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The nonparametric empirical likelihood approach is used to obtain 
simultaneous confidence tubes for multiple quantile plots based on k 
independent (possibly right-censored) samples. These tubes are asymptoti- 
cally distribution free, except when both k > 3 and censoring is present. 
Pointwise versions of the confidence tubes, however, are asymptotically 
distribution free in all cases. The various confidence tubes are valid under 
minimal conditions. The proposed methods are applied in three real data 
examples. 

1. Introduction. The quantile-quantile (Q-Q) plot is a well known and 
attractive graphical method for comparing two distributions, especially when 
confidence limits are added. In this paper we develop Q-Q plot methods for 
the comparison of two or more distributions from randomly censored data. 
More specifically, we consider the problem of finding simultaneous confidence 
tubes for multiple quantile plots (for brevity, multi-Q plots) from k indepen- 
dent samples of possibly right-censored survival times. The multi-Q plot is 
defined to be the k-dimensional curve (Q1(p),..., Qk(p)) parameterized by 
0 <p < 1, where Qj is the quantile function of the jth distribution. It 
specializes to the ordinary Q-Q plot in the two-sample case. 

The comparison of quantile functions is particularly useful for the analysis 
of survival data in biomedical settings. Frail and strong individuals (corre- 
sponding to low and high values of p) often respond to different treatments 
in different ways, so treatment effects can be hard to determine from compar- 
ison of mean or median survival times alone; see, for example, Doksum 
(1974). The approach developed here allows comparison of treatments simul- 
taneously across all frailty levels. 

Our approach is based on the nonparametric empirical likelihood method. 
This method was originally developed by Thomas and Grunkemeier (1975) 
and Owen (1988, 1990) as a way of improving upon Wald-type confidence 
regions. There now exists a substantial literature on empirical likelihood 
indicating that it is widely viewed as a desirable and natural approach to 
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statistical inference in a variety of settings. Moreover, there is considerable 
evidence that procedures based on the method outperform competing proce- 
dures. Empirical likelihood based confidence bands for individual quantile 
functions have recently been derived in Li, Hollander, McKeague and Yang 
(1996). Naik-Nimbalkar and Rajarshi (1997) employed the approach to test 
for equality of k medians; their test naturally extends to a test for equality of 
k quantiles. 

We use the nonparametric empirical likelihood approach to derive asymp- 
totic simultaneous confidence tubes for multi-Q plots based on k independent 
random samples, including confidence bands for ordinary Q-Q plots (k = 2). 
The tubes are applicable to situations with or without random censoring. The 
limiting processes involved in the construction of the tubes are distribution 
free, except when k > 3 and censoring is present. In general, we are able to 
obtain asymptotically distribution-free pointwise confidence regions for the 
multi-Q plot. The various confidence tubes are valid under minimal condi- 
tions, although for convenience we shall assume continuity of the underlying 
distribution functions. 

Q-Q plots are studied in detail using classical methods in Doksum (1974, 
1977), Doksum and Sievers (1976) and Switzer (1976) for models without 
censoring; see Shorack and Wellner [(1986), pages 652-657] for a summary 
and discussion. For models with censoring, Wald-type simultaneous confi- 
dence bands for Q-Q plots are obtained in Aly (1986), but restrictive differen- 
tiability conditions on the underlying distribution functions are required. The 
k-sample problem without censoring is studied in Nair (1978, 1982), but 
essentially only pairwise comparisons are made there. A review of graphical 
methods in nonparametric statistics with extensive coverage of Q-Q plots can 
be found in Fisher (1983). Some refined approximation results for normalized 
Q-Q plots with statistical applications have been established in Beirlant and 
Deheuvels (1990) for the uncensored case and Deheuvels and Einmahl (1992) 
in the censored case. 

The paper is organized as follows. The proposed confidence tubes and the 
main results are presented in Section 2. Our approach is illustrated in 
Section 3 using three real data examples. All the proofs are contained in 
Section 4. 

2. Main results. We begin by specifying the setup precisely and intro- 
ducing the basic notation. It is convenient first to recall the notation in the 
one-sample case. For the corresponding notation in the general k-sample 
case, we use a further subscript j to refer to the jth sample. 

The random censorship model deals with n i.i.d. pairs (Zi, 5i), i = 1,..., n, 
obtained from two independent random samples Xi and Yi, i = 1,..., n, in 
the following way: Zi = Xi A Yi, (i = liXi Yi. The distribution functions of Xi 
and Yi are denoted F and G, respectively, and F is assumed to be continu- 
ous. We will work with nonnegative Xi and Yi, but this restriction is in fact 
not needed anywhere; see the discussion at the end of this section. The 
(right-continuous) quantile function corresponding to F is denoted by Q. We 

1349 



J. H. J. EINMAHL AND I. W. MCKEAGUE 

write 

L(F) = f1 (1F(Zi) - F(Zi -))8i(i - F(Zi))1 
i=l (1) 

for the likelihood, where F belongs to 0, the space of all distribution 
functions on [0,oo). The ordered uncensored survival times, that is, the Xi 
with corresponding 8i = 1, are written 0 T< T . _ TN < oo, and rj = 
Ein l(zi .>} denotes the size of the risk set at Tj - . The empirical likelihood 
ratio for F(t) = p (given 0 < p < 1) is defined by 

sup{L(F): F(t) =p, P E @ 

sup{L(F): F E O} 
Note that the sup in the denominator is attained by the Kaplan-Meier (or 
product-limit) estimator 

n(t) = 1 - - 1- 
i: Ti<t ri) 

It can be shown with the aid of Lagrange's method [see Thomas and Grunke- 
meier (1975) or Li (1995)] that 

-21ogR(t) = -2 (ri- 1)log (1 + ) - riog 1+- , 
i: Ti<t ri - I ri 

where the Lagrange multiplier A > D = maxi Ti < t(1 - ri) satisfies the equa- 
tion 

(2.1) n 1- -P 
i:Ti <t ri + A) 

Now we turn to the multisample setup. The k samples are assumed to be 
independent with sample sizes denoted n1,..., nk; write n = Ej= nj. Set 
F = (F1,..., Fk) and define the multi-Q plot to be 

{(Q,(P),..., Qk(P)):0 <p < }. 
Observe that this is the classical Q-Q plot when k = 2. In the sequel we 
consider the following more convenient version of the multi-Q plot: the graph 
Q of the function 

t1 (Q2(F(tl)),...,Qk(Fl(tl))) 
for t1 > 0. Denote the joint likelihood by 

k 

L(F)= nL() j=1 

and the empirical likelihood ratio at t = (t1,..., tk) by 

sup{L(F): Fj(tj) = F1(tl) for all j 2,...,k,i G ok} 
R(t) = . . 

sup{L(F): F E Ok) 
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Again we find, using Lagrange's method with the k - 1 constraints, Fl(t1) - 
Fj(tj), j = 2,..., k, that 

-2 log R(t) 

(2.2) 
k 

C C = -2E (rji - )log +j l -rj og(i + - 
j= 1 i: Tji < tj Fji -- i ji 

where the Aj, j = 2,..., k, satisfy the k - 1 equations 

(2.3) ~ i: Tli < t( rli - A1) i: Tji<tj( rji + A ) 
here we have set A1 = -E-2 Aj (so Lk= Aj = 0) and the Aj should satisfy 
j > Dj forj= 1,...,k. 

Later we show that this system of equations indeed has a unique solution; 
see Lemma 4.1. In the one-sample case, it is immediately clear that the 
corresponding Lagrange multiplier equation (2.1) has a unique solution, but 
it is not obvious in the multisample case. Computation of the Aj's can be 
carried out using a special-purpose root-finding procedure which exploits the 
monotonicity of the r.h.s. of (2.3) as a function of Aj (see Section 3 and the 
proof of Lemma 4.1). 

The various confidence sets we propose are easily obtained from the main 
theorem below and are presented in the three subsequent theorems. These 
confidence sets are all of the form {t: R(t) > c}, where c is derived using 
asymptotic considerations. 

Before stating our main theorem we introduce some more notation. We 
assume throughout that nj/n - pj > 0 as n -> co for j = 1,..., k (although 
with some care this condition can be relaxed to nj - oo). Define 

2 s dFj(u) 
2s) ( = (1 - Fj(u))(- - G (u -)) 

We will need the k x k-matrix D = D(t) with entries 

ai(t) j(tj) 
I /-- rij, for j i, 
v/Pi Pj 

dij = dl 
Oi(ti) a T..i, I -- 7-1i forj = i, 

Pi l=i 

where 
l-J A i, 14: jO'j2 ( tt) /PI 

1Iij 
= k 1 2 ( tl) /p! q=lj 1 lq (l)/P 

(the empty product is defined to be 1). Also define V = V(t) to be the random 
k-vector with jth entry Wj(oa2(tj))/oj(tj), where the Wj are independent 
standard Wiener processes. Let T, be such that Fl(T1) > 0 and let r2 > r1 be 
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such that F1(72) < 1, G1(T2) < 1 and Gj(Qj(F1(T2))) < 1 for j = 2,..., k. We 
assume throughout that the Fj are continuous. 

THEOREM 2.1. When R, D and V are evaluated at t = (t1, Q2(Fl(tl)),..., 
Qk(Fl(tl))) for T1 < t1 < T2, we have 

(2.4) -2 log R -> I DV l2 

on D[ 71, 72], with 1 i the k-dimensional Euclidian norm. 

Write the restriction of Q to t1 E [r1, 72] as Q[Tr, 72]. In the next theorem 
we consider the important case k = 2, in which the multi-Q plot reduces to 
the usual Q-Q plot. Define c,[sl, s2] for 0 < a < 1 by 

P( sup W12(s)/s <C[S S2]) =1- a. 
S E[ S1, S2] 

Set c^ = ca[ (2(Ti), 2(T2)], where 

(2.5) _(tl) __ +/ ) 
n, n, (2.5) 2(t) n{ n(1( t ) ?2 (Q2n2(F11(ti))) } 

with 

(2.6) : 
2 r ( 1 

i:'T ,<s rji(ji -i 

and with Q2n2 the (right-continuous) quantile function corresponding to F2n2. 
Now we define the confidence band for Q[T1, 7'2] to be 

= {t E [1, 72] x[0,O): -2log R(t) < c}. 

THEOREM 2.2. In the censored case, for k = 2 and 0 < a < 1, 

lim P(Q[71, 2] e2 ) =1 - a. 
n - oo 

REMARK 2.1. In the uncensored case (and k = 2) we have that 

(22(t ) (2())) 
P1 2 F1(t1 P ) 

(2.7) - + -- l 

= 1 ) 2(t). 
Pi P2 

( 
-+1 

P1 
r 11) 
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Therefore for this case we can replace the a2(tl) defined in (2.5) by the 
simpler but almost equivalent estimator 

I i Flnl(tl) 
2(tl) n --n - - ? 

n, n2 1 - Fln(tl) 

For use in c^,, we can replace (2(tl) by 

Flnl( tl) 
1 -Flnl(tl) 

Observe that this last expression is not an estimator of r2(tl) but of or2(t1). 
This however makes no difference because of (2.7) and the fact that for c > 0 

sup W1(s)/s = sup W (s)/s. 
sE[sl,s2] s [cs, cs2] 

Of course, here the Kaplan-Meier estimator Fln, is just the empirical distri- 
bution function of the first sample. 

Next we return to general k > 2, but assume that there is no censoring. 
Note that in this case the assumptions on T2 reduce to F1(T2) < 1. Define 
CJ[s, s2] for 0 < a < 1 by 

k1 -1 
(2.8) P sup - E W2(s) <C,s s] =1- a. 

sc[sl,s2] $ j=l 

Set C, = Ca[ -2(7i), 12(72)], where 

^2 \ _ ^Fn(t1) 
2(t) 1 - Flnl(tl) 

Define the confidence tube for Q[71, T2] by 

J= {t E [71,r2] X[,O)k-1: -2log R(t) < ,)}. 

THEOREM 2.3. In the absence of censoring, for all k 2 2 and 0 < a < 1, 

lim P(Q[T1,T2] E a) = 1 - a. 
n - oo 

Now we allow censoring and k > 2 but take T2 = rl. Set Q[T1] = Q[T1, T1]. 
Define the confidence region for Q[ 1] by 

= {t E {T1} X[O,mo)k : -21og R(t) < X,2 

where X2 is the upper a-quantile of the chi-square distribution with k - 1 
degrees of freedom. In the case k = 2 note that o amounts to a confidence 
interval for the Fl(rT)-quantile of F2. 
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THEOREM 2.4. In the censored case, for all k > 2 and 0 < a < 1, 

limP(Q[Tl] EG) = 1 - a. 
n -> oo 

The asymptotic null distribution in the test for equality of k medians 
developed by Naik-Nimbalkar and Rajarshi (1997) can be essentially derived 
from the proof of Theorem 2.4 by taking z1 as their estimator 0* of the 
common median. 

Finally we establish an interval property for the confidence tube ~ (which 
also applies to S and -): one-dimensional cross-sections parallel to a given 
axis are intervals. This is useful for computing the various confidence sets 
because points belonging to them can then be found by a simple search 
strategy that sweeps along each axis. 

THEOREM 2.5. Suppose that t() = (t1,...,t( , ) E for 1= 1,2, 
where t(l) < t(2). Then t* = (t, ..., t ,., t) e for any tj E [t1), t2)]. 

In the two-sample case (k = 2) we have a somewhat stronger result. 

THEOREM 2.6. Let (t0l), t(l)), I = 1, 2, belong to the confidence band M and 
suppose ) t)(2) t2 and t) t1. Then (t, t?) also belongs to M whenever 
t2) < tj < tl) and t(1) < t < t(2) 

This theorem (as well as Theorem 2.5) implies, by taking tl) = t2) or 
t2) = t2), that the intersection of the band M with a vertical or horizontal 
line is an interval. In addition, it shows that the bands are nondecreasing in 
the sense that their lower or upper boundaries are nondecreasing. 

Discussion. We wish to emphasize that our approach, including the defi- 
nition of the multi-Q plot, is new even in the uncensored case. We also 
remind that nonnegativity of the observations is not needed anywhere in the 
proofs. This is especially useful in the uncensored case, where often the k 
samples do not represent life or failure times or when a transformation is 
applied to the data (see the third example in Section 3). 

Another desirable feature of our approach is that the confidence bands and 
tubes are essentially invariant under permutations of the order of the k 
samples involved. (Only at the two "ends" of the tube does the first sample 
play a somewhat special role.) 

We did not formulate a version of our confidence tubes in the censored case 
for k > 3 since then IIDV112 in (2.4) is not distribution free, even when only 
one of the k samples is subject to censoring. Our approach can, however, be 
generalized to this situation by estimating all the unknowns appearing in D 
and V and then using simulation. This means that we replace D by C (given 
in the proof of Theorem 2.1), tj by Qjn(Fn(t)) for j = 2,..., k, and oj2 by 
Cj2. The process to be simulated has the form |lCV112, where V is the 
estimated version of V. Hence, approximate 1 - a confidence tubes can be 
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constructed for the censored case as well, but we do not pursue this in further 
detail here. 

The one-sample Q-Q plot, t -> Q(Fo(t)) with Fo known, is essentially 
treated in Li, Hollander, McKeague and Yang (1996), since their confidence 
bands for Q(p) can be transformed to bands for Q(Fo(t)) by the time change 
p = Fo(t). The present paper can be seen as a generalization of their ap- 
proach to the k-sample case. 

For uncensored data, in the two-sample Q-Q plot case, our confidence 
bands perform well in the tails due to the weighting which naturally arises 
when using the empirical likelihood method. Our bands share this property 
with the weighted bands (W bands) introduced in Doksum and Sievers 
(1976), which are based on the standardized two-sample empirical process. 
The bands in Switzer (1976) [and Aly (1986) for the censored case] are much 
wider in the tails, since they are based on the unweighted empirical process. 
All these procedures as well as our procedures are essentially based on the 
inversion of a distance between empirical distribution functions (or 
Kaplan-Meier estimators). In fact, the W bands are asymptotically equiva- 
lent to our bands in the uncensored case. 

3. Applications to real data. In this section we illustrate our approach 
in three real data examples. 

First we consider a biomedical example for the two-sample case with 
censored survival data. The data come from a Mayo Clinic trial involving a 
treatment for primary biliary cirrhosis of the liver; see Fleming and Harring- 
ton (1991) for discussion. A total of n = 312 patients participated in the 
randomized clinical trial, 158 receiving the treatment (D-penicillamine) and 
154 receiving a placebo. Censoring is heavy (187 of the 312 observations are 
censored). Figure 1 displays the 90% confidence band (and pointwise confi- 
dence intervals) for the Q-Q plot of treatment versus placebo for survival time 
in days. The standard empirical Q-Q plot based on quantiles of the 
Kaplan-Meier estimator is also displayed. Note that although the diagonal 
departs from the pointwise confidence region at some points, it remains 
within the simultaneous band, so there is no overall evidence of a difference 
between treatment and placebo. 

The second example also illustrates the two-sample case. Hollander, 
McKeague and Yang (1997) analyzed data on 432 manuscripts submitted to 
the Theory and Methods Section of JASA during 1994. Each observation 
consists of the number of days between a manuscript's submission and its 
first review or the end of the year, along with a censoring indicator (1 if a 
paper received its first review by the end of the year; 0 otherwise). Similar 
data (on 444 manuscripts) are available for 1995. The censoring is light (330 
of the 876 observations are censored) compared with the previous example. It 
is of interest to look for differences in the pattern of review times for the two 
years. Figure 2 displays the 95% confidence band (and pointwise confidence 
intervals) for the Q-Q plot. The lower endpoints of the pointwise confidence 
intervals touch the diagonal between 10 and 25 days, which might suggest 
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FIG. 1. 90% confidence band (solid line) for the treatment versus placebo Q-Q plot in the Mayo 
Clinic trial, for 186 < tl < 2976 days; pointwise confidence intervals (short dashed line), 
empirical Q-Q plot (long dashed line). 

that "rapid" reviews were faster in 1994 than in 1995. However, the diagonal 
is completely contained within the simultaneous band, so there is no overall 
evidence of a difference between the patterns of review times. 

The third example concerns times to breakdown (in minutes) of an insulat- 
ing fluid under three elevated voltage stresses, from data reported in Nair 
(1982), Table 1. It is important to determine whether the distribution of time 
to breakdown changes with voltage. There are 60 uncensored observations at 
each voltage level (34, 35 and 36 Kv). As in Nair (1982) we use the 34 Kv 
measurements as a reference sample and put the breakdown times on a 
log-scale. Figure 3 shows cross-sections of the 95% confidence regions for the 
multi-Q plot at three values of the reference sample: t1 = 0.41, 1.06 and 1.65. 
The confidence tube gives simultaneous coverage over the interval 0.41 < 
t, < 1.65. The diagonal (tl, tl, t,) runs above the pointwise confidence region 
at t, = 1.65 (top right plot) suggesting that increased voltage can reduce 
breakdown time in the upper tail of the distribution. However, the diagonal 
falls completely inside the simultaneous tube (left column) so there is a lack 
of significant evidence for breakdown time changing with voltage. 

In these examples, we computed the Lagrange multipliers in the system of 
equations (2.3) using the van Wijngaarden-Dekker-Brent root finding algo- 
rithm [Press, Teukolsky, Vetterling and Flannery (1992), page 359]. The 
proof of Lemma 4.1 provides a constructive method to obtain the solution by 
repeated use of their algorithm. The thresholds c^ and Ca used in the 
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FIG. 2. 95% confidence band (solid line) for the Q-Q plot based on the JASA time-to-first-review 
data, for 5 < t1 < 195 days; pointwise confidence intervals (short dashed line), empirical Q-Q 
plot (long dashed line). 

confidence bands and tubes were computed by simulation of the Wiener 
processes on a fine grid. 

4. Proofs. Here we present proofs of the theorems in Section 2. Some 
lemmas used in these proofs are given at the end of this section. 

PROOF OF THEOREM 2.1. First we note that, by Lemma 4.1, below the 
system of equations in (2.3) with A1 replaced by -_ 2 A has a unique 
solution for all k > 2. 

Define gj: (Dj, o) --> R by 

gj(A)= i log I 

for j = 1,..., k. Denote aj = gj(O) = log Sj(tj), where Sj is the Kaplan-Meier 
estimator of S= 1 - F and bj = gj(0) = &j2(tj)/nj with A2 as in (2.6). Here 
tj = Qj(Fl(t)) for j = 2,..., k. Taylor series expansions of g and gj, in 
conjunction with Lemma 4.2 and the argument of Li [(1995), proof of (2.15), 
page 102] yield 

Define ^: (D^) -^ R by 

page 12] 5 yonideld ad~oi ie o te&&po ae n h JS iet-is-ei 

(4.1) 0 = g(Al) - g(Aj) = al - a, + Alb - Ajbj + Op(n-1), 

1357 



J. H. J. EINMAHL AND I. W. MCKEAGUE 

0- 

N . .| 

' * .. 
3-- '0123 -3 - 

.- 2 . 
* 2 3 ... . . . 

-3 -2 -10 12 3 33 -2 .1 0 

' 
E' 

,,, .... .1. .... 1... 2... 3 
.,. ,,? : 

, : 
3 - .2 

iil~ 

,I . ~~? 

o 

1 
. 
~, ! 

i~~~~~~ 
r?~~~~~~~~? , . 

| ' ,' 

: . 
? o 

.. . . . . . 

?~~~~~~~~? 

. .O , 

.#': 

-3 -2 -1 0 1 2 3 

X ,C.j~~~~. 

3 o , 

3 .2 .1 1 2 3 

CM0 

. ,,' 

_, .......... 

-3 -2 -1 0 1 2 

-3 -2 -1 0 l 2 3 

FIG. 3. Time to insulating fluid breakdown (in log-scale), 36 Kv sample versus 35 Kv sample; 
cross-sections of the 95% simultaneous confidence tube (left column) and pointwise confidence 
regions (right column) at t1 = 0.41, 1.06 and 1.65 in the 34 Kv reference sample (bottom row to 
top row, respectively). 

uniformly in t Ec [71, 72]. Ignore the remainder term for the moment and 
consider the system of equations 

Ajbj - Ailb = a1 - aj for j = 2,..., k, 
(4.2) 

Al + ... +Ak = 0 
with unknowns A1,..., Ak. By Lemma 4.3 this system has as unique solution 
Aj = Ei j(ai - aj)yij with the yij as defined in the lemma. We now use this 
result to obtain an approximation for the Aj. 

The remainder term in (4.1) consists of the remainders in the Taylor series 
expansions of gl and gj, and both are of order Op(n-1). Attach these 
remainder terms to a, and aj, respectively, and apply Lemma 4.3. Note that 

123 

c0 

OJ 

I? 

N 0 

li 

i 
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aj2 is a uniformly consistent estimator of j2, so b = Op(n-1) and yi= 
Op(n), and it follows that 

Aj = Aj + Op(n-1)Op(n) = Aj + Op(l), 

uniformly for t1 E [rT, T2]. We also have that 

(4.3) Aj2b = Aj2b + Op(n-1/2). 

Applying the Taylor series argument of Li [(1995), page 102] to (2.2) and 
using (4.3) then gives 

k 
-21og R(t) = E bj + Op(n-1/2). 

j=l 

Write the leading term above in the form 
k 

E A = IICw l2 
j=l 

where C is the k x k-matrix with entries 

(- ij /ij for j i, 

cij= bi ylii, forj=i. 
li 

and w is the k-vector with entries 

aj - log Sj(tj) aj - log S1(tl) 

The proof is completed by noting that 

(w.j(tj))j=.. Wj. ( t 
2 
(tj)) )j t. ) 

where W1,..., Wk are independent standard Wiener processes, and cij p dij. 

PROOF OF THEOREM 2.2. Let us first simplify DV for this case. Note 
PROOF OF THEOREM 2.2. Let us first simplify IIDV 112 for this case. Note 

that for k = 2 we have 

(tl) - l(tl)Pr2(t2) 

~1 Pi P P2 
D 2= 2 2 (tl) --(rl(tl) (T2(t2) (r2( t2) 

V/PiP2 P2 
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with 2 as in Remark 2.1. So 

1 D = 
D o-2(tl) 

where a?2 = aa', and hence 

r1 (tl) 

1 p1 
r2(t) -o2(t2) 

/P2 

',( tl) 

1 P-l 

i vp1 

Pi Pl 

o (2(tl) -o-2(t2' 

W ((tl)) W2(a2(t)) 

1 ( 2 t2t) 

Wl(Oa2(tl)), 

i 

so that 

o-2(t,) 

It is well known that (j2(s) p (2(s) , j = 1,2, and hence with some care 
it can be shown that O2(^T) _>p 2(r71), 1 = 1, 2. Setting ca = 
cj[ c2(T), r2(T2)], this yields c^ ->p ca. 

Combining the above we obtain 

P(Q[71, T2] C )) = P(-2 log R(ti, Q2(F1(tl)) < c, for all ti E [ri, 2]) 

--P ( sup 
tlE[i1, r2] 

W12(\(2(tl)) 
a2(tl) 

Wi' (s) = p sup W 
s E [ 0a 2(i7), 0 2(T2)] s 

< c, 

< c) = 1 - a, 

where we used, for the convergence statement, that the random variable in 
the last expression has a continuous distribution. D 

Before continuing with the proofs of the theorems let us do some calcula- 
tions on IIDV[ 2 of Theorem 2.1 in general. Note that D is symmetric and by 

\ ?2 

cl1( tl) 

- 02(t2) 

VP2 

DV 
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Lemma 4.4 it is idempotent of rank k - 1. Thus we may diagonalize D = D(tj) 
as follows: 

(4.4) D(tl) = p(tl)' Ik- 0)P(tl) 

where P(tl) is orthogonal and Ik_ is the identity matrix of order k - 1. Put 
Z(tl) = P(tl)V(tl). Then 

1 D(tl)V(tl) |2 - V(tl)'D(tl)'D(t,)V(tl) = v(tl)'D(tl)v(t,) 
(4.5) -z(t,) ?k1 o (t 

Z( t O jZ(tl) 

where the second equality follows since D is symmetric and idempotent. The 
covariance structure of the process Z(t1) is given, for two values of tl, say 
s t, by 

E(Z(s)Z(t)') 

(4.6) =P )diag ((s) r2(Q2(FA1())) ^k(Qk(Fl(s))) P(t)' 
P"s)diag 

au(t) 
' 

o2(Q2(Fl(t))) '"-' k(Qk(Fl( t))) 

PROOF OF THEOREM 2.3. First observe that 

2( F(Qj(F1(t))) F( ())) l F(t1) (t 

for j = 2,..., k. This implies D(tl), and hence P(tl), does not depend on t1. 
Thus the r.h.s. of (4.6) reduces to 

u1(s) 
orl(t) 

It follows that the process Z(t1) has the same distribution as the process 

.40" 2(tl)) '"* 12(t)) 
' 

.... (rli tl) ) . ... ,o.1(tl)', 

where the W)'s are independent standard Wiener processes, and hence by 
(4.5), 

k-I Wa2( (tl)) 
tIDVI2 E 

Ij=l 42(tl) 

Now the proof of this theorem can be completed along the same lines as that 
of Theorem 2.2. In this case, use continuity of the random variable 

1k- W2(s) 
sup E - 

sea[ 2(T-), o2(T2)] j-= 
s 
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which follows from a property of Gaussian measures on Banach spaces, 
namely that the measure of a closed ball is a continuous function of its 
radius; apply, for example, Paulauskas and Rackauskas [(1989), Chapter 4, 
Theorem 1.2] to the Gaussian measure induced by the process 
s-1/2(Wi(s),..., Wk_1(s)) on the Banach space of Rk- l-valued continuous 
functions on [ r(rl), or12(,2)] endowed with the supremum norm. [] 

PROOF OF THEOREM 2.4. This theorem can be proved along the lines of the 
previous two. We only note that now the r.h.s. of (4.6), with s = t = rl, 
reduces to the identity matrix Ik. Thus Z(T1) is a k-vector of independent 
standard normal random variables. Hence from (4.5) we find that IIDV 12, 
evaluated at Tj, has a Xk-2 distribution. D 

PROOF OF THEOREM 2.5. In order not to overdo the notation we restrict 
ourselves to proving this theorem for k = 3; for k 1 3 the proof is essentially 
the same. W.l.o.g. we take j = 3. Because the denominator of the likelihood 
ratio does not depend on t = (tl,..., tk), we only consider the expression 

3 Nj 
-2 og hji(1 - hji) ri J 

j=1 i=1 

with the hji E (0,1) defined by hji = IFTji)/(l - Fj(Tj, i-)). Setting zji = 
log(l - hji), this becomes 

3 Nj 

-2 log n nH (1 - exp(zji))exp(zji (rji - 1)) 
j=1 i=l 

3 Nj 
= -2 E E {zj(ji - 1) + log(1 - exp(zji))} =: g(z), 

j=1 i=1 

with z = (Z11,... , N1, z21, ... z2N2, z31,..., z3N3). Observe that g is a con- 
vex function. 

Now g(z), z E (-0 0)Ni+N2+N3, has to be minimized under the constraints 

(4.7) E Zli= E Z2i and E Zi = E Z3i' 
i: Tli <t i: T2i<t2 i: Tli <t i: T3i<t3 

Solutions of (4.7) for t = t(l) that minimize g(z), are denoted with z(1), 
I = 1, 2, respectively. 

For t E [t(), t2)], define the function 

f(x)= E (xz i - (1 - x ))- E (xz(I) + (1 - x)(2)) 
i:Tli < t i: T3i<t3 

for 0 < x < 1. Since t* < t2), we easily see that f(O) < 0. Similarly, using 
t3 2 t1), we obtain f(l) 2 O. Thus there exists an x' e [0,1] such that 
f(x*) = 0. 

Define 

Z* =)(2) . X (1) -) (1 - X*(2)3 ) Z ^ h 1A 2111' 3N3 
- 1 :3N 
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Then trivially the two equations in (4.7) are satisfied for z = z* and t = t*. 
Also because g is convex, 

g(z*) < x*g(z(l)) + (1 - X)g(z(2). 
This implies, since -2 log R(t(l)) < C,, 1 = 1, 2, that -2 log R(t*) < C<, that 
is, t* e 9T D 

The proof of Theorem 2.6 is similar to, but easier than, the previous proof. 
Moreover it is a straightforward extension of the proof of Theorem 1 in Li, 
Hollander, McKeague and Yang (1996). Therefore we will omit the proof here. 

We conclude by proving the four lemmas that we used earlier. 

LEMMA 4.1. The system of equations (2.3), with unknowns A2,..., Ak, has 
a unique solution for all k > 2 provided Dj < 0 for j = 1,..., k. 

PROOF. Define fj: (Dj, oo) -- (0, 1) by 

(4.8) fj(A) r + AI 

for j = 1,..., k. We need to show that the system of equations 

(4.9) f - EAj =f(A), j=2,..., 
J=2 

has a unique solution. Note that fj is continuous, strictly increasing, and 
vanishes as Aj / Dj. It then follows that there is a unique solution to (4.9) 
when k = 2, because the decreasing function f1(-A2) must cross the increas- 
ing function f2(A2) at exactly one value of A2 E (D2, -D1). 

Now consider k > 3. For each fixed A2 > D2 and j = 3,..., k, there exists a 
unique Aj = Aj(A2) such that f(A2) = fj(Aj). Each of these Aj's is strictly 
increasing as a function of A2 because f2 and fj are strictly increasing. Now 
consider the equation 

k 

(4.10) fi -A A(A2) =Af2(h2). 
j=3 

The l.h.s. of (4.10) is defined whenever D2 < A2 < DL, where D* is the unique 
solution to 

k 
-D- E Aj(D2) = D. 

j=3 

Note that D2 < D* because 
k k 

-D2- EA(D2)- E D > 0 >D1. 
j=3 j=2 

Moreover, as a function of A2 E (D2, Di), the l.h.s. of (4.10) is strictly 
decreasing and vanishes as A2 T D2; the r.h.s. is strictly increasing and 
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vanishes as A2 4 D2. Thus (4.10) holds for some unique A2 A2 E (D2, DO). 
Now set A = Aj(A2) for j = 3,..., k. It is then clear that (A2,..., Ak) is the 
unique solution to (4.9). ] 

LEMMA 4.2. Suppose nj/n - pj > 0 for j = 1,..., k. Let tj = Qj(Fl(tl)) 
forj = 2,..., k and t = (t,..., tk). Then 

Aj = Aj(tl) = Op(n'/2) uniformly over [ l, T2 ]. 

PROOF. Write the value of each side of (2.3) as 1 - p when t has the above 
form. By Li [(1995), page 101], if Aj < 0 then 

-log(l-p) >Aj (tj) nj 
+ A 

where Aj is the Nelson-Aalen estimator of Aj, the cumulative hazard 
function corresponding to Fj, and if Aj > 0 then the above inequality reverses. 
Thus for any pair A, Al with Aj < 0, AZ 0 (such pairs always exist, if not all 
the Aj's are 0, since E= 1 Aj = 0) we have 

Aj(tj)( nj 
+ AI) n, + A 

and hence 

AnjAjA(tj) - AjnIAP(t1) < (A1(t) -Aj(tj))nznj. 

Note that Aj(tj) = Al(t1) and Al(t1) is bounded away from 0 if t1 >2 r. Thus 
by the uniform convergence of the Nelson-Aalen estimators Aj, we have that 
for any E > 0 and n sufficiently large, Aj(t) > 'A1(t,) for all tl E [r1, T] 
with probability at least 1 - e, similarly for Al. It then follows that 

0 < 2(Alnj - Aj,n)Al(tl) < (A,(t) -Aj(t,))nlnj, 
with probability 1 - s, for n sufficiently large. Finally, using the fact that 
Aj(tj) = Al(tl) + Op(n-1/2) uniformly over [,, 72], we find that Aj = Op(n12) 
for all j = 1,..., k, uniformly for t1 E [r1, T2]. ] 

LEMMA 4.3. The system of equations (4.2) has solution 

Aj = E (ai - 
aj) yij, 

i~j 

where 

Yij= Yo H bz and y0 = E Hbi I li, l j i=l l1 i 

The solution is unique when all the bl's are positive. 
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PROOF. The coefficient of a1 in Ej 1 AJ is 

E Til- E Tlj = 0, 
i#l jlI 

similarly for the coefficients of a2., a. Thus A = 0. The coefficient of 
a1 in A2 b2, is 

b2Y12 = YoHb 
zl 

and the coefficient of a1 in lAb1 is 

-bl E i = -7o E Hb 
i~ l i l l#i 

so the coefficient of a, in A2b2 - A1b, is 

YoHbn + Y- E nbl = 1. 
1 1 i 1 lli 

The same argument shows that the coefficient of a2 in A2b2 - Albl is -1. 
The coefficient of aq, with q > 3, in A2b2 - A1b, is 

b27q2 - blyql = 
Yo(b2 H bl - bl I bl) = 0. 

l1 2, l1q 11, loq 

This shows that A2b2 - Albl = a1 - a2 and the same argument shows that 
all the other equations in (4.2) are satisfied. D 

LEMMA 4.4. The k x k-matrix D = D(t) is idempotent, that is, D2 = D 
and of rank k - 1. 

PROOF. Setting vj = a2(tj)/pj, we have 

d = j zji E1ilIj Vl 
Ek=1 Hiq vi 

di= ,j 
I I i, l I j V l 

i=i ll q V 

Because of the various symmetries it suffices to show that 
k k 

(4.11) dl = d2i and d2 = dli, d2i, 
i=1 i==l 

for the idempotency of D. For the first equality we need to show that 

(E HVI E HUl) = E Hv + E v1jv H Vl 
j=2 17j i=1 1:i j=2 lj j=2 l l1,1 zj 
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Writing C = ELk=2 1 j vl, this reduces to 

c(c 11 ) = C2 + v1 E V V , 
l+j1 j=2 l1A1, lJj 

or, subtracting C2 on both sides, 
k k \ , k 2 

(E HvI) H VL = V E vj H VI 
j=2 l0j 11 j=2 l1, lvLj 

which is easily seen to be true. 
For the second equality in (4.11) we have to show that 

/ __ k/ k 

( ) ( I E n I) ( -/V 1=3 i) Hi=l lI=i ijl lvj 1=3 

?(j2 H (j )( 1%vi) 

k 

+ ) V- V H V H V.I 

k + viv1/vv2 n n v v, 
i=3 1 1, 17&i 12,1li 

Dividing both sides by - Jv/v2 1=3 Vl yields 
k k 

E HI= E Hv + E Hv- E Hv,, 
i=1 li jil l j j 2 lj i=3 li 

which is obviously true. This establishes the idempotency of D. 
For the second statement in the lemma, note that the rank of an idempo- 

tent matrix is equal to its trace. It is easily seen that the trace of D is k - 1. 
D 
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