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 NONPARAMETRIC LIKELIHOOD RATIO CONFIDENCE
 BANDS FOR QUANTILE FUNCTIONS FROM

 INCOMPLETE SURVIVAL DATA

 BY GANG Li,1 MYLES HOLLANDER, IAN W. MCKEAGUE 2
 AND JIE YANG

 University of North Carolina, Charlotte,
 and Florida State University

 The purpose of this paper is to derive confidence bands for quantile
 functions using a nonparametric likelihood ratio approach. The method is
 easy to implement and has several appealing properties. It applies to
 right-censored and left-truncated data, and it does not involve density

 estimation or even require the existence of a density. Previous approaches
 (e.g., bootstrap) have imposed smoothness conditions on the density. The
 performance of the proposed method is investigated in a Monte Carlo
 study, and an application to real data is given.

 1. Introduction. Confidence bands and intervals for quantile functions
 provide an attractive and readily interpretable way of summarizing survival

 data. For example, Figure 1 gives confidence bands for patients treated for
 malignant melanoma. Such curves are useful to medical researchers for

 assessing the effectiveness of treatments.
 Consider the right-censored survival data consisting of n i.i.d. pairs

 (Z1, 8), ... , (Zn, 8n), where Zi = min{Xi, YiJ, 8i = I(Xi < Y) and Xi and Yi
 are independent positive random variables representing the survival time

 and the censoring time of the ith subject under study. Let Fo and Go be the
 distribution functions of Xi and Yi, respectively. We study the problem of
 constructing confidence bands for the quantile function F 1 (p) on an interval
 [P1, P2] c (0, 1), where, for any nondecreasing function x, the right-continu-
 ous inverse is defined by

 x-1(p) = sup(t: x(t) <p}.

 Let Fn be the Kaplan-Meier (1958) estimator of Fo. It is well known [cf.
 Shorack and Wellner (1986), Section 18.4] that if Fo has a positive and
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 CONFIDENCE BANDS FOR QUANTILES 629

 continuous derivative f0 on [0, Fo (po) + 6) for some 0 < po < 1, 6 > 0 and
 Go(F 1(po)) < 1, then

 (1.1) n / f-1-F)1 (F1) inD),p n d fow(F~ 1)

 where W is a Gaussian process with mean 0 and covariance function

 cov{W(s), W(t)} = (1 - FO(s))(1 - FO(t))o2(s) for s < t

 s1.2 a 2(S) = ' dFo(u)
 (1.2) J2s)~f 1[1 - FO(u)] [1 - Fo(u -)] [1 - Go( ]

 and D(I) is the Skorohod space on the interval I. It is not easy, however, to
 construct confidence bands for Fo 1 on an interval [P1, P2] c (0, p0] from the
 result in (1.1), because the distribution of

 sp W(F~1(p))
 P1<P<P2 fo(Fo1 (p))

 involves the unknown Fo and is intractable except in some special cases. One
 possible solution is to transform the weak convergence result in (1.1) to a
 Brownian bridge form, along the lines of Hall and Wellner's (1980) method of

 constructing confidence bands for the distribution function Fo. Details will be
 given in subsection 2.4. Here we only point out that the resulting band is still
 difficult to use in practice because it requires knowledge of the density
 quantile function g0 = fo(F& 1). As in density estimation, estimation of
 g0 involves smoothing [cf. Xiang (1994)], and the choice of smoothing param-
 eter is problematic. Another solution is to bootstrap the distribution of

 1/2(F -1 - FV 1); see Efron (1981). The bootstrap does not require estimation
 of g0. In this context, its validity was established by Lo and Singh (1986),
 Theorem 2, under the condition that Fo has a bounded second derivative.
 Bootstrap confidence bands for quantiles were also studied by Doss and Gill
 (1992). A rather different approach was taken by Aly, Csorgo and Horvath
 (1985), who used strong approximations. Keaney and Wei (1994) proposed a
 resampling method, different from that of Efron (1981), and which can be
 used to construct pointwise confidence intervals for quantiles without making
 strong assumptions. Further work, however, would be needed to extend their
 results to provide simultaneous bands for quantiles.

 The purpose of this paper is to show that the nonparametric likelihood
 ratio approach provides a simple solution to the problem of constructing
 confidence bands for quantile functions. Let 0 be the space of all distribution
 functions on [0, oc). Let

 L(F) = H [F(Zi) - F(Zi - )]i[1 - F(Zi)] -
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 630 LI, HOLLANDER, MCKEAGUE AND YANG

 be the likelihood function based on the right-censored data described earlier.
 Here F is treated as a parameter taking values in C. For any t 2 0 and
 0 <p < 1, define

 (1.3) R(p,t) = sup{L(F): F(t) = p and F E 0}

 sup{L(F): F e }

 and, for 0 < r < 1,

 (1.4) C(p, r) = (t: R(p, t) ? r}.

 Clearly, a large value of R( p, t) gives evidence in favor of the hypothesis Ho:
 Fo(t) = p. Therefore, C(p, r) can be interpreted, for each fixed p, as the set of
 times t for which Ho is not rejected by a test based on R(p, t). This suggests
 that C(p, r) be used as a confidence set for F l1(p). We show that C(p, r) is
 always an interval and that an ra can be determined so that {C(p, ra),
 P1 < P < P2) gives an approximate 1 - a simultaneous confidence band for
 Fo 1 on the interval [Pi, P 2]. The band is easy to compute using a standard
 root-finding procedure.

 Our approach has some appealing features. First, the method is quite
 general; it works not only for right-censored data, but also for other impor-
 tant missing data schemes including random truncation. In fact, without
 major changes in the arguments, the method can be extended to Aalen's
 (1978) multiplicative intensity counting process model, which is known to
 encompass a variety of models in survival analysis [cf. Andersen, Borgan, Gill
 and Keiding (1993), Chapters 2 and 3]. More details will be given in subsec-
 tion 2.4. To the best of our knowledge, very little has been done concerning
 quantile function estimation beyond the standard right censorship model.
 Moreover, it appears that for such extensions our approach is more tractable
 than the bootstrap or strong approximation approaches. Second, the likeli-
 hood ratio confidence bands are valid under much weaker conditions. They do

 not require Fo to be differentiable. In contrast, the methods based on weak
 convergence of FY- 1 or the bootstrap were derived under the strong condition

 that Fo has a bounded second derivative, as mentioned earlier. Finally, our
 approach does not require estimation of the density quantile function g0.

 The nonparametric likelihood ratio approach was introduced by Thomas
 and Grunkemeier (1975) to derive confidence intervals for survival probabili-
 ties from right-censored data. Their simulation studies showed that the
 method has a better small-sample performance than that of normal approxi-
 mation. Theoretical justification was given by Li (1995a) and Murphy (1995),
 and in the case of truncated data by Li (1995b). Likelihood ratio based
 confidence bands for survival functions have been derived by Hollander,
 McKeague and Yang (1995).

 The theoretical development of nonparametric likelihood ratio based infer-
 ence was initiated by Owen (1988, 1990), who used an empirical likelihood to
 construct confidence regions for the mean of a random vector and some of its
 smooth functions in the i.i.d. complete data setting. In recent years the
 nonparametric likelihood method has received much attention. It has many
 attractive properties; for instance, it only uses data to determine the shape of
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 CONFIDENCE BANDS FOR QUANTILES 631

 a confidence region. It respects the range of the parameter, which is appeal-
 ing for estimating probabilities. Moreover, empirical likelihood is Bartlett-
 correctable, unlike the bootstrap; see DiCiccio, Hall and Romano (1991).
 Owen's (1988, 1990) results have been extended to more general models
 including linear regression, generalized linear models and projection pursuit.
 See Owen (1991, 1992, 1995), Kolaczyk (1992) and Qin and Lawless (1994) for
 further discussion and references in this area.

 The paper is organized as follows. In Section 2 we derive our confidence
 bands and intervals for the quantile function and explain how they are
 computed. Extensions beyond the standard right censorship model and
 Hall-Wellner type confidence bands for Fo 1 are discussed in subsection
 2.4. In Section 3 we illustrate the proposed procedure on a set of melanoma
 data and compare it with the bootstrap method. We also investigate its small-
 sample performance by simulation. Proofs are given in Section 4.

 2. Main results.

 2.1. Preliminaries. We assume throughout that Fo is continuous. The
 distinct and ordered uncensored survival times are denoted 0 < T1 < ... <
 Tk < oc. Let

 n

 rj= EI(Zi 2 TJ)
 i=l

 be the number of subjects that are "alive" just before time Tj. The
 Kaplan-Meier estimator of Fo is

 (2.1) F(t)=1- -
 j: T< t ri

 which maximizes L(F) in e. Its variance can be estimated by Greenwood's
 formula (1 - Fn(t))2&2(t)/n, where

 (2.2) &2 (t) = jnT1?
 (2.2) ~~~~~~j: Ti< t ri( i 1)

 The function R(p, t) given in (1.3) arises as the solution of an infinite-
 dimensional constrained maximization problem, but it can be reduced to a
 finite one as given in the following result of Li (1995a).

 LEMMA 1. For each T1 < t < Tk,

 R(p, t) = [maxt F hj(1 - hj)rJ 1:h E (0, 1)k

 (2.3) and fV (1- hj) = 1 -p)

 x [max flr hi (1 - hj) ri 1 hE (0, 1) k,

 where h =(hl,..., hk)
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 632 LI, HOLLANDER, MCKEAGUE AND YANG

 Note that any discrete distribution function F supported on {T1, .. ., TkJ
 can be written as F(t) = 1 - Hj: Tj< t(l- hj), t > 0, by writing hj = (F(TJ) -
 F(Tj -))/(I - F(Tj-1)) for j > 2 and h1 = F(T1). For such an F, L(F) =
 HlX=ihj(l - h/Yi1. Therefore, Lemma 1 says that the nonparametric likeli-
 hood ratio R( p, t) can be obtained by restricting 0 to be the subspace of all

 discrete distributions F supported on T1, .. , Tk .
 Applying Lagrange's method, one can show from (2.3) that

 - 2logR(p,t)

 (2.4) = 2 (i-1l~1+An(t) - ii k(n+A(t)

 j:2<t(rj - )log r1-+ j lg( r1 +
 where An(t) > -minj T - 11 is uniquely determined by

 1

 (2.5) j -<t 7 + An(t) 1-p.
 The last equation is easily solved for An(t) using a standard root-finding
 procedure (see Section 3). The expression (2.4) was first used by Thomas and
 Grunkemeier (1975) to construct confidence intervals for survival probabili-
 ties.

 2.2. Computing C(p, r). A quantile confidence set should not fall outside
 the range of the uncensored data, so we shall (implicitly) restrict C( p, r) to
 be contained within [T1, Tk]. This is done for notational simplicity and has no
 effect asymptotically. In view of (2.4), it is natural to write C(p, r) =
 {t: - 2 log R(p, t) < - 2 log r}. Although - 2 log R(p, t) is not a convex func-
 tion of t, the following theorem shows that C(p, r) is always an interval.

 THEOREM 1. For every 0 < p < 1 and 0 < r < 1, C(p, r) is an interval.

 The proof is given in Section 4. This result enables one to compute C(p, r)
 using a simple algorithm.

 First note that the An(t) determined by (2.5) is a right-continuous step
 function of t on the interval (T1, Tk) with positive jumps at T1, .. ., Tk only.
 This, together with (2.4), implies that -2 log R(p, t) is a right-continuous
 step function of t with nonzero jumps at T1,..., Tk only. This fact and
 Theorem 1 imply that the boundaries of C(p, r) are uncensored survival
 times.

 To compute C( p, r), search through the uncensored survival times in the

 order T1, ... , Tk. Take the lower boundary of C(p, r) to be the first Tj for
 which - 2 log R(p, Tj) < - 2 log r, and the upper boundary to be the first
 subsequent T1 for which - 2 log R(p, Tj) > - 2 log r.

 2.3. LR confidence bands and intervals for Fo 1. We now state our main
 result and explain how it can be used to construct the confidence bands and
 intervals.
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 CONFIDENCE BANDS FOR QUANTILES 633

 THEOREM 2. Assume that Fo is continuous and strictly increasing on
 [0, Foj(po)] for some fixed 0 < po < 1 and that GO(FW71(po)) < 1. Then, for
 every 0 < r < 1:

 (a) For 0 <p1 <P2 ?Po,

 lim P{F 1(p) E C( p, r) for p E [ P1, P2]}
 n -x

 P (sup 1/ - ~2logr}
 t te [tl t2] {t(1 - /2

 where Bo is a Brownian bridge on [0, 1],

 (2.6) 1 + o 2(Fo (P1)) forI = 1,2

 and a 2(t) is defined in (1.2).
 (b) For 0 <p <pO,

 lim P (Fo 1( p) E- C ( p, r)) = P (V X2 < - 2 log r),
 n -oo

 where X is a chi-square random variable with 1 degree of freedom.

 Our LR confidence band is obtained by pasting together intervals of the
 form C(p, r) with r chosen appropriately. Specifically, an asymptotic 1 - a
 confidence band for Fo 1 on the interval [P1, P2] is given by

 (2.7) {C(p, r): p E I P2

 where r, = exp{ -e(ea, t2)/2}, the ti is a consistent estimator of t, obtained
 by replacing Fo and cr 2(.) in (2.6) by their estimated versions (2.1) and (2.2),
 and ea(tl, t2) is the upper a-quantile of the distribution of

 B0(t)
 W(tl, t2) SUP It(, t )1/

 An asymptotic 1 - a confidence interval for the p-quantile of Fo is C( p, r*),
 where r* = exp{ - XJ 2} and Xi2a is the upper a-quantile of X1*

 For any given 0 < t, < t2 < 1, the distribution of W(t1, t2) was studied by
 Miller and Siegmund (1982). In particular, they showed that, as w -> 00,

 P(W(tl, t2) ? w) = 4 +(w) + 0,w) (w - i )log( T) + o{w 1(w))},

 where r, = tl/(l - tl) and +(w) is the standard normal density function. This
 approximation can be used to find ea(tl, t2). Some specific values of ea(tl, t2)
 are given by Nair (1984).

 2.4. Remarks. The idea and techniques used in this article also work for
 other important survival models. In fact, the likelihood ratio method can be
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 634 LI, HOLLANDER, MCKEAGUE AND YANG

 extended to Aalen's (1978) multiplicative intensity counting process model by
 using an empirical version of the binomial type likelihood described by
 Andersen, Borgan, Gill and Keiding [(1993), (4.1.37)]; see also Murphy (1995).
 The multiplicative intensity model is known to encompass a number of
 models in survival analysis, including those with very general forms of
 censoring and truncation. Below we describe briefly how the likelihood ratio
 approach works for left-truncated data.

 Confidence bands from randomly truncated data. Left-truncated data

 consists of n i.i.d. pairs (X1, Yr*),..., (X[*, Y,,*) from the conditional distribu-
 tion of (X, Y) given that X > Y. Here X and Y are independent positive
 random variables representing the survival time and the truncation time of a

 subject under study. Thus, in the left-truncation model, the pair (X, Y) is
 observable only when X > Y. See Woodroofe (1985), Wang, Jewell and Tsai

 (1986) and Keiding and Gill (1990) for further discussions. Let Fo and Go
 denote the distribution functions of X and Y, respectively. Assume Fo is
 continuous. We consider the problem of constructing confidence bands for

 Fo l
 Define, for any t > 0 and 0 <p < 1,

 Rf t)= sup{L,(F): F(t) =p and Fe 0}
 c P' t) sup{Lc(F): F E0 }

 where Lc(F) = Hnn{[F(X1*) - F(X* - )]/[1 - F(Yi*)]1 is the conditional
 likelihood of F given Y,*,...,Y*. Let X(1)< . <X(*) denote the order
 statistics of X1, . . ., X*. Then -2log RC(p t) is given by (2.4), where rj is
 now defined by r1 - E=. I(YI* <X(J) < Xi*). Moreover, one can establish
 exact analogs of Theorems 1 and 2 for the left-truncation model along the

 same lines. This leads to confidence bands and intervals for F 1.
 Hall-Wellner type confidence band for Fo 1. Hall and Wellner (1980)

 derived confidence bands for Fo from censored data by transforming the weak
 convergence of the Kaplan-Meier estimator to a Brownian bridge form. Their
 idea can also be used (as we outline below) to obtain confidence bands for the
 quantile function Fo1. Unfortunately, such a band requires estimation of
 the density quantile function, which is a serious drawback, as discussed in
 the Introduction.

 From (1.1), it can be shown that

 n1/2 ((F71 - Ff1) ) ( ? + F ( in D[0,pa],

 where o denotes functional composition, B0 is a Brownian bridge process, c0
 is given by (2.2) and gn is a uniformly consistent estimate of the density
 quantile function go = fo o F-1. This leads to the following asymptotic 1 - a
 confidence band for Fo 1 on [ P1, P2]

 Fn (p) ? c(al, a2) (1 -) +
 n"21,12gn(p)
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 where a, = &(Fn7 (p))/{1 + &2(F7 1(p))} for 1 1, 2, and c(al, a2) is de
 termined by

 P sup Bo(u) I <?c(al,a2)] = 1 .- a
 Laj U < a2

 See Hall and Wellner (1980) for the computation of c(a1, a2).

 3. Application and simulation study. In this section we apply our LR
 band (2.7) and compare it to a bootstrap band for a real data set. We also
 carry out a simulation study to assess the small-sample performance of the
 LR band.

 We considered a data set consisting of survival times following treatment
 for malignant melanoma; see Andersen, Borgan, Gill and Keiding [(1993),
 pages 11 and 709]. The analysis was restricted to the 87 males under study,
 of whom 31 were observed to die from the disease and the remaining were
 censored observations. Figure 1 gives the 90% LR and bootstrap bands for
 the quantile function on the interval [0,0.25]. The bootstrap band is the
 "method 1" band of Doss and Gill (1992). For this data set the LR band is
 considerably narrower than the bootstrap band.

 0
 0

 04

 cs ~ ~~~ KME quantile ,
 -- LRzband .-
 -- Bootstrap band ,

 _ So -------r ------~_

 Ul)

 -------- r---

 r---''''~~~~~~~~~~~~~~~~~~~~~~---------------------------

 e~~~~~~ ~~~~ - -2 - - - --__---__--
 ... . .. .. .. . . . .. . .... . . .. . . . . ... .. . ... . .. . .....

 0.0 0.05 0.10 0.15 0.20 0.25

 p

 FIG. 1. 90% LR and bootstrap confidence bands for quantiles of survival time for men with
 malignant melanoma.
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 636 LI, HOLLANDER, MCKEAGUE AND YANG

 In Table 1 we report the results of simulations to estimate the coverage
 probabilities of the LR band in three examples. The three pairs of survival

 and censoring distributions are: (a) Fo = standard exponential and Go =
 uniform on (0, b); (b) FQ = standard exponential and Go = exponential; and
 (c) FO(t) = 1 - exp(- 2) (Weibull) and Go(t) = Weibull with the same
 shape parameter as Fo. In each case, the censoring distribution is adjusted to
 give the prescribed censoring rate.

 The bands were calculated on the interval [0.1,0.9], and each had a
 nominal coverage probability of 0.95. Each entry in the table was based on
 10,000 Monte Carlo samples that were simulated using the uniform random
 number generator in Press, Teukolsky, Vetterling and Flannery (1992). Val-
 ues of A(t) solving (2.5) were computed using the Van Wijngaarden-
 Dekker-Brent root-finding procedure [Press, Teukolsky, Vetterling and
 Flannery (1992), page 3591.

 The coverage probabilities are seen to be close to their nominal value of
 0.95, except under heavy censoring and small sample size (n = 50).

 4. Proofs.

 PROOF OF THEOREM 1. Let 0 < p < 1 be fixed. Recall that C(p, r) = {t:
 R(p, t) > r}, where R(p, t) has the form (2.3). Because the denominator on
 the right-hand side of (2.3) does not depend on t, it suffices to show that the
 set

 (4.1) I= {t: min(g(h): h E (0, 1) and (I (1- hi) = 1 -p} < c}

 is an interval, where c > 0 is a constant and

 g(h) -2 log{ rl hj(i -hj) i)

 So we only need to show that [t1, t2] C I for any two points tl < t2
 in I.

 Let t1, t2 E I and t* E [t1, t2]. Then there exists anh = (hll,..., h) that
 attains the minimum in (4.1) for t = tl, 1 = 1, 2, and for which g(hl) < c.

 TABLE 1

 Observed coverage probabilities of nominal 95% LR quantile bands for examples (a)-(c)

 (a) (b) (c)

 Sample size Censoring rate Censoring rate Censoring rate
 n 25% 50% 75% 33% 50% 66% 35% 50% 65%

 50 0.9434 0.9587 0.9912 0.9434 0.9418 0.9584 0.9430 0.9538 0.9778
 100 0.9518 0.9612 0.9618 0.9539 0.9456 0.9492 0.9518 0.9540 0.9716
 200 0.9520 0.9570 0.9550 0.9576 0.9500 0.9455 0.9520 0.9546 0.9610
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 CONFIDENCE BANDS FOR QUANTILES 637

 For 0 < x < 1, let q(x) = (q1(x),..., qk(x)) = xh1 + (1 - x)h2. Define

 f(x) = H (1- qj(x)),
 j: Tj?t*

 which is a continuous function of x on the interval [0, 1]. Moreover,

 f(0)= H (1- h2j) H j (1 - h2j) =1-p
 j: T t*j: Tj ?t2

 and

 f(1) j H (1 -h1j) H (1 - h1j) =1-p.
 j: Ti ?t* j: T1?t1

 Thus, by the intermediate value theorem, there exists x* E1 [0, 1] such that
 f(x*) = 1 - p. Set h* = (h*,..., h*) = q(x*). Then

 (4.2) (1 - h) = 1 -p.
 j: T_<t

 Because g is a convex function, we have g(h*) < x*g(h1) + (1 - x*) x
 g(h2) < c. This, together with (4.2) and the fact that h* E (0, 1)k, implies that
 t* e I. This proves the theorem. 0

 The following lemma, needed for proving Theorem 2, relates the asymp-

 totic behavior of An(t) to the Kaplan-Meier estimator F,.

 LEMMA 2. Let An(t) be the unique solution of equation (2.5) with p = FO(t).
 Under the assumptions of Theorem 2, An(t) - OP(n1/2) and

 (4.3) An(t) = no,-2(t)(log[1-Fn(t)] - log[1 - Fo(t)] + ?P(n-1)),

 uniformly in t E [0, Fo 1(po)], where 52 is defined by (2.2).

 PROOF. The proof of the first part is very similar to that of Lemma 2.2 of
 Li (1995a) and is omitted. We only mention that it uses inequalities (2.12)
 and (2.13) of Li (1995a) and the weak convergence of the Nelson-Aalen
 estimator of the cumulative hazard function and the Kaplan-Meier estimator
 in D[O, Foj(po)]. The proof of (4.3) is exactly the same as that of (2.15) of Li
 (1995a). o1

 PROOF OF THEOREM 2. We first show that

 (4.4) - >d r ~~~~U(FJ1(p)) 12
 (44) - 20log RR(Fo (p)7 p) [u(F ?(p)) in D[0p p],

 where U(t) is a Gaussian process with mean 0 and covariance function
 cov{U(s), U(t)} = 02(min{s, t}) and 0-2 is defined in (1.2).

 By (2.4), we can write - 2 log R(F l1(p), p) = (An(t)), where

 qi(x) = -2 E ((rj - 1)log(1 + 1) - rj log(1 + -
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 638 LI, HOLLANDER, MCKEAGUE AND YANG

 and Aj(t) is determined by (2.5) with t = Fo (p). It can be verified that
 ql(0) = qI'(0) = 0 and q "(0) = 2r2(F O (p))/n. A Taylor series expansion of
 q(t) about t = 0 then gives

 (4.5) - 2 log R (F2 ( p),p) = 6 An An(t)

 where j$nI ? tAn(t) = Op(n 1/2).
 By the Glivenko-Cantelli theorem, supo<0 F&1(po)jnl -E= I(Zi > t) -

 P(Z1 ? t)I -* 0 a.s. as n -* Because ri = E =I(Z. > Tj) and P(Z1 ? t) =
 [1 - FO(t)][1 - G(t)] ? [1 - po]Il - G(Fo j(po))] > 0 for all t E [0, Fo 1(p0)],
 we have r. = Op(n) and l/rj = Op(n-1) uniformly in j E {j: Tj < Fo'(p0)}.
 This, together with g - Op (nl/2 ), implies

 dr~ ~ ~1 ((n Ar r + )3
 21 An( t) j E 3 3

 (4.6) 3 j ATjF1(po) J

 = O (n3/2) Op(n-3)
 j: Tj<Ffy'(po)

 = O(n-1/2 )

 It follows from (4.3), (4.5), (4.6) and since & 2(t) is uniformly consistent for
 r(t) on [0, Fo1(po)], that

 -210og R(Fo l(p), p)

 - (nl/2{log[1 - Fn(F 1(p))] - log(l P + p2(n_))

 + O(n-1/2)

 Moreover, by Theorem 4.2.2 of Gill (1980) and the functional 8-method [see
 Gill (1989)],

 n1/2{log[l - Fn(t)] - log[l - Fo(t)]} U(t)

 u(t d or( t) L

 leading immediately to (4.4).
 Now we prove part (a). Note that

 U 7+
 (4.7) - d (I3BO)o 2j 0~~~~1+o
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 where 13(x) = 1/{x(1 - x)P1"2, since both sides are Gaussian processes with
 the same mean and covariance function. Therefore,

 lim P(F0 (p) E C(p, r) for all p E [ Pl, P2])
 n -o

 = lim P sup [2log R(Fo1(p), p)] < -2log r)
 nx P I Pl[, P2]

 P(suP U(F1 (p))<
 = supe,P2] |(F 1 (p )) -2 log r)

 p (up t{ 1 - t) < - 2log r)

 as required, where the second equality is from (4.4), the last equality is from
 (4.7) and t1 and t2 are defined by (2.6).

 To prove part (b), we only need to note that

 lim P(Fo1(p) E C(p, r)) = lim P(-2log R(Fo 1(p), p) < -2log r)

 p U( Fo (p) ) 2 o

 =P(X2< -2logr),

 where the second step is from (4.4) and the last equality follows from
 U(t)/o-(t) being standard normal for t > 0. a
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