A Statistical Model for Signature Verification

lan W. MCKEAGUE

A Bayesian model for off-line signature verification involving the representation of a signature through its curvature is developed. The prior
model makes use of a spatial point process for specifying the knots in an approximation restricted to a buffer region close to a template
curvature, along with an independent time-warping mechanism. In this way, prior shape information about the signature can be built into the
analysis. The observation model is based on additive white noise superimposed on the underlying curvature. The approach is implemented
using Markov chain Monte Carlo and applied to a collection of documented instances of William Shakespeare’s signature.
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1. INTRODUCTION

People are able to recognize their own handwriting or signa-
ture at a glance, and manuscript experts can usually determine
genuineness with almost scientific exactitude (or so they claim).
The analysis of variations in handwriting style is useful in, for
example, forensic investigations, biometric identification, and
the dating of ancient manuscripts. In a study of William Shake-
speare’s handwriting, Charles Hamilton (1985, p. 7) ascribed
the ability of recognizing variations in handwriting to the “feel”
of a script, to the “sum total of the viewer’s knowledge, the infu-
sion of intuition and an immense amount of experience.” Man-
uscript experts often assess the feel of documents very quickly
by examining them upside down, so the words themselves be-
come obscured. The “shape” of the handwriting is therefore a
key ingredient in such an analysis. However, a model-based sta-
tistical approach to off-line signature analysis and verification
is not yet available. The present article approaches this problem
by formulating a Bayesian shape model for planar curves.

Signature verification is a difficult but potentially tractable
classification problem, and the discovery of a suitable statisti-
cal model would be of substantial scientific interest. The key
feature of an efficient classification scheme is data condensa-
tion, or the reduction of often unmanageably large datasets to a
parsimonious form without the sacrifice of key statistical infor-
mation. This can lead to the discovery of interesting anomalies,
given the availability of adequate data and suitable statistical
methods. The instances of the initial letter in Shakespeare’s sig-
nature shown in Figure 1 have characteristic statistical struc-
tures that could be exploited if the key information could be
efficiently condensed into a suitable low-dimensional object.
(Indeed, this may be how the visual cortex processes such in-
formation.) Shape is the most essential feature, and although
temporal information (e.g., acceleration) is not directly avail-
able for off-line analysis, the model should reflect the temporal
generation of the observed curves.

Grenander (1970, 1993) introduced the theory of deformable
templates to address the problem of recognizing an interesting
shape (e.g., hand, galaxy, mitochondrion) in a gray-level image.
The shape is described by a flexible template, typically a poly-
gon, with edge lengths and angles governed by a joint prior
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distribution, typically a Markov chain. The theory has been
implemented, for hand X-rays (Amit, Grenander, and Piccioni
1991), and for magnetic resonance images of the brain (Miller,
Christensen, Amit, and Grenander 1993). In representing gray-
level images, such as those in Figure 1, one expects to be able
to lower the dimensionality considerably because of statistical
regularities. This dimension reduction is a crucial first step in
any successful high-level image understanding and analysis.
Principal components analysis is a useful tool for handwrit-
ten digit compression (Hastie, Tibshirani, and Friedman 2001,
p. 488). Local feature analysis (Penev and Atick 1996) provides
compact representations of images (e.g., of human faces) in
terms of statistically derived local features and their point lo-
cations. There is an extensive statistical theory of shapes based
on landmarks (Small 1996; Dryden and Mardia 1998; Lele and
Richtsmeier 2000); in this approach shape is treated as the
information in an object (specified by planar landmarks) that
is invariant under translations, rotations, and isotropic rescal-
ings. Shape representation of planar curves based on curvature
has been used extensively in computer vision (Mokhtarian and
Mackworth 1992; Mumford 1994; Klassen, Srivastava, Mio,
and Joshi 2004).

Despite much progress in signature verification in recent
years, a fully fledged statistical approach has not yet been de-
veloped. There is an extensive literature on the computerized
recognition of signatures (see Plamondon and Lorette 1989;
Munich and Perona 2003 for references). Much of this work
is based on numerical methods designed to extract similarity
features (from data provided by on-line or off-line signature
digitizers). For example, Sabourin, Drouhard, and Wah (1997)
investigated the use of shape matrices as a global shape factor
for off-line signature verification. Martens and Claesen (1997)
presented an on-line signature verification system based on
three-dimensional force patterns and pen inclination angles, as
recorded during signing. The feature extraction mechanism is
based on an elastic matching technique. Lee (1996) developed
several neural network based approaches to on-line signature
verification. Matsuura and Sakai (1996) considered a stochastic
system representation of the handwriting process and its appli-
cation to on-line signature verification. The stochastic system
characterizing the motion in the writing of the signature is de-
scribed by a random impulse response.

Progress on the problem of signature verification has ad-
vanced less rapidly in off-line applications, in part because
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Figure 1. The Initial “S” in Shakespeare’s Signature From the Welcombe Enclosure Agreement, October 28, 1614 (see Hamilton 1985, p. 195).

information such as pen position and velocity is unavailable.
Off-line systems using similarity features have been stud-
ied experimentally; for example, Deng, Liao, Ho, and Tyan
(1999) proposed wavelet analysis of curvature data, and Fang
et al. (2003) developed a system to track variations in one-
dimensional projection profiles and stroke positions. Some
progress has been made on the recognition problem (i.e., read-
ing) for off-line cursive handwriting; for example, Abuhaiba,
Holt, and Datta (1994, 1998) used an algorithm for extracting a
polygonal approximation of the handwriting from a gray-level
image (see also Proctor, Illingworth, and Mokhtarian 2000).
Machine learning techniques are useful for character recogni-
tion from off-line handwritten text based on large training sets
of gray-level images (Hastie et al. 2001).

Some statistical modeling approaches to on-line signature
verification have been proposed. Hastie, Kishon, Clark, and Fan
(1991) modeled the signature trace in the x—y plane as a time-
warped and spatially transformed version of a given template
signature, and used cubic spline smoothing techniques to fit the
model. When a new signature arrives for verification, it is com-
pared with an optimal affine transformation of the template sig-
nature. Kashi, Hu, Nelson, and Turin (1997) continued this line
of work and demonstrated improved performance by the addi-
tion of a signature likelihood feature based on a hidden Markov
model. Ramsay and Silverman (1997) used on-line handwrit-
ing as a key example in their development of functional data
analysis (see also Ramsay 2000).

We investigate the problem of off-line signature verification
from a Bayesian perspective, which is a natural approach be-
cause of the limited training data and the availability of im-
portant prior information about shape. From each gray-level
image of a smooth segment of the signature, a spline approx-
imation is extracted (with the thickness of the handwriting ig-
nored). This reduces the problem to finding a suitable stochastic
process model to describe the observed smooth planar curves in
terms of shape. The key aspects of the approach are an obser-
vation model involving white noise superimposed on an under-
lying curvature, a prior distribution for curvature functions to
represent shape information, and a time-warping mechanism to
register each observed signature. A Markov chain Monte Carlo
(MCMC) algorithm is used to explore the posterior distribution
of the curvature and time-warping functions, which is feasible
because these functions are relatively low-dimensional objects.

Various Bayesian nonparametric curve-fitting methods are
available in the literature. Wahba (1978) showed that smoothing
splines result from a type of Bayesian polynomial regression
analysis (see also Eubank 1988). The prior on the regression
function in this case is a polynomial with independent random
coefficients plus an independent multiply integrated Weiner

process. Another approach was given by Silverman (1985),
in which the prior for the regression function is concentrated
on the space of natural cubic splines with knots at the design
points. (For more on Bayesian approaches to nonparametric re-
gression, see Wahba 1983; Barry 1986; Cox 1993; Denison,
Mallick, and Smith 1998.) These approaches are not directly
useful for analyzing signatures, however, because it is not clear
how information about the shape of a signature could be ex-
pressed via a regression function.

The article is organized as follows. After some preliminary
material on planar curves, the proposed observation model is
introduced in Section 2. The prior for the various unknown
parts of the observation model is then specified, along with an
MCMC method for sampling from the posterior. Signature ver-
ification is discussed at the end of Section 2. An application to
the analysis of Shakespeare’s signature is given in Section 3,
and some concluding remarks are provided in Section 4. Proofs
of the key results are given in the Appendix.

2. STATISTICAL MODEL

In this section we introduce the proposed Bayesian model.
In the observation part of the model, a realized signature is
specified by adding white noise to the curvature. The prior on
the space of curvature functions uses a spatial point process to
specify the knots in an approximation restricted to a buffer re-
gion close to a template curvature, along with a time-warping
mechanism.

2.1 Preliminaries

We begin by reviewing some background and terminology
on the geometry of plane curves (Carmo 1976). Consider a pa-
rameterized curve « : [a, b] = R2, with coordinate representa-
tion a(?) = (x(1), y(t))T, and assume that the curve is smooth
in the sense that x(¢) and y(¢) are twice continuously differen-
tiable. The trace of « is the image set a([a, b]), and at a given
t € [a, b], the velocity (or tangent) vector is V() = &'(f) =
@,y ®)T and the arc length is L(t) = [, a' |o’ ()| du, where
| -] is the Euclidean norm. If the velocity vector does not vanish,
then the curve is said to be regular; such curves can be repa-
rameterized by arc length as B(s) = a(L™1(s)), s € [0, L(b)],
without changing the trace. The velocity vector of an arc-length
parameterized curve has unit norm.

Curvature measures the rate at which a regular curve pulls
away from its tangent line, and for an arc-length parameterized
curve, it is defined by

k@ = (" ®,n@) =X @)y @ —x" @)y ), (1)

where n(?) = (—y'(#), ¥ (#))T is a unit normal vector. Curva-
ture has the attractive features of being invariant under location
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shifts and rotations and giving a unique representation of the
curve up to rigid motion. The velocity vector of an arc-length
parameterized curve is represented by

_ [ cosB(r)
Vin= (sin@(z)) ’
r 2)

() =06(a) + / k(s)ds,

a

where 6(1) is the angle of the velocity vector with the x-axis.
The curve can be reconstructed (up to a location shift) from its
velocity vector by a (1) = a(a) + f(j V(s)ds.

Another important property of curvature is that it is inversely
proportional to scale; the curve ca(r) has curvature  (t)/c, for
¢ > 0. We therefore need a standardized form for the observed
signatures so that their curvatures are directly comparable with-
out the interference of scale effects. We obtain this by rescaling
each observed signature to have a fixed total arc-length v > 0,
so each arc-length parameterized signature has curvature func-
tion belonging to C[0, ], the space of continuous functions
on [0, t]. Such invariance under length scaling has long been

a fundamental principle of signature verification (see, e.g., Lew
1980, p. 29).

2.2 Observation Model

In this section we introduce the signature observation model
and derive the likelihood. The problem of estimating curvature
nonparametrically is shown to be equivalent to estimating the
drift in a Gaussian shift experiment.

The model is first formulated for a single observed signature.
The gray-level image of the signature is preprocessed to ex-
tract a smooth arc-length parameterized approximation eohs (1),
t € [0, 7], and its velocity vector V(f) = a’, () is computed

obs
numerically (see Sec. 3 for details). The observed velocity is

modeled as
[ cosO(1)
v = <sin9(t) ) ‘

, 3)
mo=¢+/
0

k(s)ds +oW(t),
where « € C[0, t]is an underlying curvature function, W(#) is a
standard Brownian motion, and ¢ is the angle of V(0) with the
x-axis. Here 6(r) represents the angle resulting from additive
white noise, with variance o> > 0 superimposed on the under-
lying curvature. The noise locally perturbs the curve along the
direction of its normal vector.

The likelihood for x (given that o is known) can be ob-
tained as the Radon—-Nikodym derivative of the distribution of
the process V with respect to a certain dominating measure, for
which we need to assume that continuous observation of V over
[0, t] is available (even though the numerical implementation
will involve only observation on a fine grid). In the Appendix
we show that this leads to the log-likelihood

1
LklV)=— /
o= Jo

T

K ({Vi(s) dVa(s) — Vals) dVi(s)}

T 1
~523 ; K(j‘)2d5+§0'21. “4)
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For numerical evaluation of the likelihood, the velocity vec-
tor V(¢), t € [0, ] is approximated over a regular grid, 5; =
Jt/N,j=0,...,N. The first term in the log-likelihood is an
16 integral of the form [i £(s)dV(s), with a predictable inte-
grand &(s). This integral is approximated by the finite sum

N T
Z‘E(Sj~l)(v(sj) ~V(sj-1) —*/0 E(s)dV(s) (%)
j=1

in quadratic mean as N — oo (see Liptser and Shiryayev 1977,
4.2). The second integral is approximated by a Riemann sum
over the same grid s;. This results in an approximationto £(x | V)
that is suitable for use with the data extracted from the gray-
level image.

Gaussian Shift Experiment. The problem of recovering the
curvature « in the case of known noise level o can be reduced
to a Gaussian shift experiment (or white noise with drift). This
is already suggested by the form of the log-likelihood in (4),
which agrees with the white noise model with drift «. In the
Appendix, we show that

dZ(t) = k() dt + o dW (1), te[0, 1], (6)

where

1
Z(l)=/ {Vi(s)dVa(s) = Va(s)dVi(s)},
0

so we have the Gaussian shift experiment with drift «, noise
level o, and observation of Z. Many classical problems have
been shown to be equivalent (in terms of asymptotic mini-
max risk) to the white noise model as ¢ — 0, for example,
nonparametric regression (Brown and Low 1996) and den-
sity estimation (Nussbaum 1996). The expression for the log-
likelihood (4) indicates that the process Z is a sufficient statistic
for k.
A kernel estimator of « is given by

A(l)—l/rK(_S)dZ(
=7 ) K\ )4

where b > 0 is the bandwidth and K is a kernel function that
integrates to 1. This estimator agrees with the multiscale cur-
vature function representation of Mokhtarian and Mackworth
(1992). A wavelet shrinkage estimator is preferable to the ker-
nel estimator when a spiky curvature function is expected.

Under continuous observation of V, the noise level o is de-
termined because

1 >
= (i) = Vi) + (Va(s) = Vatsy-n) ) = o
= (7

in probability as N — oo, which follows from expressions for
the optional quadratic variation processes of the components
of V (see the App.). Moreover, any dominating measure for the
likelihood must depend on o, because the distributions @, of
the process V corresponding to different values of o are mutu-
ally singular. For any positive noise levels o] # o, there exists
a subsequence of (7) that converges almost surely under both
noise levels, so i1, and s, have disjoint supports. Thus it is
not possible to derive a likelihood based on continuous obser-
vation of V unless o is assumed known.
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Although o is determined from (7), the rate of convergence
is far too slow for practical use; sharp curves in the signature
will cause high positive bias in the estimates. Wavelet thresh-
olding comes to mind as a way of controlling this problem,
but unfortunately there is a high negative bias in this case.
The Haar wavelet coefficients of Z are integrals of the form
fg//(s) dZ(s), where ¥ is piecewise constant on intervals with
dyadic endpoints. These coefficients can be approximated from
the discrete data using sums of the form (5). Taking the median
absolute deviation of the wavelet coefficients at the finest scale
of resolution and dividing by .6745 gives a crude estimate &
(see Donoho and Johnstone 1995, p. 1218). Although & works
well for calibrating wavelet shrinkage, simulation experiments
show that it grossly underestimates o when V(z) is extracted
from traces generated with noise level o, and it fails to reflect
the large variation in shapes seen in real signatures. Indeed, this
is to be expected, because the approximation procedure used
to extract V(¢) from the trace is a smoothing operation that re-
moves much of the noise.

A practical way of selecting o would be through experimen-
tal studies, where it could be chosen to optimize performance
(in terms of error rates say) of the signature verification pro-
cedure. For simplicity, however, in this article we treat o as a
fixed tuning parameter.

Time Warping. We next extend our model to the case of
a sample of n signatures with observed velocity vectors V),
i=1,...,n. Sharp peaks in the curvature are likely to differ in
timing between the different records, so we need a way to give
greater flexibility to the model rather than assuming identical
curvature functions. This can be done using an increasing time-
warping function #;: [0, t] — [0, t] specific to each observed
signature to reparameterize a given (baseline) curvature «. The
curvature for signature i is then «; (1) = « (h;(t)). We refer to «
as the baseline curvature function to distinguish it from «;.

The time-warping function 4; is nonidentifiable; note that a
constant baseline curvature has the same «; irrespective of h;.
We handle this problem by regarding the time warp as a la-
tent variable or random effect (compare mixed models), which
in our Bayesian framework is equivalent to specifying a prior
distribution for £;. In the next section we specify this prior con-
ditionally on «, and it depends on the data in such a way that
the velocity vector corresponding to «; favors close agreement
with V.

Full Likelihood. Given a sample of n signatures with ve-

locity vectors V@, the full log-likelihood for the correspond-
ing vector of time-warping functions h = (h;,i=1, ..., n) and

baseline curvature function « is the sum of the respective log-
likelihoods,

n
0(c, h| data) = Y " £(ki|V?),
i=1

assuming that the signatures are sampled independently from
the observation model.

2.3 Prior Specification
We design the prior to have the following properties:

e Realizations of the trace are consistent with known fea-
tures of the signature shape.
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e Itis flexible enough to represent a wide variety of possible
signatures.

e [t gives a parsimonious representation of the baseline cur-
vature and time-warping functions.

e MCMC is feasible for sampling from the posterior distrib-
ution.

The construction has two main parts, a prior baseline curvature
process for embedding the shape information and an indepen-
dent record-specific time-warping mechanism for registering
each curve. The proposed approach is by no means the only
way of satisfying the foregoing properties, but we believe that
it provides an intuitively reasonable formulation, well suited to
oftf-line signature verification.

Baseline Curvature Process. The baseline curvature pro-
cess is defined to have paths contained in a certain buffer re-
gion centered on a template curvature. We start with a template
curvature function kg, which in practice is derived from a signa-
ture having a shape representative of the form of the observed
signatures or from an estimate (such as «) of the curvature func-
tion of one of the observed signatures. A buffer region is placed
around the template as

B={(t,y):k(t) <y <y, 1€l0, 7]},

where «; (1) = ko(t) — € and xy(f) = ko(t) + €, with € > 0
a user-specified constant that controls the size of the buffer re-
gion. The bracketing functions «; and xy represent imposed
bounds on perturbations of the template curvature. Hard bounds
are used here to ensure that the realized traces remain close in
shape to that of the template. In practice, inspection of traces
generated by curvature functions inside the buffer region (as un-
der the prior for «, defined later) can be used to guide the choice
of €; we found that ¢ = 1.5 works well. The hard bounds are
also useful for restricting the scope of proposals in the MCMC
implementation.

The baseline curvature process is constrained to go through
points (i.e., knots) in the buffer region. These knots are specified
using a spatial point process X contained in 5. (For background
on spatial point processes, see van Lieshout 2000.) Here we
take X to be a Strauss process; that is, X is a random finite set
of points in /3 having unnormalized density f(x) = g"®ydX
with respect to the distribution of a unit rate Poisson process
in B, where 8 > 0 and 0 < y < | are tuning parameters, d(X)
is the number of unordered pairs of points in X within a met-
ric distance p of one another, and n(x) is the number of points
in x. The metric is taken as the distance between time coordi-
nates (rather than the Euclidean distance in R?). The Strauss
process has a repulsive pairwise interaction, so the knots tend
to be well separated in the time direction, providing an easy
way of controlling (through y and p) the prior roughness of
the baseline curvature process. List the points in X in order
as (t,y),j=1,....,n(X), where 0 <1y <t < -+ <tyx) <7,
and set (70, y0) = (0,x0(0)), (tax)+1,Ynx)+1) = (T, k0(7)).
Then we define the baseline curvature process by

K(f) = (———[j+1 —!

l+1 — 1

>{Ko(l) +y; — xo(t)}

[
+ (——L>{Ko(l‘) + yjr1 — ko(tj+1)}
w1 =1
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for j <t <tjy1,j=0,1,...,n(X) + 1. The baseline curva-
ture function represents a smooth departure from ko passing
through the knots and contained in the buffer region. The in-
fluence of the knot (¢;. y;) on the baseline curvature at 7 is pro-
portional to the distance of ¢ from #; relative to its distance from
lj+1-

Time-Warping Processes.
modeled as

Each time-warping process is

hi() = min{hi(0), T},  t€[0, 7],

where /; is an increasing, continuous, piecewise-linear function
with #;(0) = 0. We take il,‘ to be linear between the grid points
uj=jt/p, j=20,...,p, where p > 1 is user-specified. The
parameters 6;; = fzi(uj) — ];l,’(lxtjg]), j=1,...,p determine h;,
and without loss of generality may be constrained so that
0 <6;; <. We then represent h by combining the 6;; into a
vector § € ® = [0, 7]". Hastie et al. (1991) and Ramsay (2000)
also used piecewise-linear time-warping functions.

The functional data analysis method of landmark registration
can be adapted to provide a prior on h; (equivalently, on the
p components of @ that represent h;). For example, the land-
marks could be specified as the times ¢ of sharp changes in the
direction of the tangent vector VO(p), with hi(r) approximat-
ing the corresponding time of peak curvature in the template.
Such landmarks are typically located close to the zero cross-
ings of the x-component the velocity vector (see Fig. 5). De-
note the time points (landmarks) in the template and the ith
record to be matched by #y, and #;,, r = 1,...,m. Then the
prior density on A4; (in terms of its parameters) is specified by
7 (h;) ocexp{—nJ(h;)}, where

m

Ty =Y (hittir) — 10,)’

r=1

is the “cost” function for mistiming the landmarks and n > 0 is
a user-specified precision parameter.

An alternative to landmark registration is curve registration,
in which departures of the data from the fitted velocity vectors
are penalized. Replace the foregoing cost function by

J(hilic) :/ angle(V? (1), ngted(r)) dr,
0

where Vgl)led(t) is the velocity vector corresponding to the cur-
vature function « (h;(z)), with initial value Vgl)ted(O) = V©D(0),
and angle(u, v) = cos~!(uTv) is the angle in radians between
unit vectors u and v. This is essentially equivalent to the Pro-
crustes method of curve registration, although in that case the
time warping is applied to the records themselves; a cost func-
tion for the differences between the time-warped records and
an overall mean record is iteratively minimized (see Ramsay
and Silverman 1997, sec. 5.4). For the on-line problem, Hastie
et al. (1991) used time warping of a template signature in the
x—y plane, whereas Ramsay and Silverman (1997) and Ramsay
(2000) used time warping of acceleration records; time warping
of the baseline curvature is more natural in the present setting.
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2.4 Sampling From the Posterior

The posterior is the joint conditional distribution (given the
data) of the baseline curvature « (represented by its knots x)
and the vector h of time-warping functions (represented by 6).
By the Bayes formula, the posterior density is proportional to

2(x, 0) = exp{€(x, h| data)} f(x) | | 7 (hilx, data),

=1

where the dominating measure is the product of the unit-rate
Poisson distribution on B and Lebesgue measure on ©.

The MCMC scheme that we use to explore this posterior is a
hybrid sampler with separate Metropolis—Hastings updates for
each component of (x,6). Such samplers are also known as
“Metropolis-within-Gibbs” or “variable-at-a-time Metropolis—
Hastings” (for background, see, e.g., Robert and Casella 1999,
p. 322). Geometric ergodicity can be difficult to establish for
hybrid samplers (e.g., Fort, Moulines, Roberts, and Rosenthal
2003), but it is quite easily shown in our case, due essentially
to the compactness of ®. A similar type of hybrid sampler has
recently been studied by Blackwell and Mgller (2003, sec. 3.3).

We use a deterministic scan (or sweep) to cycle through the
components, with each proposal having acceptance probability
of the form min(w, 1), where o (the Hastings ratio) depends
on current state and the proposed state. Each component 6
of @ is updated (in turn) by a random-walk Metropolis move
with the proposal 6’ normally distributed with mean 6 (ex-
cept that 6’ is restricted to the compact interval [0, t]). The
Hastings ratio for a move of this form, (x,0) — (x,8"), is
an(x,0,0") = g(x,0")/g(x,0). The x-component is updated
using the Metropolis—Hastings algorithm of Geyer and Mgller
(1994); either a point is born and added to x, or a point in X is
killed (unless x is empty), each step having equal probability. In
the birth step, we generate & at a uniform random location in B
and set (x,0) — (x U {£}, 6), with the acceptance probability
having a Hastings ratio given by

Bl g(xU{§}.0)
nx)+1 gx,0)

where |B| = 2e7 is the area of the buffer region. In the death
step, we select £ at random from the points in x and set (x, 8) —
(x\ {€}, 0), with the Hastings ratio given by

n(x) g(x\ (£).6)
Bl g(x.0)

ap(x,0,8) =

aq(x,0,8) =

Theorem A.1 in the Appendix shows that this hybrid sampler is
geometrically ergodic.

2.5 Signature Verification

Given samples of an individual’s signature, how can we
recognize whether a new signature comes from the same per-
son? In this section we propose a formal test procedure cali-
brated via simulation of the fitted observation model.

The new signature is first scaled to have length 7, and, to
make its velocity vector, V'V directly comparable with each
sample signature V@ it is rotated (clockwise) to produce a ve-
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locity vector VI*¥ having initial direction v®©),i=1,...,n.
Evidence that the new signature is a forgery is then provided by
large values of the “forgery index,”

T
=— min f angle(V?*¥ (1), VO (1)) dt,
T i=1,.,nJo

which is a measure of the difference in shape between the new
signature and the closest-matching sample signature. We have
normalized F to range between 0 and 1, and we expect it to
be small for authentic signatures. In the language of hypothesis
testing, F is a test statistic for the null hypothesis that the new
signature is authentic.

The strength of evidence that the new signature is a forgery
can be assessed by the p value P(F* > F) that a velocity vec-
tor V* sampled from the fitted observation model has a forgery
index F* greater than the observed F; here F* is defined by
replacing V™V by V* in F. This p value can be found us-
ing bootstrap simulation. V* is generated from the observation
model (3) with the curvature function « replaced by k(iu(-)),
where I is randomly selected from i =1,...,n, and ¥ and h;
are the posterior means of the baseline curvature and the time-
warping h;. The p value is then approximated by the proportion
of bootstrap draws with forgery index larger than F. We illus-
trate this method of signature verification in the next section.

3. APPLICATION

The style of handwriting taught in Elizabethan grammar
schools is known as Secretary hand. The letter “S” from a Sec-
retary hand alphabet, illustrated in Figure 2, provides a possi-
ble template to model the instances of the initial “S” in Shake-
speare’s signature in Figure 1.

The gray-level images first need to be preprocessed to extract
the velocity data. The Matlab command ginput, which records
the coordinates of successive cursor locations in response to
mouse clicks, was used to extract the locations of a sequence of
regularly spaced points along each curve. About 20 such points
were selected for each signature. Then cubic spline interpola-
tion (with the command interp1) over a regular grid of N = 100
points was applied separately to the x- and y-components. The
componentwise derivatives were then found using the gradient
command and converted into arc-length parameterization; the
results are plotted in Figure 5. This provides a satisfactory ap-
proximation to the velocity vector; reconstructions of the curves
(see the first row of Fig. 7) show good visual agreement with the
original signatures in Figure 1. The template was treated in the
same way, and its curvature was computed using the discrete

§¢88

g 8888

P TN u

ar o4 o8 ] T iz 4

Figure 2. Template Trace of Secretary Hand “S” From a Book on Pen-
manship Published in 1571 When Shakespeare Was 7, Possibly Used
by Pupils at Stratford Grammar School (see Hamilton 1985, p. 12).
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Figure 3. Simulated Traces From the Observation Model With
o = .15 Under the Template Curvature ko and No Time-Warping.

version of (1) applied to its velocity vector (see the last column
of Fig. 5). The right side of Figure 2 shows the reconstruction
of the template trace from its curvature, which is in good visual
agreement with the shape of the printed letter. All curves are
scaled to have the same arc-length, T = 3.56, as the template
trace.

Figure 3 shows 16 traces simulated under the observa-
tion model with ¥ = ko (template curvature) and noise level
o =.15. This noise level appears to provide sufficient variation
in shape, and apart from time-warping, the traces are consistent
with the original signatures in Figure 1. In fitting the model later
in this section, we specify o = .15; equivalently, o = .28/./T
for other values of 7. A much higher noise level would not be
suitable; the traces in Figure 4 were generated using o = .2
(i.e., 0 =.37/4/T) and appear to be unrealistically distorted.

Figure 5 shows that the velocity vectors in the data appear
to be noisy versions of (a time warped version of ) the template
velocity vector, as required by the model. The zero crossings of
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Figure 4. Simulated Traces as in Figure 3 but With a Higher Noise
Level, 0 =.2.
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Figure 5. Components of the Velocity Vector V() for the Four Ob-
served Instances of Shakespeare’s Signature (first four plots in each
row) and the Template (last plot in each row).

the first component of the velocity vector Vi(f) closely match
the times of extreme curvature, and could be used to locate
landmarks to implement time warping by landmark registration.
However, we find it preferable to use curve registration and ini-
tialize the piecewise-linear time-warping /; in the MCMC by
matching the (three) zero crossings of V(l')(r) to those of the
template.

Figure 6 shows the posterior mean baseline curvature func-
tion. The width of the buffer region, specified as 3 (¢ = 1.5),
was chosen based on the inspection of simulations under the
prior. The (prior) Strauss process parameters for the baseline
curvature are taken as y = .02 (a small value that forces the
knots to be well separated in the time direction), p = .03t
and B = 10. The number of piecewise-linear components in
the time-warping is set at p = 20, and the precision parame-
ter is 7 = 400. The shape of the generated traces was found to

curvature

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Yt

Figure 6. Posterior Mean Baseline Curvature (solid line), Template
Curvature ko (dashed line), and Bracketting Functions for the Buffer Re-
gion (dotted lines).
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Figure 7. Traces of the Data (first row), Traces Derived From the Pos-
terior Mean Baseline Curvature Adjusted by Each Posterior Mean Time
Warping (second row), and Posterior Mean Time Warping Functions
(last row).

be highly sensitive to perturbations in the time warping, and
smaller values of 1 gave poor results. The MCMC run used a
burn-in of 10* sweeps, followed by the same number of sweeps
in the estimation stage.

The posterior mean baseline curvature (the solid line in
Fig. 6) is seen to touch the boundary of the buffer region at
various points, indicating that the template is not ideal, but it is
satisfactory for exploratory purposes. If a more refined analysis
is needed, then for a subsequent MCMC run the buffer region
could be recentered on the exploratory posterior mean baseline
curvature and its width reduced (replacing € by €/2 say), which
would have the effect of increasing the acceptance rate for new
knots in k.

The traces derived from the posterior mean baseline curva-
ture and the posterior mean time warping, displayed in Fig-
ure 7, are comparable in shape (but smoother because the noise
has been “removed”) to the corresponding data traces, and also
quite similar to the template. The time warping is seen to be
substantial in all but the third observed signature. Simulated
traces derived from the posterior baseline curvature and time
warping for the third observed signature, given in Figure 8,
are suggestive of the variety of possible realizations of Shake-
speare’s “S.”

Toy Example. To evaluate the accuracy of the model-fitting
procedure, we now consider a toy example to examine whether
the model fit comes close in terms of reproducing prespecified
baseline curvature and time-warping functions. The first row of
Figure 9 shows the data, which were generated from the obser-
vation model with k = kg and noise level o = .15; the time-
warping functions are plotted in the bottom row (dotted lines).
The various tuning parameters are the same as before, except
that the time warping has p = 10 piecewise-linear segments in-
stead of 20. The MCMC run has a burn-in of 2,000 sweeps,
with the same number of sweeps in the estimation stage. The fit
is seen to be excellent; the estimates and the targets (see Fig. 10
for the baseline curvature) are so close as to be almost indis-
tinguishable. The same accuracy was found using other target
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Figure 8. Simulated Traces From the Fitted Observation Model
(o = .15) Under the Posterior Mean Baseline Curvature Adjusted by
the Posterior Mean of the Time-Warping Function hz(t).

baseline curvature functions « within the buffer region. Fitting
the model with a value of the noise level o in the range .1-.2
(with o = .15 in the data) has little effect on these results.

Signature Verification. Hamilton (1985) made a strong case
that Shakespeare’s (1616) will is holographic (i.e., written by
Shakespeare himself). Figure 11 shows an “S” from the will,
along with a modern forgery.

The proposed signature verification method applied to these
traces provides strong evidence that the fake “S” is indeed
a forgery: F = 12.4%, p value = .033. In contrast, the “S”
from Shakespeare’s will does not raise suspicion: F = 6.5%,
p value = .42. These results are based on 10* bootstrap draws
from the fitted model with noise level o = .15; the histogram of
F* is displayed in Figure 12.
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Figure 9. Toy Example: Traces of the Data (first row), Traces Derived
From the Posterior Mean Baseline Curvature Adjusted by Each Posterior
Mean Time Warping (second row), and Time Warping (third row), With
Posterior Mean (solid line) and True (dotted line).
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Figure 10. Toy Example: Posterior Mean Baseline Curvature (solid
line), True Baseline Curvature (dashed line), and Bracketting Functions
for the Buffer Region (dotted lines).

The p values are quite sensitive to the choice of noise level;
with o = .2, the p value for the fake “S” exceeds .05. In a prac-
tical application it would be advisable to calibrate o from large
training samples to control the false-positive and false-negative
eITOor rates.

Computational Costs. The proposed approach is compu-
tationally feasible for larger samples of signatures; a sample
of 10 true signatures per individual is a typical requirement for
a signature verification system, and this would entail only mod-
est computational cost. The MCMC runtime is approximately
proportional to the sample size n and the number of sweeps; in-
creasing n does not appear to slow the convergence rate of the
MCMC.

A time-consuming aspect of handling more signatures, how-
ever, is the “manual” preprocessing stage of extracting the ve-
locity vectors from the image data, which can take several
minutes per image. Runtime increases dramatically with the
number of points N on the grid used to approximate the like-
lihood, but N = 100 was satisfactory, and with n = 4 signatures
and 10* sweeps, runtime was less than 10 minutes (on a fast
desktop computer). Generation of the bootstrap sample used in
the signature verification stage takes only a few seconds.

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2 J
0.5 0 0.5 1 05 0 05 1

Figure 11. Test Signatures for Forgery Detection. (a) A Secretary
hand “S” from Shakespeare’s holographic will, March 25, 1616, and
(b) a modern forgery.



McKeague: Signature Verification Model

Figure 12. Histogram of Bootstrap Simulations of F* Under the Fitted
Observation Model. The vertical lines show the forgery indices for the “S”
from Shakespeare’s will and the fake “S” (Fig. 11).

4. DISCUSSION

In this article we have used an array of modern statistical
techniques in an attempt to place the difficult problem of off-
line signature verification in a model-based framework. The
proposed approach can be applied to any smooth segment of
a signature. Cusps amount to infinite curvature, which cannot
be handled by the observation model. Nevertheless, in some
applications (e.g., as biometric identification and manuscript
analysis), the analysis of smooth segments of handwriting is
a potentially valuable tool.

The key advantage over methods based on similarity features
is that a formal statistical test for a forgery now becomes avail-
able. Much remains to be done to make the approach useful in
practice, however. The method needs to be tested experimen-
tally on large databases of signatures, and the noise level needs
to be calibrated to optimize the procedure in terms of type I
and type II error rates. Munich and Perona (2003) provided a
comprehensive illustration (in the context of biometric identi-
fication) of the type of performance testing needed. Also, the
preprocessing stage needs to be further developed to provide
automatic segmentation of the signature into smooth compo-
nents for analysis.

APPENDIX: PROOFS
Proof of (4)

The two components of the vector process V(f) correspond to the
real and imaginary parts of V(t) = F(6(t)), where F(x) = ¢'*. From
Itd’s formula, using the basic model (3) and noting that F/(6(5)) =
iV(t) and F"(6()) = —V(t), we obtain

~ i r. 1 t_
V@) =€? + f V(s) (ix(s) - 5az) ds +io f V(s)dW(s).
0 0
Reexpressing this equation in vector form shows that V satisfies the
linear stochastic differential equation

dv(t) =A@ dt +B@)dW (), te |0, 7], (A.1)
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where
1.2
_[—2° —K(t)
AQ) (:c(t) _%az)v(t),
(A2)
o=« ()

with initial condition V(0) = (cos ¢, sin o)L Referring to a result of
Liptser and Shiryayev (1977, p. 279), it follows that the distribution u
of V is absolutely continuous with respect to the distribution i of the
two-dimensional process V satisfying the stochastic differential equa-
tion

N £ 210)
V(@) = a( RN ) aw ),

_ (A.3)
V(0) = V(0).

The corresponding Radon-Nikodym derivative is
d
22 (V) = exp(e(cIV)),
i
where

T
V) = / AT (BEBET) ™ dv(s)
0
-5 fo A (BGB$)' ) Al)ds (A4)
and C~ denotes the Moore—Penrose generalized inverse of a matrix C.
This expression can be simplified as follows. The Moore-Penrose in-
verse can be found explicitly as (BBT)™ = |V|2/62 = 1/02, where
the unit norm property of V has been used. The first integral in (A.4)
then becomes
1 [T T
— A(s)" dV(s)
o°Jo
1 T
= —2f Kk (H{V1(s) dVa(s) — Vals) dV1(s)}
o“Jo

1 T
-3 fo (V1) dV1(5) + Va(s) dVa(s)).

Integration by parts simplifies the second integral in the foregoing dis-
play,

/0 {(V1(5)dV1(s) + V2(s) dVa(s)}

(Vi©)? = v10? = (V) (@) — (V1)(0)) }

N =

1
+3{20? =207 - (V)@ - (V) O)}
= —EO' T,
where the predictable variation processes (V1) and (V;) coincide with
the optional variation processes derived in the proof of (7). Again

using the unit norm property of V, the second integral in the log-
likelihood (A.4) reduces to

L [P aeT L[l 2)
02/(; A(s) A(s)ds—62L (40’ +k(s)° )ds

—-1-02r+ ! ftk(s)zds
T4 a2 Jo ’
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Combining these simplifications gives

1 T 1
L(k|V) = ?/0 KV (5)dVa(s) — Vals)dVi(s)} + Zcrzr

: ‘2+lfr()21)
— - -0 T — KAS)™ ds
2\4 o2 Jo

1 T
=— / k(S V1 (s)dVa(s) — Vals)dVy(s)}
0

=
o2 I 5
- 503 A K(s)“ds + ga T.
Proof of (6)

From its definition, the differential of the process Z can be ex-
pressed, using (A.1) and (A.2), as

dZ(1) = (=Va2(1), V1 (1)) dV (1)
= (=Va@®), Vi))A@ dt + (= V2(1), V1 (1)) B(2) dW (1)

1 2
e —50° =k (D) (Vl(’)>
= vzm.vm))( 0 _%Gz) v )

+ o V(O PdW (1)
= k(1) dt + o dW(t),
where we again used the unit norm property of V.
Proof of (7)
The optional quadratic variation process [X](¢) of a semimartingale
X may be defined in two equivalent ways, as

[X1(n) = X(1* = X(0)% — 2/ X(s—) dX(s).
0.1

or as the limit in probability as N — oo of the sums

N
D (X)) = X(-1)*
j=1
where #; = jt/N (see Rogers and Williams 2000, chap. IV). For con-
tinuous semimartingales, [X] coincides with the predictable variation
of the martingale part of X. But from (A.l), the martingale parts

of (the continuous semimartingales) V| and V; have differentials
—o Va(s)dW(s) and o V| (s)dW(s), so

I3
Vi) = (V1)) :azfo V3(s) ds,

1
[Va1(1) = (Va) (1) =0 fo Vis)ds.

Thus the limit in probability as N — oo of the summation in (7) is (by
definition of optional quadratic variation)

T
[V11(x) + [V2)(1) :02/0 (Vi($)? +Va(9)?)ds = o1,

where we have used |V(s)| =1 in the last step. This completes the
proof.

Theorem A.1. The Markov chain given by the hybrid sampler for
the posterior distribution of (x, #) is geometrically ergodic.

Proof. A Markov chain is geometrically ergodic if its transition ker-
nel P is ¢-irreducible, is aperiodic, and satisfies a Foster—Lyapunov
drift condition (see Meyn and Tweedie 1993, thms. 15.0.1 and 16.0.1).
To check these conditions, we use the following easily verified bounds
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on the Hastings ratios: «,(+) is bounded away from 0, and there exist
constants 0 < b < 1 and ¢ > 0 such that

p1x) n(x)

<ap(x.0.8) < 0&/(&&5)27.

_ A5
nx)+1— ( )

c
nx)+1°
Let ¢ denote the dominating measure for the posterior density. To es-
tablish ¢-irreducibility, we need to show that for any initial position
(x, @) and measurable set A such that ¢ (A) > 0, the m-step transition
probability P"((x.0),A) > 0 for some m > 1. First, note that a tran-
sition (x,8) — (x',8’) can be made by n(x) death steps immediately
followed by n(x’) birth steps. From (A.5), the Hastings ratios involved
in such a sequence of updates are bounded away from 0. Thus, be-
cause the random-walk moves (on the components of #) have proposal
densities that are bounded away from 0 on compact intervals, for any
m > n(x) there is a nontrivial absolutely continuous part of P, and
the corresponding density p™((x, ), -) (with respect to ¢) is bounded
away from 0 on By, = {(x',0') :n(x") = m — n(x)}. But

o0
pA)= Y GANB) >0,

m=n(Xx)

so there exists an m > n(x) such that ¢ (A N B,,;) > 0, and thus we have

PP ((x.0).A) = P"((x, 6).4 N Byy) = /

p"((x,60).-)dp >0,
AmBm

as required.

Next we show that C = {(x,0):n(x) < K} is a small set for any
constant K. Fix m > K and note that, arguing as before, there is a non-
trivial absolutely continuous part of P, and p™((x, @), -) is bounded
away from O on {#J} x ® uniformly in (x, #) € C, where # is the empty
configuration of points in B. Thus there exists a constant ¢ > 0 such
that for all (x, @) € C and all measurable sets A,

P"((x,0),A) zf

P"((x,0),)dp = ov(A),
AN[{A}x O]

where v is the uniform distribution on {¢}} x ©. This shows that C is a
small set.

The Foster-Lyapunov drift condition can be shown to hold for the
small set C, provided that K is chosen sufficiently large. This involves
using the upper bound (A.5) on the Hastings ratio for birth proposals
to find constants 0 < A < 1, n < oo, such that PV <AV + nlc, where
V(x,8) = max(1, ¢"®). This can be done by simple modification of
an argument of Geyer and Mgller (1994, p. 365). Aperiodicity is eas-
ily checked, and we conclude that the Markov chain is geometrically
ergodic.

[Received October 2002. Revised May 2004.]
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