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Abstract

We introduce a form of Rao–Blackwellization for Markov chains which uses the transi-
tion distribution for conditioning. We show that for reversible Markov chains, this form of
Rao–Blackwellization always reduces the asymptotic variance, and derive two explicit forms of
the variance reduction obtained through repeated Rao–Blackwellization. The result applies to
many Markov chain Monte Carlo methods used in practice. In particular, we discuss an applica-
tion to data augmentation and give some simulation results for Ising model samplers. c⃝ 2000
Elsevier Science B.V. All rights reserved.

MSC: primary: 62M05; 62G05; secondary: 62M40; 65C05

Keywords: Empirical estimator; Conditioning; Data augmentation; Ising model; Gibbs sampler;
Metropolis algorithm

1. Introduction

The Rao–Blackwell theorem is considered to be one of the fundamental paradigms
of modern statistics (see Pathak, 1992). In its simplest form, this theorem provides an
appealing method of improving the e!ciency of an unbiased estimator !̂ by condition-
ing with respect to some statistic X . The method works provided E(!̂|X ) is easy to
compute and does not depend on any unknown parameters (e.g., when X is a su!cient
statistic).
Recently, there has been considerable interest in developing versions of the Rao–

Blackwell theorem in the context of stochastic simulation, and for Markov chain Monte
Carlo (MCMC) in particular – see Casella and Robert (1996a) and the references
cited therein. MCMC now plays an important role in many areas of statistics, e.g.,
image analysis (Winkler, 1995), Bayesian statistics (Tierney, 1994), and spatial statis-
tics (Besag and Green, 1993). The method allows the exploration of a high-dimensional

∗ Corresponding author. Tel.: +1-850-644-6690; fax: +1-850-644-5271.
E-mail address: mckeague@stat.fsu.edu (I.W. McKeague)
1 Research partially supported by NSF Grant ATM-9417528.

0378-3758/00/$ - see front matter c⃝ 2000 Elsevier Science B.V. All rights reserved.
PII: S0378 -3758(99)00079 -8



172 I.W. McKeague, W. Wefelmeyer / Journal of Statistical Planning and Inference 85 (2000) 171–182

distribution " (which may be intractable by standard analytical methods) by using a
simulated Markov chain {X i, i¿0} designed to converge rapidly to ", the invariant
distribution of the chain. The expectation "f = E"f of a given function f is then
estimated using a long run average of the realized values f(X i).
The present paper introduces a form of Rao–Blackwellization for the estimation of

features in the invariant law of a Markov chain when certain information concerning
the transition distribution of the chain is available. The primary application will be to
MCMC. Many types of updating mechanism (which in turn determine the transition
distribution of the chain) are available for the speci"cation of MCMC samplers: Gibbs,
Metropolis, Metropolis-Hastings, etc. Often the choice of updating mechanism is guided
by how quickly the sampler converges to stationarity, an e!cient sampler being one
that rapidly explores the support of ". For numerous routine applications of MCMC,
however, mixing is quite rapid. Our concern here will be with estimator e!ciency
(or, more precisely, asymptotic variance reduction), rather than sampler e!ciency. The
choice of updating mechanism determines the transition distribution Q(x; dy) of the
chain, which is therefore known in advance and can in principle be used to reduce
estimator variance by conditioning.
We propose a Rao–Blackwellized procedure which makes use of the conditional

expectation Q(x; f) = E(f(X i)|X i−1 = x), assuming that this function is su!ciently
tractable to be calculated explicitly from the given f and Q. We introduce the following
estimator of "f:

EnQf =
1
n

n
∑

i=1
Q(X i; f);

which can be thought of as a Rao–Blackwellized version of the usual empirical esti-
mator Enf = n−1

∑n
i=1 f(X

i).
Our main result, proved in Section 2, is that for reversible Markov chains, EnQf has

smaller asymptotic variance than Enf. Although MCMC samplers are not in general
reversible, many of them have simple modi"cations that are reversible and to which
our result applies. Applications of the proposed estimator and some alternative types of
Rao–Blackwellization for MCMC are discussed in Section 3. Two speci"c examples are
considered in some detail: data augmentation and estimation of correlation functions
in the Ising model. Section 4 gives a summary of our contribution and suggests a
direction for further research.

2. Variance reduction

In this section we show that the Rao–Blackwellized empirical estimator EnQf has
smaller asymptotic variance than the ordinary empirical estimator Enf when the chain
is reversible. Repeated Rao–Blackwellizations EnQkf, k¿1, of course give further
variance reductions. In fact, we show that as k goes to in"nity, the asymptotic variance
of EnQkf goes to zero. In practice, however, more than one Rao–Blackwellization may
not be feasible because of the di!culty of "nding Qkf, except in simple cases.
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We need conditions under which the empirical estimator and its Rao–Black-
wellizations are consistent and asymptotically normal. To introduce such conditions,
write ∥f ∥ and (f; g) for the norm and inner product of L2("), and regard Q as the
operator de"ned by (Qf)(x) = Q(x; f). The following ergodicity assumption will be
in force throughout.
The Markov chain is positive Harris recurrent; and sup{∥ Qrf − "f ∥: ∥f ∥ =1}

→ 0 for r → ∞.
Gordin and Lif#sic (1978) show that if f∈L2("), then n 1=2(Enf− "f) is asymptot-

ically normal with mean zero and variance

∥ (I − Q)−1(f − "f) ∥2 − ∥ (I − Q)−1Q(f − "f) ∥2 : (1)

The variance is easily rewritten as
(

f − "f;
(

I + 2
∞
∑

r=1
Qr
)

(f − "f)
)

= ∥ f − "f ∥2 +2
∞
∑

r=1
(f − "f;Qr(f − "f)): (2)

For the above central limit theorem and representations of the asymptotic variance we
refer also to Meyn and Tweedie (1993, Chapter 17, in particular Section 17:4:3) and
Chan and Geyer (1994).
The Markov chain is reversible under the stationary law if Q is in detailed balance

with ":

"(dx)Q(x; dy) = "(dy)Q(y; dx): (3)

Detailed balance is equivalent to self-adjointness of Q as an operator on L2("):

(f;Qg) = (Qf; g) for f; g ∈L2("): (4)

Theorem. If the above ergodicity assumption holds and the Markov chain is reversible;
then for f∈L2(") the asymptotic variance of EnQkf is less than that of Enf; and the
reduction is

k−1
∑

j=0
∥ (I + Q)Qj(f − "f) ∥2 :

The asymptotic variance of EnQkf tends to zero as k goes to in!nity.

Proof. The asymptotic variance of EnQkf is calculated from (2) with Qkf in place
of f, and using self-adjointness (4), as

(

Qk(f − "f);
(

I + 2
∞
∑

r=1
Qr
)

Qk(f − "f)
)

=
(

f − "f;
(

Q2k + 2
∞
∑

r=1
Qr+2k

)

(f − "f)
)

=(f − "f;Q2k(f − "f)) + 2
∞
∑

r=2k+1
(f − "f;Qr(f − "f)): (5)
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The asymptotic variance (5) is obtained from the asymptotic variance (2) by omitting
the term ∥ f − "f ∥2, the terms of order r = 1; : : : ; 2k − 1, and half the term of order
2k. This implies the second part of the Theorem.
The di$erence between (2) and (5) can be written as

(f − "f; (I + 2(Q + · · ·+ Q2k−1) + Q2k)(f − "f))

=

(

f − "f;
k−1
∑

j=0
(I + Q)2Q2j(f − "f)

)

=
k−1
∑

j=0
∥ (I + Q)Qj(f − "f) ∥2;

which completes the proof.

Remark. Even for k = 1, the variance reduction can be substantial. As seen in the
proof, the asymptotic variance of EnQf is obtained from the asymptotic variance (2)
of Enf by omitting the terms

∥ f − "f ∥2 +2(f − "f;Q(f − "f))+ ∥ Q(f − "f) ∥2 =Var"(f + Qf):

If the chain is weakly correlated, ∥f − "f∥2 =Var" f dominates the asymptotic vari-
ance of Enf, and the asymptotic variance of EnQf is relatively small. We will see
this e$ect in our Ising model simulations at high temperature.

Remark. If the state space has N elements, the decrease in variance through repeated
Rao–Blackwellization can also be expressed in terms of the eigenvalues and eigenvec-
tors of Q. Let 1 = #1 and 1¿#2¿#3¿ · · ·¿#N¿ − 1 be the eigenvalues of Q, and
e1 = 1; e2; e3; : : : ; eN the corresponding eigenvectors. Then

(f − "f; e1) = "(f − "f) = 0

and

f − "f =
N
∑

r=2
(f − "f; er)er:

Assume again reversibility. By detailed balance (3), the asymptotic variance (2) of the
empirical estimator Enf can be written in terms of the eigenvalues and eigenvectors
of Q as

N
∑

r=2

1 + #r
1− #r

(f − "f; er)2: (6)

We refer to Frigessi et al. (1992) and Green and Han (1992). The asymptotic variance
of EnQkf is (6) with f replaced by Qkf. Using self-adjointness (4), we can write
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the asymptotic variance of EnQkf as

N
∑

r=2

1 + #r
1− #r

(Qk(f − "f); er)2 =
N
∑

r=2

1 + #r
1− #r

#2kr (f − "f; er)2: (7)

The di$erence between the asymptotic variance (6) of the empirical estimator and
the asymptotic variance (7) of the k-fold Rao–Blackwellized empirical estimator is
therefore

N
∑

r=2

1 + #r
1− #r

(1− #2kr )(f − "f; er)2

which is again seen to be nonnegative.

3. Application to Markov chain Monte Carlo

When the distribution " is on a d-dimensional space, MCMC schemes for sampling
from " typically involve the updating of one variable at a time. In this section we
discuss how our approach can be applied to such samplers.
Recall that a Markov chain with transition distribution Q is reversible if Q is in

detailed balance with ", or equivalently if Q is self-adjoint. Usually, for local Gibbs
and Metropolis–Hastings updates, in particular, the local transition distribution Qj cor-
responding to the update of the jth component is in detailed balance with ". The com-
ponents of the state vector are updated according to a given sweep strategy (see Roberts
and Sahu (1997) for a comparison of various sweep strategies for the Gibbs sampler).
If a component is chosen at random and then updated according to the corresponding
local transition distribution, the sampler has transition distribution Q = 1=d

∑d
j=1Qj

which is again in detailed balance with ", and our result applies.
For a d-step sampler with deterministic sweep and the components updated in

the order 1; 2; : : : ; d say, the transition distribution is Q = Q1 · · ·Qd. Its adjoint is
Q∗ = Qd · · ·Q1 ̸= Q. Hence the sampler is not reversible, and our result does not
apply. A simple modi"cation, however, makes the sampler reversible: use a forward
sweep 1; 2; : : : ; d followed by a backward sweep d; d−1; : : : ; 1. The resulting transition
distribution QQ∗ is reversible. Nevertheless, deterministic sweeps have the disadvan-
tage that Q is a composition of local transition distributions, which makes it compu-
tationally more costly to evaluate Qf=Q1 · · ·Qdf compared with 1=d

∑d
j=1Qjf. For

random "elds " with only nearest-neighbor dependence, an e$ective and computation-
ally feasible alternative method for reducing the variance of empirical estimators based
on deterministic sweeps is the von Mises-type statistic approach of Greenwood et al.
(1995).
Other types of Rao–Blackwellization have been introduced previously in the MCMC

context. They di$er from our version in that they condition f(X i) on a component of
X i rather than on the previous value of the chain. Gelfand and Smith (1990, 1991)
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consider i.i.d. runs of a Gibbs sampler. In the empirical estimator based on the "nal
value of each run, they replace f by a conditional expectation under ". For long
runs, the "nal values are approximately distributed according to ", so the classical
Rao–Blackwell theorem implies that the variance is usually reduced. Liu et al. (1994)
consider a single run of a two-step Gibbs sampler (data augmentation) and a function
f of one component; they replace f by its conditional expectation given the other
component, similar to Gelfand and Smith, and prove that the variance is always reduced.
Our version of Rao–Blackwellization can be applied to data augmentation and leads
to greater variance reduction than that of Liu et al.; see Section 3.1. Casella and
Robert (1995, 1996a,b) propose some types of Rao–Blackwellization for the accept–
reject and Metropolis algorithms. Their approach is to integrate out some or all of the
uniform random variables involved. They established a variance reduction for one of
their accept–reject Rao–Blackwellization methods.
Geyer (1995) considers an arbitrary Markov chain as above and replaces f(x) by

its conditional expectation with respect to " given some function h(x). He gives nec-
essary and su!cient conditions for such a Rao–Blackwellization to reduce variance for
all f simultaneously, and points out that this condition is unlikely to be satis"ed in
practice. His result does not cover the Rao–Blackwellization introduced here because,
as mentioned earlier, we condition on the previous value of the chain and not on some
function of the present value. Indeed, one could consider the chain of pairs (X i; X i+1)
and condition on the function h(X i; X i+1) = X i, but then one would be dealing with
a speci"c class of functions f(X i; X i+1) that only depend on the second component
X i+1, and Geyer’s result does not apply.
We now examine two speci"c examples in greater detail.

3.1. Data augmentation

Our result applies to data augmentation, which was introduced by Tanner and Wong
(1987) and is also known as substitution sampler (Gelfand and Smith, 1990). Auxiliary
variable methods used in statistical physics, including the algorithm of Swendsen and
Wang (1987) for the Potts model, are of this type; cf. Besag and Green (1993).
Data augmentation is a two-step Gibbs sampler with deterministic sweep. For the

sweep that updates x = (x1; x2) in the order x2, x1, the transition distribution is

Q(x; dy) = p2(x1; dy2)p1(y2; dy1);

where p1 and p2 are the conditional distributions of each component of " given the
other. For a function f(x1) of just the "rst component, the empirical estimator is
Enf=1=n

∑n
i=1 f(X

i
1). Note that X

i
1, i = 1; 2; : : : is a Markov chain with transition

distribution

P(x1; dy1) =
∫

p2(x1; dy2)p1(y2; dy1):
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This chain is reversible, although, as mentioned earlier, the Gibbs sampler chain is not.
Hence our result applies, and the Rao–Blackwellized empirical estimator

EnPf =
1
n

n
∑

i=1
P(X i1 ; f)

has smaller asymptotic variance than Enf. The estimator EnPf di$ers from Liu et al.’s
(1994) Rao–Blackwellized estimator

Enp1f =
1
n

n
∑

i=1
p1(X i2 ; f):

They show that Enp1f also has smaller variance than Enf.
Which type of Rao–Blackwellization is better in terms of variance reduction? Note

that our estimator is obtained by applying Liu et al.’s Rao–Blackwellization twice:
EnPf = Enp2(p1f). Hence, by their result, our Rao–Blackwellization leads to greater
variance reduction. Of course, in some cases p1f may be tractable, while p2(p1f) is
not.
We now give a simple numerical example to compare the performance of these

estimators. Take " to be the uniform distribution on the triangle {x : x1; x2¿0; x1 +
x2¡1}. The conditional law p1(x1; dx2) is uniform on the interval (0; 1−x1), similarly
for p2. Let f(x1)=x1 so "f is the mean of the "rst component. It is easily shown that
p1(x2; f) = (1− x2)=2 and P(x1; f) = (1 + x1)=4. Based on 10; 000 data augmentation
runs of length n=1000, our estimator EnPf gave a 93% reduction in variance over the
usual empirical estimator Enf, compared to a 75% reduction for Liu et al.’s estimator.

3.2. Ising models

In this subsection we show that our approach can lead to substantial variance reduc-
tion when applied to Ising model samplers with suitable sweeps. Applications of Ising
models arise in spatial statistics, image analysis and statistical physics; see Winkler
(1995). Consider a k × k integer lattice S with k even. Attach to each site a state
space {−1;+1} representing two spin orientations. Under the Gibbs distribution " on
the con"guration space {−1;+1}S, a con"guration x has mass "(x) proportional to
exp(−H (x)), where the energy function H is given by H (x) = −$

∑

⟨s; t⟩1 xsxt . Here
$ is the inverse temperature and the sum is over unordered pairs ⟨s; t⟩1 of nearest
neighbors s; t.
Simulations of Ising models are often carried out using Glauber dynamics (reversible

single-site updating); see Neves and Schonmann (1992) for many examples of such
schemes. The updating at site s depends only on the spins at the four neighboring sites
and possibly the spin at site s itself. It is speci"ed by the spin-%ip probability, say
ps(x;−xs). In particular, the Gibbs sampler uses

ps(x;−xs) =
(

1 + exp

(

2$xs
∑

t:⟨t; s⟩1
xt

))−1

;
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and the Metropolis sampler uses

ps(x;−xs) = min
{

1; exp

(

−2$xs
∑

t:⟨t; s⟩1
xt

)}

:

To apply our result, we need a sweep that makes the transition distribution of the
sampler reversible. The lattice can be partitioned into two sublattices consisting of sites
with even or odd parity, as in a checkerboard. Partition a con"guration x = (xe; xo)
correspondingly. We update the even subcon"guration by applying ps independently
at all even sites, resulting in the transition probability

Qe(x; y) =

(

∏

s even

ps(x; ys)

)

%xo (yo);

which is in detailed balance with ". The transition probability Qo for the odd subcon-
"guration is de"ned similarly and is in detailed balance with ". Usually, one would
alternate deterministically between these two subcon"guration updates (we call this the
‘deterministic sweep’). Then the transition distribution of the sampler would be QeQo,
which, as we have already mentioned, is not reversible. A natural modi"cation of the
sweep is to randomly choose between updating the even and odd sublattices at each
step (we call this the ‘random sweep’). The transition distribution of this sampler is
Q = 1

2(Qe + Qo), which is reversible. We can apply our approach to the the resulting
Markov chain X 0; X 1; : : : .
Consider the rth nearest-neighbor correlation

f(x) =
1
N
∑

⟨s; t⟩r
xsxt :

The sum is over all unordered pairs ⟨s; t⟩r of rth nearest neighbors s; t, and N is the
number of these pairs. We denote "f=&r , the expected rth nearest neighbor correlation.
We easily obtain Qf: for r odd,

Q(x; f) =
1
N
∑

⟨s; t⟩r
xsxt(1− ps(x;−xs)− pt(x;−xt));

and for r even,

Q(x; f) =
1
2

(

f(x) +
1
N
∑

⟨s; t⟩r
xsxt(1− 2ps(x;−xs))(1− 2pt(x;−xt))

)

:

Since the spin-%ip probabilities are already calculated by the sampler, there is no extra
computational cost involved in the Rao–Blackwellized estimator EnQf.
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For r even, EnQf is of the form 1
2 (Enf+Rnf), which contains the original empirical

estimator Enf. We expect that Rnf has a smaller variance than EnQf. Note that Rnf
is an average of two empirical estimators that are Rao–Blackwellized in the sense of Liu
et al. (1994): Rnf= 1

2(EnQefe+EnQofo), where fe and fo are the rth nearest-neighbor
correlations on the even and odd sublattices, respectively.
The Gibbs and Metropolis samplers were used to estimate &3 for the Ising model

on a 6 × 6 lattice with free boundary. Fig. 1 contains plots of the variances of
the estimators EnQf and Enf for the random sweep samplers, as well as the vari-
ances of two competing estimators based on the deterministic sweep samplers: the
empirical estimator Gnf and the von Mises estimator Mnf, as de"ned in Green-
wood et al. (1995, 1996). The estimates were based on a run of 1000 sublattice
sweeps, which amounts to 500 ‘full steps’ of the deterministic sweep samplers.
The variances were calculated over a grid of $ values using 5000 sampler runs at
each point on the grid. The smooth curves in Fig. 1 were obtained by
interpolation.
As temperature decreases ($ increases), the variances increase at an exponential rate,

and the two estimators for random sweep becomes consistently worse than the two es-
timators for deterministic sweep. Moreover, the Rao–Blackwell and von Mises-type
estimators show a declining improvement over the usual empirical estimators Enf
and Gnf, respectively, at lower temperature. This is probably due to the increasing
strength of long-range temporal and spatial dependence in the chains at low temper-
atures, and the fact that EnQf and Mnf only exploit information about short-range
dependence.
There are marked di$erences between the performance of the estimators under Gibbs

and Metropolis dynamics. At high temperatures, the Gibbs chain is only weakly corre-
lated, so, as expected, Rao–Blackwellization is extremely e$ective; it gives an order of
magnitude improvement over competing estimators when $60:1. Rao–Blackwellization
is ine$ective for the Metropolis sampler at high temperatures, however, since the
Metropolis chain is highly correlated when $ is small: the spin-%ip proposal is
almost always accepted.

4. Further research

In Section 2 we have considered a Markov chain {X i; i¿0} and the Rao–
Blackwellized empirical estimator 1=n

∑n
i=1 E(f(X

i)|X i−1). We have shown that for
reversible chains, this estimator has smaller asymptotic variance than the ordinary
empirical estimator 1=n

∑n
i=1 f(X

i). It would be of interest to study the asymptotic
variance of a more general form of Rao–Blackwellization:

1
n

n
∑

i=1
E(f(X i) | h(X i−1; X i)): (8)
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Fig. 1. Variances (on a log10 scale) of the Rao–Blackwellized estimator EnQf (solid line) and the empir-
ical estimator Enf (short-dashed line) of &3 as a function of the inverse temperature $. Variances of the
von Mises-type estimator Mnf (long-dashed line) and the empirical estimator Gnf (dotted line) under the
deterministic sweep are plotted on the same scale.
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This would include the Rao–Blackwellizations usually considered in the literature, with
h a function h(X i) of the present value X i only, not of the previous value X i−1. As
observed by Geyer (1995), the latter is unlikely to reduce variance simultaneously for
all f. On the other hand, if X i has two components, X i = (X i1 ; X

i
2), if the transition

distribution factors as Q(x; dy) = p2(x1; dy2)p1(y2; dy1), and if f(X i) = f(X i1) and
h(X i) = X i2, then the Rao–Blackwellization 1=n

∑n
i=1 E(f(X

i
1)|X i2) reduces asymptotic

variance, as shown in Liu et al. (1994). It is an open question for which functions f
and h the general Rao–Blackwellized estimator (8) has smaller asymptotic variance than
the empirical estimator. Of course, this question is also interesting for non-reversible
Markov chains.

References

Besag, J., Green, P.J., 1993. Spatial statistics and Bayesian inference. J. Roy. Statist. Soc. Ser. B 55, 25–37.
Casella, G., Robert, C.P., 1995. Recycling rejected values in accept–reject methods. C. R. Acad. Sci. Paris
320, S&er. I, 1621–1626.

Casella, G., Robert, C.P., 1996a. Rao–Blackwellization of sampling schemes. Biometrika 83, 81–94.
Casella, G., Robert, C.P., 1996b. Rao–Blackwell theorem for sampling schemes with rejection. C. R. Acad.
Sci. Paris 322, S&er. I, 571–576.

Chan, K.S., Geyer, C.J., 1994. Contribution to the discussion of the paper by L. Tierney. Ann. Statist. 22,
1747–1758.

Frigessi, A., Hwang, C.-R., Younes, L., 1992. Optimal spectral structure of reversible stochastic matrices.
Monte Carlo methods and the simulation of Markov random "elds. Ann. Appl. Probab. 2, 610–628.

Gelfand, A.E., Smith, A.F.M., 1990. Sampling-based approaches to calculating marginal densities. J. Amer.
Statist. Assoc. 85, 398–409.

Gelfand, A.E., Smith, A.F.M., 1991. Gibbs sampling for marginal posterior expectations. Comm. Statist.
Theory Methods 20, 1747–1766.

Geyer, C.J., 1995. Conditioning in Markov chain Monte Carlo. J. Comput. Graph. Statist. 4, 148–154.
Gordin, M.I., Lif#sic, B.A., 1978. The central limit theorem for stationary Markov processes. Soviet Math.
Dokl. 19, 392–394.

Green, P.J., Han, X.-L., 1992. Metropolis methods, Gaussian proposals and antithetic variables. In:
Barone, P., Frigessi, A., Piccioni, M. (Eds.), Stochastic Models, Statistical Methods, and Algorithms
in Image Analysis. Lecture Notes in Statistics, vol. 74. Springer, Berlin, pp. 142–164.

Greenwood, P.E., McKeague, I.W., Wefelmeyer, W., 1995. Von Mises-type statistics for single site updated
local interaction random "elds. Statistica Sinica, in press.

Greenwood, P.E., McKeague, I.W., Wefelmeyer, W., 1996. Outperforming the Gibbs sampler empirical
estimator for nearest neighbor random "elds. Ann. Statist. 24, 1433–1456.

Liu, J.S., Wong, W.H., Kong, A., 1994. Covariance structure of the Gibbs sampler with applications to the
comparisons of estimators and augmentation schemes. Biometrika 81, 27–40.

Meyn, S.P., Tweedie, R.L., 1993. Markov Chains and Stochastic Stability. Springer, London.
Neves, E.J., Schonmann, R.H., 1992. Behavior of droplets for a class of Glauber dynamics at very low
temperature. Probab. Theory Related Fields 91, 331–354.

Pathak, P.K., 1992. Introduction to Rao (1945), Information and the accuracy attainable in the estimation
of statistical parameters. In: Kotz, S., Johnson, N.L. (Eds.), Breakthroughs in Statistics, vol. I. Springer,
New York, pp. 227–234.

Roberts, G.O., Sahu, S.K., 1997. Updating schemes, correlation structure, blocking and parameterisation for
the Gibbs sampler. J. Roy. Statist. Soc. Ser. B 59, 291–317.

Swendsen, R.H., Wang, J.-S., 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev.
Lett. 58, 86–88.



182 I.W. McKeague, W. Wefelmeyer / Journal of Statistical Planning and Inference 85 (2000) 171–182

Tanner, M.A., Wong, W.H., 1987. The calculation of posterior distributions by data augmentation. J. Amer.
Statist. Assoc. 82, 528–540.

Tierney, L., 1994. Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22,
1701–1762.

Winkler, G., 1995. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer, Berlin.


