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Abstract
We study perfect sampling for the posterior distribution in a class of

spatial point process models introduced by Baddeley and van Lieshout
(1993). For Neyman-Scott cluster models, perfect sampling from the
posterior is shown to be computationally feasible via a coupling-from-
the-past type algorithm of Kendall and M0ller. An application to data
on leukemia incidence in upstate New York is presented.

1 Introduction
Bayesian cluster models based on spatial point processes were originally in-
troduced by Baddeley and van Lieshout (1993), primarily for applications in
computer vision. Disease clustering applications have also played a promi-
nent role in the development of these models, as surveyed by Lawson and
Clarke (1999). An important special case is the Neyman-Scott process in
which the observations arise from a superposition of inhomogeneous Poisson
processes associated with underlying landmarks (Neyman and Scott, 1972);
van Lieshout (1995) focused on this case.

Markov chain Monte Carlo (MCMC) techniques are indispensable for
the application of point process models in statistics, see, e.g., the survey of
M0ller (1999). Following the seminal work of Propp and Wilson (1996),
Kendall and M0ller (2000) developed a version of perfect simulation for
locally stable point processes; see the article of M0ller (2001) in this volume.
This raises the possibility of constructing perfect samplers for the posterior
distribution in Bayesian cluster models. Perfect samplers deliver an exact
draw from the target distribution; this is a distinct advantage over traditional
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MCMC schemes which are often plagued by convergence problems. For some
recent applications of perfect simulation in statistics, see Green and Murdoch
(1999), M0ller and Nicholls (1999) and Casella et al. (1999).

In this article we show that the posterior in the Baddeley van Lieshout
class of Bayesian cluster models is locally stable, provided the prior is locally
stable and the likelihood satisfies some mild conditions. This has two im 
portant consequences: the posterior density is proper (has unit total mass),
and the Kendall M0ller algorithm is potentially applicable. However, the
Kendall M0ller algorithm is known to be computationally feasible only un 
der a monotonicity condition: the Papangelou conditional intensity needs to
be attractive (favoring clustered patterns), repulsive (discouraging clustered
patterns), or a product of such terms. We show that perfect sampling is fea 
sible for the Neyman Scott process when the prior satisfies this monotonicity
condition.

We present an application to data on leukemia incidence in an eight
county area of uptstate New York during the years 1978 82. The study area
includes 11 inactive hazardous waste sites. We assess the possibility of an
increased leukemia incidence rate in the proximity of these sites. There is
an extensive literature on the analysis of these data, recent contributions
being Ghosh et al. (1999), who applied a hierarchical Bayes generalized lin 
ear model approach, and Ahrens et al. (1999), who adjusted for covariate
effects using a log linear model. Our results suggest that there is an elevated
leukemia incidence rate in the neighborhood of one of the sites.

The paper is organized as follows. In Section 2 we develop the main
result of the paper showing that the posterior is locally stable, and examine
the Neyman Scott model in detail. Section 3 contains the application to
disease clustering. Some concluding remarks are given in Section 4.

2 Bayesian cluster models
2.1 Preliminaries

The basic framework comes from Carter and Prenter (1972), see also M0ller
(1999). Let W  be a compact subset of the plane representing the study
region. A realization of a point process in W  is a finite set of points x =
{# i, # 2, . . . , xn(x)} C W, where n(x) is the number of points in x. If n(x) =  0,
write x =  0 for the empty configuration. Let Ω denote the exponential space
of all such finite point configurations in W, and furnish it with the σ field T
generated by sets of the form {x : n(x ΠB) =  fc}, where B E B, the Borel
σ field on W, and k = 0,1,2,

A standard way of constructing an Ω valued point process X is by speci 
fying an unnormalized density /  with respect to the distribution π of the unit
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rate Poisson process on W. The unnormalized density /  (or corresponding
process X) is said to be locally stable if there is a constant K > 0 such that
/ (xU {£}) < Kf(x) for all x G Ω, ξ e W\x. Local stability implies that the
Papangelou conditional intensity

(with 0/0 =  0) is bounded.
Most point processes that have been suggested for modeling spatial point

patterns are locally stable, including the Strauss (1975) process and the area 
interaction process of Baddeley and van Lieshout (1995). The Strauss pro 
cess, used later in this article, has unnormalized density / (x) =  / ^ M yM ,
where /? > 0, 0 < 7 < 1 and ί(x) is the number of unordered pairs of points
in x which are within a specified distance r of each other. The Strauss
process only models repulsive pairwise interaction.

2.2 Posterior distribution

The observed point configuration which arises from the landmarks x will be
denoted y =  {yi,y25 ?yn(y)} C W, and assumed to be non empty. The
prior and observation models are specified by point processes on W. The
prior distribution of landmarks corresponds to a point process X having
density pχ(x) with respect to π.

The likelihood is defined in terms of an unnormalized density / ( |x).
Thus, for a given set of landmarks x, the density of the observed point
process Y with respect to π is

where

is the normalizing constant. We assume that / (y|x) is jointly measurable in
x and y.

Prom Bayes formula, the posterior density of X with respect to π is

Px\γ=y{*) oc α y(x) / (y|x)pχ(x) . (2.1)

The following theorem provides sufficient conditions for the posterior to be
locally stable. We assume local stability of the prior pχ( ) and of the likeli 
hood / (y| ) (for each fixed y). In addition, / (y| ) is assumed to satisfy the
following local growth condition: there exists a constant L > 0 such that

/ ( y|χu {ξ}) > L / ( y|χ) (2.2)
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for all x, y E Ω, ξ G W\ x. The term 'local growth condition' is used here
because we view it as being dual to local stability.

Theorem 2.1. Suppose pχ( ) and / (y| ) (for each y) are locally stable, and
/ (y| ) satisfies the local growth condition (2.2). Then the posterior (2.1) is
locally stable.

Proof. It suffices to show that aγ( ) is locally stable, because pχ{ ) and
/ (y| ) are assumed to be locally stable, and local stability is preserved under
products. Given ξ G W\ x,

 i ί
Jn

> L  / / (v|x)π(dv)
Jn

= Lαy(x)"1,

completing the proof.

The Kendall M0ller algorithm uses the method of dominated coupling 
from the past to obtain perfect samples from a locally stable point process
as the equilibrium distribution of a spatial birth and death process. The
algorithm is computationally feasible if the Papangelou conditional intensity
g(x, ξ) is either attractive or repulsive, or a product of such terms. In the
attractive case, </(x, ξ) < g(x', ξ) whenever ξ £ x' and x C x'; in the repulsive
case g(x,£) > ̂ (x7,^) whenever ζ £ xr and x C x;.

2.3 N eyman Scott model
In this section we focus on the Neyman Scott model in which the observation
process Y is the superposition of n(x) independent inhomogeneous Poisson
processes ZXi and a background Poisson noise process of intensity e > 0.
The intensity h( \xi) of ZXi is specified parametrically, and the prior pχ{x)
is assumed to be locally stable. Here and in the application in the next
section we assume the Thomas intensity model

h(t\x) =  ̂ e  l l *  l l W , (2.3)

where κ,σ > 0. For convenience, denote K* =  κ/ (2πσ2). In this case,
ί ^ x ) , where

n(x)
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is the conditional intensity at t of Y given x.
We now check the relevant conditions of Theorem 2.1. To show that

/ (y| ) is locally stable, note that for ξ G  W\x

n(y) /  n(x

/ (y|χu{£}) =  Π
3=1

where

To check the local growth condition, note that for ξ G  W\x

n(y)

/(y| xu

uniformly in y, and we can use L  =  1. Thus the conditions of Theorem 2.1
are satisfied, so the posterior is locally stable.

The Papangelou conditional intensity corresponding to / (y| ) is

/ (y|xU {£}) _ ΠA} Λ ^ HVj\ξ)

for ξ G  W\ x, which is clearly decreasing in x, thus repulsive.
Noting that

we find that the Papangelou conditional intensity corresponding to aγ( ) is

for ξ G  W\ x, which does not depend on x.
We conclude that the posterior is of a feasible form for implementing

the Kendall M0ller algorithm if the Papangelou conditional intensity corre 
sponding to the prior is a product of repulsive or attractive components.
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3 Application
In this section we present an application to data on leukemia incidence in
an eight county area of uptstate New York. There is an extensive literature
on the analysis of these data, see, e.g., Waller et al. (1992, 1994), Ghosh et
al. (1999) and Ahrens et al. (1999).

The study area is comprised of 790 census tracts and leukemia incidence
was recorded by the New York Department of Health for each census tract
during the years 1978 82, see Waller et al. (1992). The study area includes
11 inactive hazardous waste sites. The goal is to assess the possibility of an
increased leukemia incidence rate in the proximity of these sites.

Figure 1: Left: locations of 552 leukemia cases in upstate New York, along
with an approximate outline of the eight county study region. The rectan 
gular region is 1 x 1.2 square units. Right: contour plot of the population
density λ(t), and the locations of the 11 hazardous waste sites.

The locations of the centroids of the census tracts are available, but pre 
cise locations of the leukemia cases are not. Our methods require the precise
locations, so we randomly dispersed the cases throughout their correspond 
ing census tracts; if there was exactly one case in a tract, we placed it at
the centroid, see the left panel of Figure 1. (Sensitivity analysis indicates
that this approximation makes no difference to our conclusions.) In some
instances a case could not be associated with a unique census tract, resulting
in fractional counts. Our approach does not accomodate this type of data,
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so we follow Ghosh et al. (1999) and group the 790 census tracts into 281
blocks in order to identify most of the cases with a specific block. Less than
10% of all cases could not be identified with a specific block, and such cases
are excluded from our analysis.

Figure 2: Posterior intensity map for the leukemia data based on the
Neyman Scott model with e = 5.2 x 10~4, σ =  0.01, K* =  0.23e, and a
Strauss prior with interaction radius r =  0.1, βx = 0.5 and
Locations of the 11 hazardous waste sites are included.

= 0.1.

Our analysis is based on the Neyman Scott model with the leukemia
intensity rate specified by

n(x)

2 = 1

where X(t) adjusts for population density, e > 0 and h(t\x) is the Thomas
intensity (2.3). Our earlier treatment of the Neyman Scott model extends
without change to this form of the model because λ(ί) does not depend on
x. We use a Strauss prior for the landmarks x. For X(t) we used a smoothed
version of the population density based on the 1980 U.S. census, see the
right panel of Figure 1; this plot also gives the locations of the 11 inactive
hazardous waste sites suspected of causing elevated leukemia incidence rates.

Figure 2 gives the posterior intensity for the landmarks based on the
data shown in the left panel of Figure 1; we used 1000 samples drawn using
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Figure 3: Posterior observed (solid lines) and expected (dotted lines) prob 
abilities of at least one landmark within a given distance (in kms) of each
waste site.

the Kendall M0ller algorithm. Note that one of the waste sites (site 1) is
located close to an area of high posterior intensity.

To assess the significance of an elevated leukemia rate in the neighbor 
hood of a given site, we compare the 'observed' with the 'expected' posterior
landmark distribution. The relevant null hypothesis here is that the leukemia
cases form an inhomogeneous Poisson process with intensity ρ\ (t), where p
is the average leukemia rate throughout the study region. To sample from
the null distribution, we generated an artificial data set using independent
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Poisson counts for each census tract, then analyzed the artificial data the
same way as the original data.

In Figure 3 we compare the observed and expected posterior probabilities
of at least one landmark within a given distance (0-7.2 kms) of each waste
site. The 20 dotted lines correspond to samples from the null distribution,
and the 5 solid lines correspond to the data (with the leukemia cases ran-
domly dispersed throughout their corresponding census tracts). The plots
provide evidence of elevated leukemia rates in the neighborhood of site 1.

4 Conclusion
In this article we have developed perfect sampling for the posterior distribu-
tion in Bayesian cluster models for spatial point processes. We have isolated
conditions under which perfect sampling using the Kendall-M0ller algorithm
is applicable. The algorithm is shown to be feasible under mild conditions
on the prior and the likelihood, and, in particular, for the useful special case
of the Neyman-Scott model when the prior is repulsive.

We are currently working on a more detailed study of this topic in which
we examine an extended formulation of the Baddeley-van Lieshout clus-
ter model and provide other examples in which perfect sampling from the
posterior is feasible.
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