2TJ1?Ji, respectively. By Lemma 1 the first
 covariance is, aside from centering terms, a sum of the terms

 (4.8) Ef(X?)f(Ui2 Til Xr-1) + Ef(Ui2 TJl X)f(Xr-l).

 The corresponding term of the second covariance is

 Ef(TJi XO)f(Ui2 T1?i1 X'r-1) + Ef(Ui 2Til? X0)f(TJiXr 1).

 By (4.3) with T = TA', this term equals (4.8). The upper right elements are
 compared similarly.

 We show that the (m1 - jl, 0) submatrix of the (0, j2) block equals the
 (0, jl) submatrix. The upper left element of the (m1 - jl, 0) submatrix is,
 aside from centering terms, a sum of the terms

 Ef (Tml-jl XO)f (Ui xr-l) + Ef (U2 X0)f (Tmi- 1 Xr-l)

 Use (4.3) with T = TJ' and Tmi = I to see that this term equals the cor-
 responding term (4.8) of the (0, jl) submatrix. The upper right elements are
 compared similarly. This proves that the blocks are circulant.
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 Now we show that the block matrix is circulant. We show that the (j2, J2 +
 j;) block equals the (0, j2) block. Since the blocks are circulant and consist of
 circulant 2 x 2 submatrices, it suffices to compare the upper rows of the 2 x 2
 submatrices in the upper rows of the two blocks. The upper left element of

 the (0, jl) submatrix of the (Uj, j2 + j') block is, aside from centering terms,
 a sum of the terms

 Ef (Uj2 XO)f (Ui2+?2 Til Xr-1) + Ef (U12+i2Til X?)f (Uj2Xrl)

 Use Uj'Til = TilUj' and (4.3) with T = Uj' to see that this term equals
 the corresponding term (4.8) of the (0, j2) block. The upper right elements are
 compared similarly.

 We show that the (M2 - J2, 0) block equals the (0, J2) block. The upper
 left element of the (0, jl) submatrix of the (M2 - j2, 0) block is, aside from
 centering terms, a sum of the terms

 Ef (UM2ij2 XO)f (TJl Xr-1) + Ef (TJl XO)f (Um22 X2)r-.

 Use (4.3), UM2 - I and TJ1Uj2 = Uj2TJ1 to see that this term equals the
 corresponding term (4.8) of the (0, j2) block. The upper right elements are
 treated similarly. This shows that the covariance matrix is a circulant block
 matrix, and the proof is complete. D

 SIMULATION. We continue the simulation example from Section 3, with IT
 the uniform distribution on the triangle {x: x1, x2 > 0, x1 +x2 < 1}. Note
 that XT is exchangeable, that is, invariant under T(x1, x2) = (x2, x1). Let f (x)
 be the indicator of the asymmetric triangle {x: x1, x2 > 0, 2x2 < x1}, so that

 7rf = 3. We shall consider the symmetrized estimators Gnf and E,f with
 m = 2 and the transformations I, T. The simulations were based on 1000
 runs of the Gibbs sampler with n = 1000. Compared to the empirical estima-

 tor EO f, the variance reductions of Gnf, En f and Gn f were 9%, 82% and 86%,
 respectively. In particular, compared to the symmetrized empirical estimator

 E0 f, the variance reduction of Gnf is 24%. The improvement through sym-
 metrization by T is particularly impressive in this example, because T is close
 to being anti-invariant, in the sense of the remark at the end of Section 2. If

 we had taken f (x) to be the indicator of the triangle {x: x1, x2 > 0, x2 < xI
 -o

 then Enf = Gnf = -= -7Tf, and the variances would be 0.

 5. Nearest-neighbor random fields. Consider a random field on the
 rectangular lattice

 S ={,...,ki - 1} X MO, * , k2 - 1},

 where k1 and k2 are even. The lattice has d = k1k2 sites. The configuration
 space is D = Vs, where V is a measurable state space. The random field is
 described by a probability measure 7r(dy) on D. One can factor 7(dy) in d
 ways into a (d - 1)-dimensional marginal and a one-dimensional conditional,
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 as I(dy) = m,(dy-s)q8(y_,, dy8), where y-, = (Yr)reS\{s}. We make the as-
 sumption that q,(y-, dye) depends on y-_ only through the values of y at the
 four nearest neighbors of the site s = (sl, S2), that is, (s1+ 1, S2) and (sl, s2+1)
 if they are in S. This is a nearest-neighbor model with free boundary. Later
 we consider other types of boundaries.

 We call the site s = (sl, s2) even or odd according to the parity of sl + s2.
 The even and odd sites form a checkerboard pattern. Even sites have only odd
 neighbors, so the conditional law at an odd site depends only on the values
 of the field at even sites, and vice versa. To take advantage of the nearest-
 neighbor structure, one fixes a sweep by numbering first the even and then
 the odd sites. The sampler first updates the even sites, using only the odd,
 and then vice versa. These two steps we think of as a two-step Gibbs sampler.
 To this sampler we apply the results of Sections 3 and 4.

 Label the sites s1, .. ., Sd. Write y = (Yi, ., Yd) for (ys , Ysd),

 and qj(y-, j dyj) for qsj(y-sj, dys), where y-j = (y<,j y,j) with y<j =
 (Yip .., Yi-1) and y,j = (Yj+..., Yd). The Gibbs sampler goes from yo to
 y1 by the transition distribution

 d

 Q(y0, dy1) = H qj(Yl j, y?,j, dyj)
 j=1

 d/2 d

 - H qj(yj, yo>dyl) H qj(yl , y?j, dyi).
 j=l j=d/2+1

 The even sites are numbered 1, ... , d/2, the odd sites d/2 + 1, ... , d. Set

 x = (x1, x2), x1 = (Yi, ... , Yd/2), X2 = (Yd/2+1, **, Yd)-

 The first product in (5.1) updates the even sites. Consider the transition from
 x? to x1. Since for j < d/2 the transition distribution depends only on values
 at odd sites, which have not yet been updated, that is, on xo , the transition
 distribution for updating the entire set of even sites can be written as

 d/2

 p1(x?, dxi) = qj(yo j, yo j, dy'),
 j=1

 which coincides with the conditional distribution on the even sites given the
 odd sites. This is the first step of the two-step sampler. In the second step
 we update the odd sites, the even sites having already been updated. The
 transition distribution for updating the set of odd sites can be written as

 d

 p2(x, dx2) = H qj(yl j yj dyj),
 j=d/2+1

 which coincides with the conditional distribution on the odd sites given the
 even sites. Now we have a two-step Gibbs sampler with transition distribution

 Q(y?, dy1) = pl(xo, dx')p2(xI, dxl)
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 and are in the setting of Sections 3 and 4 with D = D, x D2, where D1 = VSe,
 D2 = Vs-. Here Se and SO are the sets of even and odd sites, respectively. The
 Gibbs sampler generates a Markov chain

 (Ys)seS = (Y_)j=l,...,d = (X1, X2) = X', i = O, 1, ....

 with some arbitrarily chosen initial value X?. The interpolated chain, in the
 sense of Section 3, is

 Xii = (Xi+1, Xi), i = 0, 1.
 Usually the simulations XO, X1, ... are utilized for approximating the ex-

 pectation of a bounded measurable function f (y) on D through the empirical
 estimator E? f. In Section 3 we discussed the alternative empirical estimator
 Enf. By Theorem 1, if the Gibbs sampler is geometrically ergodic, the best
 linear combination of E? f and E' f is Gnf = 2(EOnf + E' f ). The latter holds,
 more generally, for any local Metropolis-Hastings sampler having a checker-

 board sweep and local updates that depend only on a site and its nearest
 neighbors; all we need is reversibility of the composition of the local updates

 over Se, and the same for SO.
 We now explore some of the homogeneities that a nearest-neighbor random

 field might possess. For instance, XT is spatially homogeneous if it is invariant
 under all translations on the lattice, in which case the conditional distributions

 q, are identical. Or X might be invariant under shifts in a certain direction or
 have periodicities. We exploit symmetries through corresponding transforma-
 tions that are permutations of the sites. As described in Section 4, they gen-

 erate additional "empirical" estimators that we use to further improve Gn f .
 Define addition on S by (s + t)1 = s, + t1 mod kl, (s + t)2 = s2 + t2 mod k2.
 For t E S, the translation of S by t is defined as Tts = s - t. This induces a
 translation on D, (Ttx)s = XT 1s = Xs+t

 Horizontal translations. Think of the lattice as wrapped around a cylinder
 so that the vertical boundaries meet. The neighbors of each site s = (Si, S2)
 along the vertical boundary now include (Si i 1, S2) with addition mod k1.

 A horizontal translation by an even number of sites is T = T(p,o), with p
 even. This translation takes even into even sites and odd into odd and is a
 parallel transformation in the sense of Section 4. Suppose that k1 is a multiple
 of p, say k1 = mp. Suppose that 7 is invariant under T. Then it is also

 invariant under powers TJ = T(jp, 0)' j = 0, . . ., m - 1. These transformations
 form a cyclic group. Theorem 2 implies that the empirical estimators

 E?nf o T(j ) Enf o T( ) j = 1, ..,m1,

 have equal asymptotic variances, and the best linear combination is the
 average,

 1 rn-i
 Gn f - E Gnf o T(JP,o)

 j=o
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 A horizontal translation by an odd number of sites is T = T(p,o), with p
 odd. This translation takes even into odd sites and odd into even and is a

 transverse transformation. Even powers of T are parallel. Suppose that k1 is

 a multiple of p, say k1 = mp. Suppose that 1T is invariant under T. As above,
 the best linear combination of the corresponding empirical estimators is the
 average.

 Horizontal and vertical translations. Think of the lattice as wrapped

 around a torus. The neighbors of each site s = (Si, s2) along the boundaries

 now include (si ? 1 mod kl, s2) and (SI, S2 ' 1 mod k2), giving periodic
 boundary conditions. Suppose that k, = mlpl and k2 = m2P2. Suppose
 that -r is invariant under both the horizontal translation T = T(p1,o) and
 the vertical translation T = T(o P2). Theorem 3 implies that the empirical
 estimators

 En fT(j1P1J2P2)' En fT(j1P,J2P2)' il = 1,..v ml-i J2 = 1,..., m2-1,
 have equal asymptotic variances, and the best linear combination is the
 average,

 1 ml-1m2-1

 mlS E Gn fo? Tup(ilPl, v2P2)- m1m2 j_~12=0 j_

 For j = 0, . . ., d - 1, let En f be the empirical estimator of the Introduction,

 which is based on the configurations obtained after j of the sites have been

 updated in each sweep. Simple averages of some or all of the E` f may be used
 instead of E? f or Gn f; for instance,

 1 rn-i
 Gmf = E dm

 j=0

 where d is divisible by m. However, except for G2nf = Gnf, no optimality
 results are available for such estimators.

 Ising model simulations. Consider the classical two-dimensional Ising
 model used to study ferromagnetic materials; see, for example, Kindermann

 and Snell (1980). In this case the state space is V = {+1, -1}, representing
 two spin orientations. Under the Gibbs distribution T, a configuration y E Vs
 has mass proportional to exp(-H(y)), where the energy function H is given

 by H(y) = -,B L(s t) YsYt Here ,B is the inverse temperature and the sum is
 over all sets (s, t) of neighbors s, t. We call a function nearest neighbor if it

 is of the form f(y) = E(s t) fSt(ys Yt). Estimating iTf well means estimat-
 ing 7f8t well. But for functions fst there are only two essentially different

 empirical estimators Ejfst namely E,fst and EJfSt, with j the number
 of the first of the two sites s, t in the sweep. We therefore expect that for

 nearest-neighbor functions the estimators Gm f are not better than Gj f, and
 in fact slightly worse because for different (s, t) the two essentially different

 empirical estimators do not arise equally often.
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 Specifically, let f (y) = N-1 E(s, t) y'Yiyt be the nearest-neighbor correlation.
 Here N is the number of sets (s, t). Write p = lTf. The results are given in
 Tables 1 to 3.

 The greatest improvements are obtained under moderate nearest-neighbor
 dependence. The differences between Tables 1 and 2 are explained by the ten-
 dency of periodic boundary conditions to increase dependence, most markedly
 in small lattices. For functions f that are not invariant under translations,
 we find that symmetrizations of Gn f can produce further variance reductions,
 but the extent of the reduction is highly dependent on the degree of asymmetry
 in .

 TABLE 1

 Ising model, 4 x 4 lattice, free boundary. Expected nearest-neighbor correlation p,
 o'2 = 104 x variance of EO f and variance reductions for Gn f, G4nf and Gd f. There
 were n = 1000 sweeps in each run. Each figure in the table was based on 1000 runs.
 A "burn-in" of 1000 sweeps was used in each case to give approximate "convergence

 to stationarity"

 fi 0.05 0.1 0.2 0.3 0.4 0.5

 p 0.05 0.10 0.21 0.33 0.47 0.62

 012 0.41 0.45 0.51 0.79 1.40 1.90
 Gnf 49% 47% 32% 13% 2% 1%
 G4 f 47% 46% 29% 12% 1% 1%

 Gdf 48% 45% 30% 12% 2% 1%

 TABLE 2

 Periodic boundary, 4 x 4 lattice

 0 0.05 0.1 0.2 0.3 0.4 0.5

 p 0.05 0.10 0.23 0.42 0.69 0.88

 cr2 0.32 0.34 0.59 1.82 2.78 1.05
 Gnf 49% 41% 10% 1% 0% 0%
 G4 f 47% 38% 9% 1% 0% 0%
 Gdf 46% 36% 8% 1% 0% 0%
 n

 TABLE 3

 Larger lattices, free boundary

 , = 0.1 S 0.2

 Lattice 4x4 6x6 8x8 4x4 6x6 8x8

 P 0.10 0.10 0.10 0.21 0.21 0.21
 or2 0.45 0.18 0.09 0.51 0.23 0.12
 Gnf 47% 44% 38% 32% 24% 22%
 G4 f 46% 42% 36% 29% 24% 22%
 Gdf 45% 44% 37% 30% 24% 22%
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 In general, EO f and Ed/2 f are fairly strongly correlated, even for high tem-
 peratures and for nearest-neighbor functions, because the subconfigurations
 on the odd sites used by the two estimators are identical. For nearest-neighbor
 correlation, however, the two estimators are nearly independent at high tem-
 peratures. As pointed out after Theorem 1, the variance reduction is then close
 to 50%. The simulation results confirm this.

 Next consider the Ising model with an external field. The Gibbs distribution

 now has energy function H(y) = -/3 >(s t) ysYt - h Es yszs where z = (zS) is
 an observed configuration representing an inhomogeneous external field and
 h is the external field strength. Such an energy function arises in Bayesian
 image analysis as a posterior energy function; see Winkler (1995), page 31. In
 that case channel noise modifies the unknown "true image" by independently
 changing the color (+1) of each pixel with probability p, to produce the ob-
 served image z. The external field strength is given by h = 1 log((1 - p)/p).
 We used the same function f as before, so p is now the posterior-expected
 nearest-neighbor correlation. We used two different observed images z, one
 having nearest-neighbor correlation 0.33 and the other 0.083. The results are
 given in Tables 4 and 5.

 The largest variance reductions are obtained when the channel noise is high
 (p close to 0.5) or, equivalently, when the external field strength is small. This
 is explained by the posterior distribution becoming degenerate-concentrating
 its mass at the observed image-when the channel noise is low. This effect is
 less pronounced when the observed image has lower nearest-neighbor correla-

 TABLE 4

 External field, observed image with nearest-neighbor correlation f(z) 0.33, free
 boundary, 4 x 4 lattice, (3 = 0.1

 p 0.05 0.1 0.2 0.3 0.4 0.5

 p 0.30 0.27 0.20 0.15 0.11 0.10
 0,2 0.12 0.21 0.34 0.41 0.42 0.45
 Gnf 6% 9% 21% 28% 41% 47%
 G4 f 6% 9% 20% 27% 39% 46%
 Gd f 6% 9% 21% 26% 40% 45%

 TABLE 5

 External field, observed image with nearest-neighbor correlation f(z) 0.083, free
 boundary, 4 x 4 lattice, /8 = 0.1

 p 0.05 0.1 0.2 0.3 0.4 0.5

 p 0.08 0.08 0.09 0.09 0.10 0.10

 Ur2 0.06 0.11 0.24 0.34 0.42 0.45
 Gnf 14% 17% 33% 45% 43% 47%
 G4nf 13% 15% 31% 42% 41% 46%
 Gdf 13% 16% 32% 43% 41% 45%
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 TABLE 6

 Metropolis sampler, no external field, free boundary, 4 x 4 lattice

 fi 0.05 0.1 0.2 0.3 0.4 0.5

 p 0.05 0.10 0.21 0.33 0.47 0.62
 o-2 1.08 0.60 0.51 0.61 0.94 1.31

 Gnf 94% 80% 48% 22% 7% 4%
 G4f 82% 70% 43% 19% 6% 3%
 Gd f 81% 69% 41% 20% 6% 3%

 tion (compare Tables 4 and 5), which is consistent with our earlier remark that
 the greatest improvements are obtained under moderate nearest-neighbor
 dependence.

 As a final example, consider the Metropolis sampler [see, e.g., Winkler
 (1995), Chapter 8] with checkerboard sweep over the 4 x 4 lattice with free
 boundary and no external field. The proposal at each site is a spin-flip. We
 find a greater improvement than under the Gibbs sampler (compare Tables 1

 and 6). Moreover, the variance of Gn f is far less under the Metropolis sam-
 pler than under the Gibbs sampler at all temperatures. This contrasts with

 the performance of the usual empirical estimator, which has smaller variance
 under the Metropolis sampler than under the Gibbs sampler only at low tem-

 peratures (,3 > 0.3).

 Acknowledgments. We thank the three referees for their very careful
 reading of the manuscript, which led to numerous improvements.

 REFERENCES

 AMIT, Y. and GRENANDER, U. (1991). Comparing sweep strategies for stochastic relaxation.
 J Multivariate Anal. 37 197-222.

 ATHREYA, K. B., Doss, H. and SETHURAMAN, J. (1996). On the convergence of the Markov chain
 simulation method. Ann. Statist. 24 69-100.

 BESAG, J. and GREEN, P. J. (1993). Spatial statistics and Bayesian inference. J. Roy. Statist. Soc.
 Ser. B 55 25-37.

 BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive
 Estimation for Semiparametric Models. Johns Hopkins Univ. Press.

 BINDER, K., ed. (1992). The Monte Carlo Method in Condensed Matter Physics. Springer, Berlin.
 BRILLINGER, D. R. (1963). A note on re-use of samples. Ann. Math. Statist. 34 341-343.
 CHAN, K. S. (1993). Asymptotic behavior of the Gibbs sampler. J Amer. Statist. Assoc. 88 320-326.
 CHAN, K. S. and GEYER, C. J. (1994). Comment on "Markov chains for exploring posterior distri-

 butions," by L. Tierney. Ann. Statist. 22 1747-1758.

 FRIGESSI, A., HWANG, C.-R., SHEU, S. J. and DI STEFANO, P. (1993). Convergence rates of the
 Gibbs sampler, the Metropolis algorithm, and other single-site updating dynamics.
 J. Roy. Statist. Soc. Ser. B 55 205-220.

 FRIGESSI, A., HWANG, C.-R. and YOUNES, L. (1992). Optimal spectral structure of reversible
 stochastic matrices, Monte Carlo methods and the simulation of Markov random fields.
 Ann. Appl. Probab. 2 610-628.

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 16:15:25 UTC
All use subject to https://about.jstor.org/terms



 THE GIBBS SAMPLER EMPIRICAL ESTIMATOR 1455

 GELFAND, A. E., HILLS, S. E., RACINE-POON, A. and SMITH, A. F. M. (1990). Illustration of Bayesian
 inference in normal data models using Gibbs sampling. J Amer. Statist. Assoc. 85
 972-985.

 GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal
 densities. J Amer. Statist. Assoc. 85 398-409.

 GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
 restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721-741.

 GEORGE, E. I. and ROBERT, C. P. (1992). Capture-recapture estimation via Gibbs sampling.
 Biometrika 79 677-683.

 GEWEKE, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation
 of posterior moments (with discussion). In Bayesian Statistics (J. M. Bernardo, J. 0.
 Berger, A. P. Dawid and A. F. M. Smith, eds.) 4 169-193. Oxford Univ. Press.

 GEYER, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7 473-483.
 GRAHAM, J. (1994). Monte Carlo Markov chain likelihood ratio test and Wald test for binary

 spatial lattice data. Preprint.

 GREEN, P. J. and HAN, X.-L. (1992). Metropolis methods, Gaussian proposals and antithetic vari-
 ables. In Stochastic Models, Statistical Methods, and Algorithms in Image Analysis.
 Lecture Notes in Statist. (P. Barone, A. Frigessi and M. Piccioni, eds.) 74 142-164.
 Springer, Berlin.

 GREENWOOD, P. E., MCKEAGUE, I. W. and WEFELMEYER, W. (1995). Information bounds for Gibbs
 samplers. Unpublished manuscript.

 GRENANDER, U. (1983). Tutorial in pattern theory. Lecture Notes, Division Appl. Math., Brown
 Univ.

 GRENANDER, U. (1993). General Pattern Theory. A Mathematical Study of Regular Structures.
 Clarendon, Oxford.

 GUERRA, F., ROSEN, L. and SIMON, B. (1975). The P(0)2 Euclidean quantum field theory as clas-
 sical statistical mechanics. Ann. Math. 101 111-259.

 HEERMANN, D. W. and BURKITT, A. N. (1992). Parallel algorithms for statistical physics prob-
 lems. In The Monte Carlo Method in Condensed Matter Physics (K. Binder, ed.) 53-74.
 Springer, Berlin.

 INGRASSIA, S. (1994). On the rate of convergence of the Metropolis algorithm and Gibbs sampler
 by geometric bounds. Ann. Appl. Probab. 4 347-389.

 ISRAEL, R. B. (1979). Convexity in the Theory of Lattice Gases. Princeton Univ. Press.
 KINDERMANN, R. and SNELL, J. L. (1980). Markov Random Fields and Their Applications. Amer.

 Math. Soc., Providence.

 LEVIT, B. YA. (1974). On optimality of some statistical estimates. In Proceedings of the Prague
 Symposium on Asymptotic Statistics (J. Hajek, ed.) 2 215-238. Charles Univ., Prague.

 MEYN, S. P. and TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
 PEARL, J. (1987). Evidential reasoning using stochastic simulation. Artificial Intelligence 32

 245-257.

 PENEV, S. (1991). Efficient estimation of the stationary distribution for exponentially ergodic
 Markov chains. J Statist. Plann. Inference 27 105-123.

 PESKUN, P. H. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika 60
 607-612.

 SCHERVISH, M. J. and CARLIN, B. P. (1992). On the convergence of successive substitution sam-
 pling. J Comput. Graph. Statist. 1 111-127.

 SIMON, B. (1974). The P(02 Euclidean (Quantum) Field Theory. Princeton Univ. Press.
 SMITH, A. F. M. and ROBERTS, G. 0. (1993). Bayesian computation via the Gibbs sampler and

 related Markov chain Monte Carlo methods. J Roy. Statist. Soc. Ser. B 55 3-23.
 SPIEGELHALTER, D. J., DAWID, A. P., LAURITZEN, S. L. and COWELL, R. G. (1993). Bayesian analysis

 in expert systems. Statist. Sci. 8 219-283.
 SWENDSEN, R. H. and WANG, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simu-

 lations. Phys. Rev. Lett. 58 86-88.
 TANNER, M. A. and WONG, W. H. (1987). The calculation of posterior distributions by data aug-

 mentation. J Amer. Statist. Assoc. 82 528-540.

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 16:15:25 UTC
All use subject to https://about.jstor.org/terms



 1456 P. E. GREENWOOD, I. W MCKEAGUE AND W. WEFELMEYER

 TIERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann.
 Statist. 22 1701-1762.

 WINKLER, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods.
 Springer, Berlin.

 DEPARTMENT OF MATHEMATICS

 UNIVERSITY OF BRITISH COLUMBIA

 1984 MATHEMATICS RD.

 VANCOUVER, BC V6T 1Y4

 CANADA

 DEPARTMENT OF STATISTICS

 FLORIDA STATE UNIVERSITY

 TALLAHASSEE, FLORIDA 32306-3033

 FB 6 MATHEMATICS

 UNIVERSITY OF SIEGEN

 HOELDERLIN ST. 3

 57068 SIEGEN

 GERMANY

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 16:15:25 UTC
All use subject to https://about.jstor.org/terms


