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 Estimation by the method of sieves for a semimartingale regression
 model introduced by Aalen (1980) is studied. It is of interest to estimate

 functions which describe the influence of the covariates over time. An estima-
 tor for these functions is introduced and conditions which ensure consistency
 of the estimator in L2-norm are given. Applications to diffusion processes and
 point processes with censored data are also discussed.

 1. Introduction. The method of sieves (Grenander, 1981) has proved to be a
 powerful technique in nonparametric estimation. It has recently been applied to
 stochastic processes for the estimation of such time dependent functions as the
 mean of a translate of the Wiener process (Grenander, 1981; Geman and Hwang,
 1982), the drift coefficient of a linear diffusion process (Nguyen and Pham 1982),
 the hazard function in the multiplicative intensity model for point processes
 (Karr, 1983), and the mean of a Gaussian process (Antoniadis, 1985).

 In the present paper we study estimation by the method of sieves for the
 following semimartingale regression model which was introduced by Aalen (1980).
 It contains diffusion processes and the multiplicative intensity model for point
 processes as important examples. Suppose that n subjects and p covariates for
 each subject are observed over the time interval [0,1]. Let Xi(t) denote the state
 of the ith subject at time t, and suppose that X = (X1,..., Xn)' satisfies

 (1.1) X(t) = X(o) + jY(s)a(s) ds + M(t), t E [0,1],

 where a = (a, ..., ap)' is a vector of unknown nonrandom functions, Y = (Yij) is
 the n x p matrix of covariate processes, with Yij being the jth covariate for the
 ith subject, and M = (Ml, Mn)' where each Mi is a square integrable
 martingale.

 It is of interest to estimate the functions a1,..., ap and so provide de-
 tailed information on changes in the influence of the covariates over time. In
 Section 2 we introduce an estimator a(n) for a and state conditions under which JO [&5n)(t) - aj(t)]2 dt - 0 in probability as n - oo, for j 1,..., p. Our ap-
 proach is based on the sieve method developed for linear diffusion processes by
 Nguyen and Pham (1982) and is similar to the well known orthogonal series
 technique for nonparametric density estimation, first used by Cencov (1962). We
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 580 I. W. MCKEAGUE

 use an increasing sequence of finite dimensional subspaces of L2[0, 1] and define

 the estimator &(n) to be an element of the nth subspace. The dimension dn of the
 nth subspace is allowed to tend to infinity at the rate dn = o(n) as n o-* . This
 improves on the rate dn = o(n' 2) given by Nguyen and Pham (1982). Various
 moment conditions ((A1)-(A5), Section 2) are imposed on the p covariate
 processes. These conditions are easily satisfied, unless p > 3, in which case
 condition (A4) becomes more severe as p increases. Several examples of our
 model (1.1) are discussed in Section 3; proofs are contained in Section 4.

 2. Estimation of a. We begin by stating some technical assumptions needed
 in the semimartingale regression model (1.1). (Q, Y, P) will denote a complete

 probability space and for each i = 1,..., n, (it, t E [0,1]) is a nondecreasing
 right-continuous family of sub-a-fields of Y where Fio contains all P-null sets in
 .Y. All processes are indexed by t E [0,1]. Each process (Mi(t), it), i = 1, ... X A
 is assumed to be a square integrable martingale such that almost all paths of Mi
 are right-continuous on [0,1) with left limits on (0,1]. The predictable variation

 of Mi is the unique increasing, (Jit) predictable process KMi)t such that KMi>o =
 Mi2(0) and Mi2 - <Mi) is a martingale; refer to Meyer (1976).

 The covariate process Yij is assumed to be (,it) predictable, that is measur-
 able with respect to the a-field on [0,1] x S generated by all left-continuous,

 (3Wit) adapted processes. The a-field iit represents the state and covariate
 history of the ith subject up to time t. It is assumed that (X,, n 2 1), (M,s n > 1),
 and (Y,,j n ? 1) for j = 1,..., p are strictly stationary sequences. In particular,
 this will be the case if the subjects are iid.

 The method of sieves consists in taking an estimator from an increasing
 sequence of sets of functions indexed by the sample size. For each j = 1,..., p,

 let (4'jr, r ? 1) be a complete orthonormal sequence in L2[0,1]. Define the
 estimator &a(n) of al to be the element of span{pji, r = 1,..., dnj given by

 dn

 (2.1) -5n)(t) = (n
 r=1

 where (dn) is an increasing sequence of positive integers, the p x dn matrix
 = (n)-(&j) satisfies

 (2.2) vec(()) A(n)-1vec(B(n

 where the vec operator takes a matrix and places the elements in lexicographical

 order to form a large column vector, B(n) is the p x dn matrix given by
 n

 (2.3) Bjr = jir(t)rYii(t) dXi(t),

 and A(n) is the pdn x pdn matrix partitioned into p2 submatrices AO) of order
 dn x dn with

 (2.4) Ajkrl = E f jr(t)4kl(t)Yi(tYik(t) dt.
 i=10
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 ESTIMATION FOR A SEMIMARTINGALE REGRESSION MODEL 581

 In (2.2), Aw denotes a generalized inverse of A(n). The choice of generalized
 inverse here does not affect any of our results since, by the proof of Lemma 4.2,

 P(A(n) is invertible) -* 1, as n -- oo.

 In the case of diffusion processes, &5n) can be derived as a restricted maximum
 likelihood estimator; see Nguyen and Pham (1982). However, for dependent
 observations and arbitrary square integrable martingales no such interpretation
 is available. A rationale for using &(n) comes from the following result which
 establishes the L2 consistency of the estimator under some assumptions (A1)-(A6)
 stated after the theorem.

 THEOREM 2.1. Under (A1)-(A6), for any dn T oo such that d= o(n),

 |i(n)t - aJ(t) 1 2 dt __), 0, as n - .

 AssuMpTiONS.

 (Al) fja2(t) dt< oo, forj=1, ... ,p.

 (A2) sup EYlj(t)<oo, forj=, ...,p.
 te[0, 1]

 (A3) tinof EY12j(t),> 0, for j = ,..**p.
 tr=[O,1]

 (A4) st [o,1] EYl(t)EY2k(t)
 for all 1 < j < k <?p, applicable for p > 2.

 (A5) The function

 vj(t) = E [tY2j(s)d(Ml)1 t E [0, 1],

 is absolutely continuous with bounded derivative (Lebesgue a.e.) for j=
 l,---,Ip-

 (A6) For 1 < k c I < oo, let k denote the o-algebra generated by Jtl k < i <
 1}, and denote

 p(n) = sup sup P(BIA) - P(B)j.
 k? 1 A 9?k, P(A)>0

 B C kO+n

 Assume that the following qp-mixing condition holds

 E Ml/2(n) < oo.
 n?1
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 REMARKS.

 (i) Assumptions (A3) and (A4) can be regarded as identifiability criteria. It is
 easy to construct examples which violate each of these assumptions and for
 which a is nonidentifiable. Note that the expression inside the supremum in
 (A4) is bounded above by 1 (Cauchy-Schwarz inequality) so that for p = 2
 (A4) is a very weak requirement. As p increases it quickly becomes a rather
 severe condition on the covariates.

 (ii) The fourth moment assumption (A2) is also required in the analysis of some
 Cox-type regression models; see Prentice and Self (1983, page 812).

 (iii) Assumptions (Al), (A2), (A5), and stationarity ensure the existence of the

 integrals in (2.3) and (2.4). The martingale integral JfO1jr(t)Y1j(t) dMi (t) is
 defined since

 E [f0?'4jr(t)Yij(t) dMi((t)] = E J| k52r(t)Yi2(t) dKIViX]

 =| yr(t) dvj(t) < x0.

 (iv) Examples of processes satisfying the assumptions (A1)-(A6) are described in
 Section 3. In the important cases of diffusion processes and point processes
 (AS) as a consequence of (A2).

 3. Example.

 3.1. Diffusion processes. Let a(t), t E [0,1] be a continuous function and
 b(x), o(t, x), t E [0,1], and x E R satisfy the following Lipschitz and growth
 conditions:

 (C1) lb(x) - b(y)12 + Ia(t, x) - a(t, y)12 < Klx - y12,
 (C2) b2(x) + o2(t, x) < K(1 + x2 )

 where K is a constant. Let W = (Wt, it) be a Wiener process and iq an
 _,%-measurable random variable. Under these conditions the stochastic differen-
 tial equation

 (3.1) dXt =a(t)b(Xt) dt + a(t, Xt) dWt, t e [0, 1], X0 = 7,

 has a unique solution X = (Xt, it). If the function b is known and n iid copies
 of X are observed, then (3.1) can be expressed in tha form of the semimartingale

 regression model (1.1) where Mt = Jota(s, Xs ) dWl and Y(t) = b(Xt). Conditions
 (Cl), (C2) and the following additional conditions (C3) and (C4) are sufficient for
 Theorem 2.1 to be applicable.

 (C3) E'q4 < 00,

 (C4) b(Xt) vanishes a.s. for no t E [0, 1].

 Assumptions (A2) and (AS) can be checked using (C3) from which a result of
 Liptser and Shiryayev (1973, Theorem 4.6) gives supt [() 1EX4 < so. (AS) then
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 follows from (C2) and the fact that (M)t = Jo' 2(S, X) ds. (A3) follows from
 (C4), the a.s. path continuity of X and the continuity of b.

 Special cases of (3.1) were treated by Grenander (1981) and Geman and Hwang
 (1982) who considered the case b(x) = 1, a(t, x) = 1, and Nguyen and Pham
 (1983) who took b(x) = x, a(t, x) = 1.

 3.2. Point processes. Let N = (N(t), it) be a point process with intensity

 p

 (3.2) A(t) = aj(t)Yj(t),
 j=l

 where aj is an unknown, continuous, nonnegative function and Yj is an observ-
 able, nonnegative, (3F)-predictable process, j = 1,..., p. Assuming that

 EN(1) < oo, there is a square integrable martingale (Mt, it) such that

 (3.3) Nt = tX(s) ds +Mt, t e lo,'],

 (see Aalen (1978)) and this is also a form of the semimartingale regression model

 (1.1). Assumption (AS) is a consequence of (A2) in this case since KM), = JoX(s ) ds.
 A practical example of this model might arise in which X(t) is the hazard rate

 for the incidence of cancer in a subject who at age t has had a cumulative

 exposure Yj(t) to each of j = 1,..., p carcinogens and for whom N is the point
 process with a single jump at the time of initial detection of cancer. X is set to

 zero after cancer is detected. The functions al,..., ap in this example represent
 the change in the relative hazard rates for the p carcinogens with age.

 The model (3.2) was introduced by Aalen (1978, 1980) as an alternative to the
 proportional-hazard regression model of Cox (1972). Aalen provided an estimator

 for the cumulative hazard function fJoaj(s) ds rather than aj itself. For the case
 p = 1, Ramlau-Hansen (1983) has used kernel function methods from density
 estimation and Karr (1983) has used the method of sieves to obtain estimators of
 a,. It is not clear that these two approaches can be extended to p > 1.

 3.3. Processes with both diffusion process and point process components. Let
 ,8(t), t E [0,1] be a continuous function, N = (N(t), it) the point process of
 Section 3.2, b(x), a(t, x), , as in Section 3.1, and E > 0. Then the equation

 (3.4) Xt=1q + ft1(s)b(Xs) ds + Jta(s, Xs) dW, + eNt,

 has a unique solution X = (X,) which behaves as a diffusion process between the
 jump times of the point process. The size of the (positive) jumps of X is given by
 E, which is assumed to be known. By substituting (3,3) into (3.4) we obtain
 another example of the semimartingale regression model (1.1) from which the

 functions /3, ax,,..., ap can be estimated.

 3.4. Censoring. In many practical situations the available data have been
 randomly censored. The possibility of censoring is easily incorporated into the
 semimartingale regression model (1.1) as follows. Suppose that the state Xi and
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 covariates Yij of the ith subject are observable only up to an (wt) stopping time
 Ti and that (T, i > 1) is a stationary sequence of random variables. Define new
 state and covariate processes (which are observable over the whole of [0,1]) by

 the stopped processes Xi(t) = Xi(t A Ti) and Yij(t) = Yij(t Ai-T), respeCtively.
 Equivalently, Y1j(t) = I(t < i)Yij(t) could be used in place of Yij(t). Also define
 a new square integrable martingale, Mi(t) = Mi(t A Ti). The censored version of
 the model is formed by replacing X, Y, and M in (1.1) by X, Y, and M,
 respectively. The assumptions of Theorem 2.1 should now be checked for the
 stopped processes X, Y, and M.

 For Ml to satisfy (AS) it is necessary that P(T1 > t) > 0, for all 0 < t < 1.

 This follows from the fact that (M1)t = M2(TI) on {X: t ? TI}, P a.s. In some
 applications it is reasonable to assume that the censoring is independent of the

 subject (i.e., Tr is independent of Xi, Yij, and Mi). In this case, by using the
 covariate Yij(t) = I(t < Ti)Yij(t), for which the quantity P(TI > t) factors out of
 expressions in (A2)-(A5), it suffices to check (A2)-(A5) for the unstopped processes
 and have P(T, ? 1) > 0.

 Estimation for an example of the censored semimartingale regression model
 arising in neurophysiology is discussed by Habib and McKeague (1985).

 4. Proofs. The measures ,yj, j = 1,... p defined below play an important
 role in the proof of Theorem 2.1. Define #, by dcLj(t) = EY'(t) dt. Under
 assumptions (A2) and (A3) we have L2([0, 1], dt) = L2([0, 1], dMj) as sets and the
 norms are equivalent. As in Nguyen and Pham (1982), there exists a complete

 orthonormal sequence (*jr, r > 1) in L2([O, 1], duj) such that

 span{'Ijr, r= 1,..., d,} = span{41r,r- 1,*r d,d}.

 The coordinates of aj and &Si) in the basis ( 'jr r > 1) are denoted (]r, r 2 1 and
 tf r -1,..., d, respectively. Let fj(n)-( jr,r= 1,..., dJ)', j(n) = ( r=
 1, .. ., dn )'. It is clear that to establish Theorem 2.1 it suffices to show that

 (4.1) - n) 5_ jn) __* 0, as n - m.

 By (2.2) the p x dn matrix (n) =( 5n)) satisfies

 (4.2) vec( A(n)) = a(n)- Ivec( b(n'),

 where b(n) is the p x d. matrix given by

 ( 4 .3 ) -yrn f1 = f - '1~ |jr( t) Yi j(t) dXi(t),

 aA'l is the pd, x pd, matrix partitioned into p2 submatrices a(*) of order
 dn x dn with

 (4.4) a(r= n El | t) (t)Y(t)Y(t) dt,

 and a(")-' is a generalized inverse of a(n). Let t(n) denote the p x dn matrix
 with elements fjr and aSsn) the protection of aj onto spant{4jr, r = 1,..., dn}, so
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 that aSs) r , itjr,'jr, Using (1.1) to expand (4.3) it is easily checked that

 (4.5) vec( (n) - -(n) a(n)-Ivec c(n
 where c(") is the p x dn matrix with

 p n

 - = nr E | fjr(t)Yij(t)Yik(t){ak(t) - k5(n)(t)} dt
 (4.6) k=l i=i (

 +n- E J jr(t) Yij(t) dMi (t)

 By (4.1) and (4.5) we have that Theorem 2.1 follows from the next two results
 which hold under the conditions of the theorem.

 LEMMA 4.1. Ilvec c(n) 11 p 0, as n -* x.

 LEMMA 4.2. {IIa(n)- 1I, n ? 1) is a tight sequence of random variables (II
 denotes operator norm).

 The following elementary inequality is used in the proof of Lemmas 4.1 and
 4.2.

 LEMMA 4.3. Let (Zt, t E [0, 1]) be a measurable stochastic process such that
 K Supt GE 1EZ2 < c. Then for any integrable function h,

 E [|htZt dt] < K [|lhtl dt]

 PROOF.

 E [fhtZt dtj = JJ1h.hAE[ZSZj] dsdt

 < fJ1I h I IhtI [ EZ]2[EZtI12 ds dt

 < K [lIhtI dtj *

 PROOF OF LEMMA 4.1. From (4.6) we can write

 n ) nJ) + 71(p) + n)

 where
 P n

 (n) -1 : n ~n Y(]r =n ik- Ejrl k
 k=l i=l

 n)= I (Vn)ItI dt
 Yjrik jr( Yij(t)Yik( t ) {ak(t) -4(t akt,

 p

 (n)= E E n)
 k=1

 Pt(r = n1 J1r(t)Yi1(t) dMi(t).
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 Using (A3) and since (4jr, r = 1, .. ., dj) are orthonormal in L2([O, 1], d,ij), we
 have

 p p dn 2

 IfVeC 7,n)112 < p E {E l 3nl)}2
 k=l j=l r=l

 P ( EY(| (t)Y t (t) 2 2

 < EYj( tj) E2j(t) (ak)( t( a

 (by Bessel's inequality)

 <p2 _n f( ak(Et) - 2t( t))2EYdt(t) dt,
 k=l 0

 by the Cauchy-Schwarz inequality. It follows that jjvec i(')jj - 0, as n -a 0o,
 since -k a, k in L2([0, 11, k) for each k = 1...., p. Next, by stationarity of
 (Y11, i > 1),

 p r
 (4.7) E(Y )j p ) [n - nvar(ij(rj)) + 2n2 n (n- i + 1)cov( YI,Pk )]

 k=1 i=2

 By Lemma 4.3 and (A2) there are constants K1, K2, such that

 E ( Yj(r)k? K1[f I1jr(t)11ak(t) - aCn)(t)Idt1

 < K2f1[a (t) a(n)(t)f2 dt O, 0

 as n -- oo. By a result of Ibragimov and Linnik (1971, Lemma 17.2.3),

 coy ( r }j rn4k) < 2q' /2( i- 1) E ( i1) )2

 so that from (4.7) and (A6), E(yJ(r,))2 = o(n'1), uniformly in j and r, as n xo.
 Thus, since dn = o(n), we have

 p dn

 Ellvecy(n)112 = E E EYj(rn)) = o(1).
 j=1 r=l

 Finally consider P5r. Using a property of stochastic integrals WIth respect to
 square integrable martingales, we have

 E[jI'jr(t)Yij(t)dMiA(t)j -E[fI)(t)Yi5(t)dKAi)tj

 = J1j2r(t)dvj(t)

 which is uniformly bounded in j and r by (A5). Then, using the mixing condition
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 (A6) as before, it can be checked that Elivecp(')112 = o(1). Collecting terms we
 obtain

 EIlvecc(')112 ? 3(EIjvecy(,)jj2 + 1jvecq(f1)12 + Elvecp~n,112)
 - , as n -*o. O

 PROOF OF LEMMA 4.2. We can write a(n) = 3(n) + D(n), where 13(n) and A(n)
 are partitioned in the same way as a(n)

 n1

 2n (f3),%- EJ, r)i
 i=l

 __k rl f14r( t)4kl( t) Yij( t) Yik( t) dt,

 = ) E= I .

 Using a similar argument to the estimation of E(y(n))2 in the proof of Lemma
 4.1, there is a constant K such that

 n ~~~~~~2
 E j (r)l)2 < n-E (Jkr,)

 Thus,

 p dn

 Eip(Bn)112 < E E EPj(knr)l)
 j,k=l r,l=1

 K P dn
 < _ E Er E( f3 J,)2

 j, k= I r, l= I

 _ ~~~~Idt)
 Y , E jr( k k((Y)j(t)YIk(t)d n j, k=lI r,1=l ()

 = _ vE, E E; ? | jr( t) j )EY,2j( t) dt71
 jk=iI=i r=1 1\ dt]

 < - E EE ly2( t) EYk2j(t) dt

 (by Bessel's inequality) = _ vE |1<g~~2 (t ) ()Ik)) dt
 =odn)

 by (A2), (A3), and the Cauchy-Schwarz inequality. It follows that

 (4.8) Ell /(n)112 = o(1), as n --* x.
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 Now we consider the behavior of ;,(n) as n -x 00. First note that the diagonal
 submatrices of g'() are identity matrices. Thus, letting IP') denote the pdn x pdn
 identity matrix, we have directly from the definition of the operator norm that

 p d[ p dn

 II(n) _ (n)112 = Sp E E E E D (,n iIv-= sup x E kl
 IIvecx4n)jI?1 j=1 r=1 k=1 (=1I

 k:*j

 p dn p In

 (4.9) = SUp E E E fjr(t) Xkl*kl(t)
 I ivec x(n)ll,.l j=1 r=1 k-l=1t1=

 X EYlj(t)Ylk(t) dt

 where the supremum is over the set of p x dn matrices x(n) with Ilvec x(n) < 1.
 Let k denote the norm in L2([0, 1], dc4t) and

 H = (h =(hjj ... hp): hk E L 2([09 1]9 dtk)

 p
 112

 for k = 1,...,pand EtIhkIk <?1}.
 k=1

 Then it follows from (4.9) that

 IIp d |IPn(n41 <P EYlj(t)Ylk(t) d (4.10) - P h.sup | E hkJ 2hk(t) EY2(t) dj ]

 2

 h HEhk( t) Yl(t)
 (4.10) heH_ EY()Y()

 k:*j

 < ( 1)s p fh 2(t) [ EYjI(t) Ylk(t)]2c4(t
 j*k

 < (p_ 1)28
 where

 = [ EYi;(t) Yl( t)]2 a- sup Ej( 1(t1
 j* k

 By (A4) there exists a constant c such that (p - 1)28 < c < 1. Then, by (4.8) and
 (4.10),

 P{jII(n) - a ()II < c} s1, n -x 00.
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 But if V is any pd. x pdn matrix such that III(n) - Vii < 1 then V is invertible
 and IIV-1II < (1 - iiI(n) - VIi)-'. It follows that

 P(a(w) is invertible) -+ 1, as n - oo
 and

 P(a ll(nf)-ll < (1 - c -) 1, as n ,oo.O
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