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Abstract

A Bayesian model for off-line signature verification involving the representation of a
signature through its curvature is developed. The prior model makes use of a spatial point
process for specifying the knots in an approximation restricted to a buffer region close to
a template curvature, along with an independent time warping mechanism. In this way,
prior shape information about the signature can be built into the analysis. The observation
model is based on additive white noise superimposed on the underlying curvature. The
approach is implemented using MCMC and applied to a collection of documented instances
of Shakespeare’s signature.

Key words and phrases: Bayesian nonparametric regression, biometric identification, functional data
analysis, shape theory, spatial point processes, time warping.

1 Introduction

People are able to recognize their own handwriting or signature at a glance, and manuscript
experts can usually determine genuineness with almost scientific exactitude (or so they claim).
The analysis of variations in handwriting style is useful, for example, in forensic investigations,
biometric identification, and in the dating of ancient manuscripts. In a study of Shakespeare’s
handwriting, Charles Hamilton (1985, p. 7) ascribed the ability of recognizing variations in
handwriting to the “feel” of a script, to the “sum total of the viewer’s knowledge, the infusion
of intuition and an immense amount of experience.” Manuscript experts often assess the feel
of documents very quickly by examining them upside down, so the words themselves become
obscured. The “shape” of the handwriting is therefore a key ingredient in such analysis. How-
ever, a model-based statistical approach to off-line signature analysis and verification is not yet
available. The present paper approaches this problem by formulating a Bayesian shape model
for planar curves.

1Part of this work was supported by NSF Grants DMS-0204688 and DMS-9971784, and NSA Grant 19984075.
The author thanks Regina Liu, Anuj Srivastava, Jim Ramsay, and the referees for helpful comments and encour-
agement.
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Signature verification is a difficult but potentially tractable classification problem, and the
discovery of a suitable statistical model would have substantial scientific interest. The key fea-
ture of an efficient classification scheme is data condensation, or the reduction of often unman-
ageably large data sets to a parsimonious form, without the sacrifice of key statistical informa-
tion. This can lead to the discovery of interesting anomalies, given the availability of adequate
data and suitable statistical methods. The instances of the initial letter in Shakespeare’s sig-
nature in Figure 1 have characteristic statistical structures which could be exploited if the key
information can be efficiently condensed into a suitable low-dimensional object (indeed, this
may be how the visual cortex processes such information). Shape is the most essential fea-
ture, and, while temporal information (e.g., acceleration) is not directly available for off-line
analysis, the model should reflect the temporal generation of the observed curves.

Grenander (1970, 1993) introduced the theory of deformable templates to address the prob-
lem of recognizing an interesting shape (e.g., hand, galaxy, mitochondrion) in a graylevel im-
age. The shape is described by a flexible template, typically a polygon, with edge lengths and
angles governed by a joint prior distribution, typically a Markov chain. The theory has been
implemented, e.g., for hand x-rays (Amit, Grenander and Piccioni 1991), and for MRI images
of the brain (Miller, Christensen, Amit and Grenander 1993). In representing graylevel im-
ages, such as those in Figure 1, one expects to be able to lower the dimensionality considerably
because of statistical regularities. This dimension reduction is a crucial first step for any suc-
cessful high-level image understanding and analysis. Principal components analysis is a useful
tool for handwritten digit compression (Hastie, Tibshirani and Friedman 2001, p. 488). Local
feature analysis (Penev and Atick 1996) provides compact representations of images (e.g., of
human faces) in terms of statistically derived local features and their point locations. There is
an extensive statistical theory of shapes based on landmarks (Small 1996; Dryden and Mardia
1998; Lele and Richtsmeier 2000); shape in this approach is treated as the information in an ob-
ject (specified by planar landmarks) that is invariant under translations, rotations, and isotropic
rescalings. Shape representation of planar curves based on curvature has been used extensively
in computer vision (Mokhtarian and Mackworth 1992; Mumford 1994; Klassen, Srivastava,
Mio and Joshi 2004).

Figure 1: The initial ‘S’ in Shakespeare’s signature from the Welcombe Enclosure Agreement, October 28, 1614,
see Hamilton (1985, p. 195).

Despite much progress in signature verification in recent years, a fully-fledged statistical
approach has not yet been developed. There is an extensive literature on the computerized
recognition of signatures, see Plamondon and Lorette (1989) and Munich and Perona (2003)
for references. Much of this work is based on numerical methods designed to extract similarity
features (from data provided by on-line or off-line signature digitizers). For example, Sabourin,
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Drouhard and Wah (1997) investigate the use of shape matrices as a global shape factor for off-
line signature verification. Martens and Claesen (1997) present an on-line signature verification
system based on 3D force patterns and pen inclination angles, as recorded during signing. The
feature extraction mechanism is based on an elastic matching technique. Lee (1996) develops
several neural network based approaches to on-line signature verification. Matsuura and Sakai
(1996) consider a stochastic system representation of the handwriting process and its application
to on-line signature verification. The stochastic system characterizing the motion in the writing
of the signature is described by a random impulse response.

Progress on the problem of signature verification has advanced less rapidly in off-line appli-
cations, in part because information such as pen position and velocity is unavailable. Off-line
systems using similarity features have been studied experimentally; e.g., Deng, Liao, Ho and
Tyan (1999) proposed wavelet analysis of curvature data, and Fang et al. (2003) developed
a system to track variations in one-dimensional projection profiles and stroke positions. Some
progress has been been made on the recognition problem (i.e., reading) for off-line cursive hand-
writing, see, e.g., Abuhaiba, Holt and Datta (1994, 1998), who use an algorithm for extracting
a polygonal approximation of the handwriting from a graylevel image, and Proctor, Illingworth
and Mokhtarian (2000). Machine learning techniques are useful for character recognition from
off-line handwritten text based on large training sets of graylevel images (Hastie et al. 2001).

Some statistical modeling approaches to on-line signature verification have been proposed.
Hastie, Kishon, Clark and Fan (1991) model the signature trace in the � – � plane as a time-
warped and spatially transformed version of a given template signature, and employ cubic
spline smoothing techniques to fit the model. When a new signature arrives for verification,
it is compared with an optimal affine transformation of the template signature. Kashi, Hu, Nel-
son and Turin (1997) continued this line of work and demonstrated improved performance by
the addition of a signature likelihood feature based on a hidden Markov model. Ramsay and
Silverman (1997) use on-line handwriting as a key example in their development of functional
data analysis, see also Ramsay (2000).

We investigate the problem of off-line signature verification from a Bayesian perspective,
which is a natural approach because of the limited training data and the availability of important
prior information about shape. From each graylevel image of a smooth segment of the signature,
a spline approximation is extracted (thickness of the handwriting will be ignored). This reduces
the problem to finding a suitable stochastic process model to describe the observed smooth
planar curves in terms of shape. The key aspects of the approach are an observation model
involving white noise superimposed on an underlying curvature, a prior distribution for curva-
ture functions to represent shape information, and a time warping mechanism to register each
observed signature. An MCMC algorithm is used to explore the posterior distribution of the
curvature and time warping functions, which is feasible because these functions are relatively
low dimensional objects.

Various Bayesian nonparametric curve fitting methods are available in the literature. Wahba
(1978) shows that smoothing splines result from a type of Bayesian polynomial regression anal-
ysis, also see Eubank (1988). The prior on the regression function in this case is a polynomial
with independent random coefficients plus an independent multiply-integrated Weiner process.
Another approach is given by Silverman (1985), in which the prior for the regression function
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is concentrated on the space of natural cubic splines with knots at the design points. For more
on Bayesian approaches to nonparametric regression, see Wahba (1983), Barry (1986), Cox
(1993), and Denison, Mallick and Smith (1998). These approaches are not directly useful for
analyzing signatures, however, because it is not clear how information about the shape of a
signature could be expressed via a regression function.

The paper is organized as follows. After some preliminary material on planar curves, the
proposed observation model is introduced in Section 2. The prior for the various unknown parts
of the observation model is then specified along with an MCMC method for sampling from
the posterior. Signature verification is discussed at the end of Section 2. An application to
the analysis of Shakespeare’s signature is given in Section 3, and some concluding remarks in
Section 4. Proofs of the key results can be found in the Appendix.

2 Statistical model

In this section we introduce the proposed Bayesian model. In the observation part of the model,
a realized signature will be specified by adding white noise to the curvature. The prior on the
space of curvature functions will use a spatial point process to specify the knots in an approx-
imation restricted to a buffer region close to a template curvature, along with a time warping
mechanism.

2.1 Preliminaries

We begin by reviewing some background and terminology on the geometry of plane curves
(Carmo 1976). Consider a parameterized curve �������
	����� ��� with coordinate representation����������� � ������	���������� � and assume that the curve is smooth in the sense that � ����� and ������� are twice
continuously differentiable. The trace of � is the image set �!�"���#	���$� , and, at a given �&%'���
	��� ,
the velocity (or tangent) vector is ()�����*���,+������*�-� � +.�����/	��0+������"� � , and the arc length is 12�����3�465798 � + �.:;� 8=< : , where 8?>�8 is euclidean norm. If the velocity vector does not vanish, the curve
is said to be regular; such curves can be re-parameterized by arc length as @A�CBD�*���!�E12F
GH�CBD��� ,BI%J��KL	�12�E���  , without changing the trace. The velocity vector of an arc-length parameterized
curve has unit norm.

Curvature measures the rate at which a regular curve pulls away from its tangent line, and,
for an arc-length parameterized curve, is defined byM �����N��OC� + + ������	�PA������QR� � + �����S� + + �����6T � + + �����S� + �����/	 (2.1)

where PA�����U�V�=T2�?+�������	 � +������"� � is a unit normal vector. Curvature has the attractive feature that
it is invariant under location shifts and rotations, and gives a unique representation of the curve
up to rigid motion. The velocity vector of an arc-length parameterized curve is represented by

()�����W� X,Y[Z]\_^ �����\�`bac^ �����0d 	 ^ �����N� ^ �.�e��fhg 57 M �EBD� < B]	 (2.2)

where
^ ����� is the angle of the velocity vector with the � -axis. The curve can be reconstructed

(up to a location shift) from its velocity vector by �������i�j���.�e��f 4k57 (l�CBD� < B .
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Another important property of curvature is that it is inversely proportional to scale: the
curve mH�!����� has curvature M �����"nom , for mqprK . We therefore need a standardized form for the
observed signatures so their curvatures are directly comparable without the interference of scale
effects. We do this by re-scaling each observed signature to have a fixed total arc-length stpuK ,
so each arc-length parameterized signature has curvature function belonging to vw�xKe	"sL , the
space of continuous functions on ��KL	"sL . Such invariance under length scaling has long been a
fundamental principle of signature verification, see, e.g., Lew (1980, p. 29).

2.2 Observation model

In this section we introduce the signature observation model and derive the likelihood. The
problem of estimating curvature nonparametrically is shown to be equivalent to estimating the
drift in a Gaussian shift experiment.

The model is first formulated for a single observed signature. The graylevel image of the
signature is preprocessed to extract a smooth arc-length parameterized approximation �ky z�{/����� ,�|%}�xKe	"sL , and its velocity vector ()�����~��� +y z�{ ����� computed numerically (see Section 3 for
details). The observed velocity is modeled as()�����W� X Y[Zo\#^ �����\"`�ac^ ����� d 	 ^ �����N����f g 5� M �EB�� < BAf����������/	 (2.3)

where M %|vl��KL	"se is an underlying curvature function, ������� is a standard Brownian motion and� is the angle of (w�EK�� with the � -axis. Here
^ ����� represents the angle resulting from additive

white noise with variance � � p'K superimposed on the underlying curvature. The noise locally
perturbs the curve along the direction of its normal vector.

The likelihood for M (given that � is known) can be obtained as the Radon–Nikodym deriva-
tive of the distribution of the process ( with respect to a certain dominating measure, for which
we need to assume that continuous observation of ( over ��KL	"se is available (even though the
numerical implementation will only involve observation on a fine grid). In the Appendix we
show that this leads to the log-likelihood� � M 8 (��W� �� � gh�� M �EB��;�D( G �EBD� < ( � �EB��6T�( � �EB�� < ( G �EB���� (2.4)

T �� � � g �� M �EBD� � < B!f��� � � s��
For numerical evaluation of the likelihood, the velocity vector ()����� , ��%J��KL	"se will be ap-

proximated over a regular grid B������]s
n[� , ����Ke	������H	�� . The first term in the log-likelihood
is an Itô integral of the form

4 ���� �CBD� < (w�EBD� with a predictable integrand � �EBD� . This integral is
approximated by the finite sum: ¡ �"¢ G � �EB�� F
G �H�C()�EB��H�6T�(w�CB�� F
G �"�W� g �� � �CBD� < (w�EBD� (2.5)

in quadratic mean as � � £ , see Liptser and Shiryayev (1977, 4.2). The second integral is
approximated by a Riemann sum over the same grid BH� . This results in an approximation to� � M 8 (�� which is suitable for use with the data extracted from the graylevel image.
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Gaussian shift experiment

The problem of recovering the curvature M in the case of known noise level � can be reduced
to a Gaussian shift experiment (or white noise with drift). This is already suggested by the
form of the log-likelihood in (2.4), which agrees with the white noise model with drift M . In the
Appendix we show that <¥¤ �����¦� M ����� < �§f�� < �������/	 �A%��xKe	"sLE	 (2.6)

where ¤ ��������g 5� �¥( G �CBD� < ( � �CBD�6T�( � �CBD� < ( G �CBD�/�i	
so we have the Gaussian shift experiment with drift M , noise level � and observation of ¤ . Many
classical problems have been shown to be equivalent (in terms of asymptotic minimax risk) to
the white noise model as �¨� K , e.g., nonparametric regression (Brown and Low 1996) and
density estimation (Nussbaum 1996). The expression for the log-likelihood (2.4) indicates that
the process ¤ is a sufficient statistic for M .

A kernel estimator of M is given by©M �������}�� gh��«ª X �,T�B� d <¥¤ �CBD��	
where �)p¬K is the bandwidth and ª is a kernel function which integrates to 1. This estima-
tor agrees with the multiscale curvature function representation of Mokhtarian and Mackworth
(1992). A wavelet shrinkage estimator is preferable to the kernel estimator when a spiky curva-
ture function is expected.

Under continuous observation of ( , the noise level � is determined because

�s  ¡ ��¢ GA �C( G �CB����6T�( G �CB�� F
G ��� � f��E( � �CB��[�6T�( � �EB/� F
G ��� �o® � � � (2.7)

in probability as �W� £ , which follows from expressions for the optional quadratic variation
processes of the components of ( , see the Appendix. Moreover, any dominating measure for
the likelihood must depend on � because the distributions ¯�° of the process ( corresponding to
different values of � are mutually singular: for any positive noise levels � G²±��� � , there exists a
subsequence of (2.7) that converges almost surely under both noise levels, so ¯,°[³ and ¯§°/´ have
disjoint supports. Thus, it is not possible to derive a likelihood based on continuous observation
of ( unless � is assumed known.

Although � is determined from (2.7), the rate of convergence is far too slow for practical use:
sharp curves in the signature will cause high positive bias in the estimates. Wavelet thresholding
comes to mind as a way of controlling this problem, but unfortunately there is a high negative
bias in this case. The Haar wavelet coefficients of ¤ are integrals of the form

4¶µ �CBD� <�¤ �EB�� ,
where

µ
is piecewise constant on intervals with dyadic endpoints. These coefficients can be

approximated from the discrete data using sums of the form (2.5). Taking the median absolute
deviation of the wavelet coefficients at the finest scale of resolution and dividing by KL�¸·�¹¥º0»
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gives a crude estimate
©� , see Donoho and Johnstone (1995, p. 1218). Although

©� works well
for calibrating wavelet shrinkage, simulation experiments show that it grossly underestimates �
when (l����� is extracted from traces that are generated with noise level � , and it fails to reflect
the large variation in shapes seen in real signatures. Indeed, this is to be expected because
the approximation procedure used to extract ()����� from the trace is a smoothing operation that
removes much of the noise.

A practical way of selecting � would be through experimental studies, where it could be
chosen to optimize performance (in terms of error rates say) of the signature verification proce-
dure. For simplicity, however, in the present paper we treat � as a fixed tuning parameter.

Time warping

We next extend our model to the case of a sample of ¼ signatures with observed velocity vectors(¾½¸¿ÁÀ , Ât� � 	������H	�¼ . Sharp peaks in the curvature are likely to differ in timing between the
different records, so we need a way to give greater flexibility to the model rather than assuming
identical curvature functions. This can be done using an increasing time warping functionÃ ¿ �D��KL	"seÄ� ��KL	"se specific to each observed signature to re-parameterize a given (baseline)
curvature M . The curvature for signature Â is then M ¿ �����N� M � Ã ¿ �����"� . We refer to M as the baseline
curvature function to distinguish it from M ¿ .

The time warping function
Ã ¿ is non-identifiable, for note that a constant baseline curvature

has the same M ¿ irrespective of
Ã ¿ . We handle this problem by regarding the time warp as

a latent variable or random effect (cf. mixed models), which, in our Bayesian framework, is
equivalent to specifying a prior distribution for

Ã ¿ . In the next subsection, this prior will be
specified conditionally on M , and will depend on the data in such a way that the velocity vector
corresponding to M ¿ favors close agreement with ( ½¸¿ÁÀ .
Full likelihood

Given a sample of ¼ signatures with velocity vectors (¶½Å¿ÁÀ , the full log-likelihood for the corre-
sponding vector of time warp functions Æ���� Ã ¿ 	"Â�� � 	����[�H	�¼§� and baseline curvature functionM is the sum of the respective log-likelihoods:� � M 	/Æ 8 Ç
È�É�È �i� Ê¡ ¿ ¢ G � � M ¿ 8 ( ½Å¿ÁÀ ��	
assuming that the signatures are sampled independently from the observation model.

2.3 Prior specification

We design the prior to have the following properties:Ë realizations of the trace are consistent with known features of the signature shape;Ë flexible enough to represent a wide variety of possible signatures;
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Ë gives a parsimonious representation of the baseline curvature and time warping functions;Ë MCMC is feasible for sampling from the posterior distribution.

The construction has two main parts: a prior baseline curvature process for embedding the
shape information, and an independent record-specific time warping mechanism for registering
each curve. The proposed approach is by no means the only way of satisfying the above prop-
erties, but we believe it provides an intuitively reasonable formulation, well suited to off-line
signature verification.

Baseline curvature process

The baseline curvature process is defined to have paths contained in a certain buffer region
centered on a template curvature.

We start with a template curvature function M � , which in practice is derived from a signature
having a shape representative of the form of the observed signatures, or from an estimate (such
as

©M ) of the curvature function of one of the observed signatures. A buffer region is placed
around the template as follows:Ì �Í�e���/	��L�A� M�Î �����UÏu�lÏ M_Ð ������	,��%Ñ��KL	"seE�0	
where M
Î �����N� M � �����ÒT²Ó and M#Ð �����N� M � �����HfÔÓ , with ÓcpÕK a user-specified constant that controls
the size of the buffer region. The bracketting functions M_Î and M_Ð represent imposed bounds on
perturbations of the template curvature. Hard bounds are used here to ensure that the realized
traces remain close in shape to that of the template. In practice, inspection of traces generated
by curvature functions inside the buffer region (as under the prior for M defined below) can be
used to guide the choice of Ó ; we found that Ó)� � �Ö» works well. The hard bounds are also
useful for restricting the scope of proposals in the MCMC implementation.

The baseline curvature process is constrained to go through points (knots) in the buffer re-
gion. These knots are specified using a spatial point process × contained in

Ì
. For background

on spatial point processes, see van Lieshout (2000). Here we take × to be a Strauss process,
i.e., × is a random finite set of points in

Ì
having unnormalized density Øk��Ù��N�j@ Ê ½¸ÚÒÀ�Û_Ü�½¸ÚÒÀ with

respect to the distribution of a unit rate Poisson process in
Ì

, where @Ýp�K , K¾ÞhÛqÏ � are tuning
parameters, < ��Ù�� is the number of unordered pairs of points in Ù within a metric-distance ß of
each other, and ¼k��Ù�� is the number of points in Ù . The metric is taken as the distance between
time coordinates (rather than euclidean distance in � � ). The Strauss process has repulsive pair-
wise interaction, so the knots tend to be well separated in the time direction, providing an easy
way of controlling (through Û and ß ) the prior roughness of the baseline curvature process. List
the points in × in order as ���E�D	"������	 ��� � 	��[���[	�¼k��×à� , where K�Þ�� G Þ�� � Þ�������Þ�� Ê ½¸á�À Þ�s , and
set ��� � 	�� � �i�â�EKL	 M � �.K��"� , ��� Ê ½¸á�Àäã;G 	�� Ê ½ÅákÀ�ã;G ������s�	 M � ��s#��� . Then we define the baseline curvature
process byM �����N� X �.� ã;G TÝ��.� ã;G TÝ�.� d � M � ������f����iT M � ���.�H�/��f X �6TÝ�.��.� ã;G TÝ�.� d � M � ������f��[� ã;G T M � ���.� ã;G �/�
for �.�3ÏÕ��ÏÕ�.� ã;G , �Ô��KL	 � 	[������	�¼���×à�;f � . The baseline curvature function represents a smooth
departure from M � passing through the knots and contained in the buffer region. The influence
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of the knot ���E�D	������ on the baseline curvature at � is proportional to the distance of � from � �
relative to its distance from �E� ã;G .
Time warping processes

Each time warping process is modeled asÃ ¿ �����i�jå `�a �?æÃ ¿ ������	"s;�0	~��%��xKL	�sLE	
where æÃ ¿ is an increasing, continuous, piecewise-linear function with æÃ ¿ �EK]�!�JK . We take æÃ ¿ to
be linear between the grid points :L�3�¨�]s#n/ç , �l�èKL	[�����[	Eç , where çêé � is user-specified. The
parameters

^ ¿ �9� æÃ ¿ �.:?���iT æÃ ¿ �.:?� F
G � , �Ä� � 	[�����[	Eç determine
Ã ¿ , and without loss of generality

may be constrained so that K�Ï ^ ¿ �ëÏÕs . We then represent Æ by combining the
^ ¿ � into a vectorì %�íî� �xKe	"sL Ê�ï . Hastie et al. (1991) and Ramsay (2000) also used piecewise-linear time

warping functions.
The functional data analysis method of landmark registration can be adapted to provide a

prior on
Ã ¿ (equivalently on the ç components of

ì
that represent

Ã ¿ ). For example, the land-
marks could be specified as the times � of sharp changes in the direction of the tangent vector(¾½¸¿ÁÀ������ , with

Ã ¿ ����� approximating the corresponding time of peak curvature in the template.
Such landmarks are typically located close to the zero crossings of the � -component the veloc-
ity vector, see Figure 5. Denote the time points (landmarks) in the template and the Â th record
to be matched by � �ñð and � ¿ ð , ò�� � 	�������	�ó , respectively. Then the prior density on

Ã ¿ (in terms
of its parameters) is specified by ôi� Ã ¿ �Nõ�ö/÷Lø§�0T2ù#úN� Ã ¿ �/� , where

ú�� Ã ¿ �N� û¡ ð ¢ G � Ã ¿ ��� ¿ ð �6TÝ� �ñð � �
is the ‘cost’ function for mis-timing the landmarks and ùâpRK is a user-specified precision
parameter.

An alternative to landmark registration is curve registration in which departures of the data
from the fitted velocity vectors are penalized: replace the above cost function by

ú�� Ã ¿ 8 M ����gh�� angle �C( ½¸¿ÁÀ ������	�( ½¸¿ÁÀü�ýäý�þ.ÿ �����"� < �/	
where ( ½¸¿ÁÀü�ý�ý�þ�ÿ ����� is the velocity vector corresponding to the curvature function M � Ã ¿ �����"� , with
initial value ( ½Å¿ Àü�ýäý�þ.ÿ �.K��N�«(¾½¸¿ÁÀ"�.K�� , and angle ��:�	 � �N� YHZ]\ F
G[��: � � � is the angle in radians between
unit vectors :�	 � . This is essentially equivalent to the Procrustes method of curve registration,
although in that case the time warping is applied to the records themselves: a cost function
for the differences between the time-warped records and an overall mean record is iteratively
minimized, see Ramsay and Silverman (1997, Section 5.4). For the on-line problem, Hastie et
al. (1991) used time warping of a template signature in the � – � plane, whereas Ramsay and
Silverman (1997) and Ramsay (2000) used time warping of acceleration records; time warping
of the baseline curvature is more natural in the present setting.
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2.4 Sampling from the posterior

The posterior is the joint conditional distribution (given the data) of the baseline curvature M
(represented by its knots Ù ) and the vector Æ of time warping functions (represented by

ì
). By

Bayes formula, the posterior density is proportional to

� ��Ù�	 ì �6�¨ö�÷eø§� � � M 	/Æ 8 Ç
È�É�È �/�¥Øk��Ù�� Ê� ¿ ¢ G ôi� Ã ¿ 8 M 	 Ç
È�É�È �/	
where the dominating measure is the product of the unit-rate Poisson distribution on

Ì
and

Lebesgue measure on í .
The MCMC scheme we use to explore this posterior is a hybrid sampler having separate

Metropolis–Hastings updates for each component of ��Ù�	 ì � . Such samplers are also known
as ‘Metropolis-within-Gibbs’ or ‘variable-at-a-time Metropolis–Hastings’; for background see,
e.g., Robert and Casella (1999, p. 322). Geometric ergodicity can be difficult to establish for
hybrid samplers (e.g., Fort, Moulines, Roberts and Rosenthal 2003), but it is quite easily shown
in our case, essentially due to the compactness of í . A similar type of hybrid sampler has
recently been studied by Blackwell and Møller (2003, Section 3.3).

We use a deterministic scan (or sweep) to cycle through the components, each proposal
having acceptance probability of the form å `ba �E�i	 � � , where � (the Hastings ratio) depends on
current state and the proposed state. Each component

^
of

ì
is updated (in turn) by a random

walk Metropolis move with the proposal
^ + normally distributed with mean

^
(except that

^ + is
restricted to the compact interval ��KL	"sL ). The Hastings ratio for a move of this form, ��Ù�	 ì �c���Ùk	 ì +Á� , is � ð�� ��Ùk	 ì 	 ì + �N� � ��Ù�	 ì +Á��n � ��Ù�	 ì � . The Ù -component is updated using the Metropolis–
Hastings algorithm of Geyer and Møller (1994): either a point is born and added to Ù , or a
point in Ù is killed (unless Ù is empty), each step having equal probability. In the birth step, we
generate � at a uniform random location in

Ì
and set ��Ù�	 ì ��� ��Ù��l� � �0	 ì � with the acceptance

probability having Hastings ratio given by

�	�/��Ùk	 ì 	 � ��� 8 Ì 8¼���Ù���f �
� ��Ù
�à� � �0	 ì �� ��Ù�	 ì � 	

where 8 Ì 8 � � Ó�s is the area of the buffer region. In the death step, we select � at random from
the points in Ù and set ��Ùk	 ì �N� ��Ù��&� � �0	 ì � with the Hastings ratio given by

� Ü ��Ù�	 ì 	 � ��� ¼���Ù��8 Ì 8 � ��Ù
�ë� � �0	 ì �� ��Ù�	 ì � �
Theorem A.1 in the Appendix shows that this hybrid sampler is geometrically ergodic.

2.5 Signature verification

Given samples of an individual’s signature, how can we recognize whether a new signature
comes from the same person? In this section we propose a formal test procedure calibrated via
simulation of the fitted observation model.

10



The new signature is first scaled to have length s , and, to make its velocity vector (� þ��
directly comparable with each sample signature (l½¸¿ÁÀ , it is rotated (clockwise) to produce a
velocity vector (  þ��¿ having initial direction ( ½Å¿ À �.K�� , ÂI� � 	������H	�¼ . Evidence that the new
signature is a forgery is then provided by large values of the ‘forgery index’

� � �ô§s å `�a¿ ¢ G�������� � Ê g �� angle �C(  þ��¿ �����/	/( ½¸¿ÁÀ �����"� < �/	
which is a measure of the difference in shape between the new signature and the closest-
matching sample signature. We have normalized

�
to range between 0 and 1, and we expect it

to be small for authentic signatures. In the language of hypothesis testing,
�

is a test statistic
for the null hypothesis that the new signature is authentic.

The strength of evidence that the new signature is a forgery can be assessed by the ç -value� � ��� p � � that a velocity vector ( � sampled from the fitted observation model has a forgery
index

���
greater than the observed

�
; here

���
is defined by replacing (� þ�� by ( � in

�
. Thisç -value can be found using bootstrap simulation: ( � is generated from the observation model

(2.3) with the curvature function M replaced by
©M � ©Ã�� � > �"� , where � is randomly selected fromÂN� � 	����[�H	�¼ , and

©M ,
©Ã ¿ are the posterior means of the baseline curvature, and the time warpingÃ ¿ , respectively. The ç -value is then approximated by the proportion of bootstrap draws with

forgery index larger than
�

. We illustrate this method of signature verification in the next
section.
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Figure 2: Template trace. Secretary hand ‘S’ from a book on penmanship published in 1571 when Shakespeare
was 7, possibly used by pupils at Stratford Grammar School (see Hamilton 1985, p. 12).

3 Application

The style of handwriting taught in Elizabethan grammar schools is known as Secretary hand.
The letter ‘S’ from a Secretary hand alphabet is illustrated in Figure 2, and provides a possible
template to model the instances of the initial ‘S’ in Shakespeare’s signature in Figure 1.

The graylevel images first need to be preprocessed to extract the velocity data. The Matlab
command ginput records the coordinates of successive cursor locations in response to mouse
clicks, and was used to extract the locations of a sequence of regularly spaced points along each
curve. About 20 such points were selected for each signature. Then cubic spline interpolation
(with the command interp1) over a regular grid of � � � K]K points was applied separately to
the � - and � -components. The componentwise derivatives were then found using the gradi-
ent command, and converted into arc-length parameterization; the results are plotted in Figure

11
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Figure 3: Simulated traces from the observation model with � �"!$#&%(' under the template curvature )+* and no
time warping.

5. This provides a satisfactory approximation to the velocity vector: reconstructions of the
curves (see the first row of Figure 7) show good visual agreement with the original signatures
in Figure 1. The template was treated in the same way, and its curvature computed using the
discrete version of (2.1) applied to its velocity vector (see the last column of Figure 5). The
right side of Figure 2 shows the reconstruction of the template trace from its curvature, and is
in good visual agreement with the shape of the printed letter. All curves are scaled to have the
same arc-length s)�-,e�Ö»o· as the template trace.

Figure 3 shows 16 traces simulated under the observation model with M � M � (template
curvature) and noise level �«� KL� � » . This noise level appears to provide sufficient variation
in shape, and apart from time warping the traces are consistent with the original signatures in
Figure 1. In fitting the model later in this section we specify �¬��Ke� � » ; equivalently, �¬�KL� �o� n/. s for other values of s . A much higher noise level would not be suitable; the traces in
Figure 4 were generated using �¨�}KL� � (i.e., �¨�}Ke�0,�¹on . s ) and appear to be unrealistically
distorted.

Figure 5 shows that the velocity vectors in the data appear to be noisy versions of (a time
warped version of) the template velocity vector, as required by the model. The zero crossings
of the first component of the velocity vector ( G ����� match closely the times of extreme curvature,
and could be used to locate landmarks to implement time warping by landmark registration.
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Figure 4: Simulated traces as in Figure 3 but with higher noise level �1�2!3#�4 .
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Figure 5: Components of the velocity vector 576&8&9�:<;>= for the four observed instances of Shakespeare’s signature
(first 4 plots in each row), and the template (last plot in each row).

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

15

t/τ

cu
rv

at
ur

e

Figure 6: Posterior mean baseline curvature (solid line), template curvature ) * (dashed line) and bracketting
functions for the buffer region (dotted lines).

We find it preferable, however, to use curve registration and initialize the piecewise-linear time
warping

Ã ¿ in the MCMC by matching the (three) zero crossings of ( ½¸¿ÁÀG ����� to those of the
template.

Figure 6 shows the posterior mean baseline curvature function. The width of the buffer
region is specified as , ( Ó)� � �Ö» ), which was chosen based on the inspection of simulations
under the prior. The (prior) Strauss process parameters for the baseline curvature are taken
as Û��WKL�¸K � (a small value that forces the knots to be well separated in the time direction),ß���KL�¸K?,¥s , @�� � K . The number of piecewise-linear components in the time warping is set atç�� � K , and the precision parameter ù��rº�K]K . The shape of the generated traces was found
to be highly sensitive to perturbations in the time warping, and smaller values of ù gave poor
results. The MCMC run used a burn-in of � K?@ sweeps, followed by the same number of sweeps
in the estimation stage.

The posterior mean baseline curvature (the solid line in Figure 6) is seen to touch the bound-
ary of the buffer region at various points, indicating that the template is not ideal, but it is satis-
factory for exploratory purposes. If a more refined analysis is needed, for a subsequent MCMC
run the buffer region could be re-centered on the exploratory posterior mean baseline curvature,
and its width reduced (replacing Ó by Ó�n � say), which would have the effect of increasing the
acceptance rate for new knots in M .

The traces derived from the posterior mean baseline curvature and the posterior mean time
warping are displayed in Figure 7. These are comparable in shape (but smoother because
the noise has been ‘removed’) to the corresponding data traces, and also quite similar to the
template. The time warping is seen to be substantial in all but the third observed signature.
Simulated traces derived from the posterior baseline curvature and time warping for the third

14
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Figure 7: Traces of the data (first row); traces derived from the posterior mean baseline curvature adjusted by
each posterior mean time warping (second row); posterior mean time warping functions (last row).

observed signature are given in Figure 8. These are suggestive of the variety of possible real-
izations of Shakespeare’s ‘S’.

Toy example

To evaluate the accuracy of the model fitting procedure, we now consider a toy example to see
whether the model fit comes close in terms of reproducing pre-specified baseline curvature and
time warping functions.

The first row of Figure 9 shows the data, which was generated from the observation model
with M � M � and noise level �j�}KL� � » ; the time warping functions are plotted in the bottom
row (dotted lines). The various tuning parameters are the same as before, except that the time
warping has ç�� � K piecewise-linear segments instead of

� K . The MCMC run has a burn-in
of

� 	�K]K]K sweeps, and the same number of sweeps in the estimation stage. The fit is seen to be
excellent: the estimates and the targets (see Figure 10 for the baseline curvature) are so close
as to be almost indistinguishable. The same accuracy was found using other target baseline
curvature functions M within the buffer region. Fitting the model with a value of the noise level� in the range KL� � – KL� � (with �I��KL� � » in the data) has little effect on these results.
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Figure 8: Simulated traces from the fitted observation model ( �"�A!3#0%B' ) under the posterior mean baseline
curvature adjusted by the posterior mean of the time warping function C+DE:<;>= .
Signature verification

Hamilton (1985) made a strong case that Shakespeare’s (1616) will is holographic (i.e., written
by Shakespeare himself). Figure 11 shows an ‘S’ from the will, along with a modern forgery.

The proposed signature verification method applied to these traces provides strong evidence
that the fake ‘S’ is indeed a forgery:

� � � � �xº/F , ç -value � KL�ÅKG,?, . In contrast, the ‘S’ from
Shakespeare’s will does not raise suspicion:

� �¨·L�Å»?F , ç -value ��KL�xº � . These results are based
on � KH@ bootstrap draws from the fitted model with noise level � ��KL� � » ; the histogram of

���
is

displayed in Figure 12.
The ç -values are quite sensitive to the choice of noise level; with � ��Ke� � the ç -value for the

fake ‘S’ exceeds KL�ÅK]» . In a practical application it would be advisable to calibrate � from large
training samples to control the false-positive and false-negative error rates.

Computational costs

The proposed approach is computationally feasible for larger samples of signatures; a sample
of 10 true signatures per individual is a typical requirement for a signature verification system,
and this would entail only modest computational cost. The MCMC runtime is approximately
proportional to the sample size ¼ and the number of sweeps; increasing ¼ does not appear to
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Figure 9: Toy example. Traces of the data (first row); traces derived from the posterior mean baseline curvature
adjusted by each posterior mean time warping (second row); time warping (last row), with posterior mean (solid
line) and true (dotted line).

slow down the convergence rate of the MCMC.
A time-consuming aspect of handling more signatures, however, is the “manual” prepro-

cessing stage of extracting the velocity vectors from the image data, which can take several
minutes per image. Runtime increases dramatically with the number of points � on the grid
used to approximate the likelihood, but � � � KoK was satisfactory and with ¼h��º signatures
and � KH@ sweeps, runtime is less than 10 minutes (on a fast desktop computer). Generation of
the bootstrap sample used in the signature verification stage takes only a few seconds.

4 Discussion

In this paper we have utilized an array of modern statistical techniques in an attempt to place the
difficult problem of off-line signature verification in a model-based framework. The proposed
approach can be applied to any smooth segment of a signature. Cusps amount to infinite cur-
vature, which cannot be handled by the observation model. Nevertheless, in some applications
(such as biometric identification and manuscript analysis), the analysis of smooth segments of
handwriting is a potentially valuable tool.

The key advantage over methods based on similarity features is that a formal statistical
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Figure 10: Toy example. Posterior mean baseline curvature (solid line), true baseline curvature (dashed line) and
bracketting functions for the buffer region (dotted lines).
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Figure 11: Test signatures for forgery detection. A Secretary hand ‘S’ from Shakespeare’s holographic will,
March 25, 1616, and a modern forgery (right).

test for a forgery now becomes available. Much remains to be done, however, to make the
approach useful in practice. The method needs to be tested experimentally on large databases
of signatures and the noise level calibrated to optimize the procedure in terms of Type I and
Type II error rates; see Munich and Perona (2003) for a comprehensive illustration (in the
context of biometric identification) of the type of performance testing that is needed. Also,
the preprocessing stage needs to be further developed to provide automatic segmentation of the
signature into smooth components for analysis.
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Figure 12: Histogram of bootstrap simulations of IKJ under the fitted observation model; the vertical lines show
the forgery indices for the ‘S’ from Shakespeare’s will and the fake ‘S’ (Figure 11).

Appendix: Proofs

Proof of (2.4)

The two components of the vector process (w����� correspond to the real and imaginary parts
of æ(l�����Ô� � � ^ ������� , where

� � � ���ML�¿0N . From Itô’s formula, using the basic model (2.3) and
noting that

� + � ^ �������N�jÂ æ(l����� , � + + � ^ �����"�N�ÍT æ(Ä����� , we obtain

æ()�����N�OL ¿QP fhg 5� æ()�CBD� X Â M �CBD�6T �� � � d < BAfÑÂC��g 5� æ()�CBD� < ���CBD���
Re-expressing this equation in vector form shows that ( satisfies the linear stochastic differen-
tial equation < (l�����R� R������ < �§fTSÄ����� < ��������	���%Ñ��KL	"se (A.1)

where

R������W� X T G� � � T M �����M ����� T G� � � d (w�����/	 SÄ�����N�'� X T3( � �����( G ����� d 	 (A.2)

with initial condition (l�.K����î� Y[Z]\ �A	 \"`ba �6�S� . Referring to a result of Liptser and Shiryayev
(1977, p. 279), it follows that the distribution ¯ of ( is absolutely continuous with respect to the
distribution U¯ of the two-dimensional process U( satisfying the stochastic differential equation

< U(w�����W� � X T U( � �����U( G ����� d < ��������	 U()�EK�����(l�EK]��� (A.3)

The corresponding Radon–Nikodym derivative is< ¯< U¯ �C(��i�jö�÷eø�� � � M 8 (��"�/	
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where � � M 8 (�� � g �� R��EB�� � �VSÄ�EBD�WSÄ�EB�� � � F < (l�EBD� (A.4)

Tt�� g �� R��CBD� � �VSÄ�EB��XSÄ�CBD� � � F RÔ�CBD� < B�	
and v F denotes the Moore–Penrose generalized inverse of a matrix v . This expression can be
simplified as follows. The Moore–Penrose inverse above can be found explicitly: �VSYS���� F �8 ( 8 � n�� � � � n¥� � , where the unit norm property of ( has been used. The first integral in (A.4)
then becomes�� � g �� R��EB�� � < (w�CBD�W� �� � g �� M �CBD�;��( G �CBD� < ( � �CBD�6T�( � �CBD� < ( G �CBD�/�T �� g �� �¥( G �EBD� < ( G �EB���fh( � �CBD� < ( � �CBD�/�A�
Integration by parts simplifies the second integral in the above display:

g��� �¥( G �CBD� < ( G �CBD��fh( � �EB�� < ( � �EB���� � ��  ( G ��s#� � T�( G �.K�� � T'�"OC( G Q[��s#�6TjOC( G Q[�EK���� ®f ��  ( � ��s#� � T�( � �EK]� � Tj�"Oñ( � Q���s#�6TjOñ( � Q��.K��"� ®� T �� � � s
where predictable variation processes OC( G Q and Oñ( � Q coincide with the optional variation pro-
cesses derived in the proof of (2.7) below. Again using the unit norm property of ( , the second
integral in the log-likelihood (A.4) reduces to

�� � g �� RÔ�CBD� � RÔ�CBD� < B � �� � g �� X �º � @ f M �CBD� � d < B
� �º � � s�f �� � gh�� M �CBD� � < B]�

Combining these simplifications gives� � M 8 (Ô�W� �� � gÑ�� M �EBD�;��( G �EBD� < ( � �EBD�6T�( � �EBD� < ( G �EBD�/��f��º � � s
T �� X �º � � s�f �� � g �� M �EB�� � < B d� �� � g �� M �EBD�;��( G �EBD� < ( � �EBD�6T�( � �EBD� < ( G �EBD�/�*T �� � � g �� M �CBD� � < B!f �� � � sL�

Proof of (2.6)
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From its definition, the differential of the process ¤ can be expressed, using (A.1) and (A.2),
as <�¤ �����W� �STë( � �����/	/( G ������� < (w������ �STë( � �����/	/( G �������XR������ < ��f¨�=T3( � ������	/( G �������WSÄ����� < �������� �STë( � �����/	/( G ������� X T G� � � T M �����M ����� T G� � � d X ( G �����( � ����� d < ��fÑ� 8 (w����� 8 � < �������� M ����� < �§f�� < �������/	
where we again used the unit norm property of ( .

Proof of (2.7)

The optional quadratic variation process � ×  ����� of a semimartingale × may be defined in
two equivalent ways: as

� × ñ�����N�j×������ � TÝ×��.K�� � T � g ½ � � 5[Z ×Ñ�CB]Të� < ×��EBD��	
or as the limit in probability as � � £ of the sums ¡ ��¢ G ��×����.�H�6TÝ×Ñ���.� F
G �"� �
where �.�)������nH� , see Rogers and Williams (2000, Chapter IV). For continuous semimartin-
gales, � ×  coincides with the predictable variation of the martingale part of × . But from
(A.1), the martingale parts of (the continuous semimartingales) ( G and ( � have differentialsT2��( � �EBD� < ���EB�� and ��( G �EBD� < ���EB�� , respectively, so

�¸( G ñ�����N�âOñ( G Q��������¨� � g 5� ( �� �EB�� < B]	 �x( �  �����N��Oñ( � Q��������j� � g 5� ( �G �CBD� < B]�
The limit in probability as � � £ of the summation in (2.7) is (by definition of optional
quadratic variation) therefore

�¸( G ñ��s
��f¨�¸( � ñ��s
�i�j� � g��� �C( G �EB�� � f�( � �CBD� � � < B*�j� � sL	
where we have used 8 (l�CBD� 8 � � in the last step. This completes the proof.

Theorem A.1 The Markov chain given by the hybrid sampler for the posterior distribution of��Ùk	 ì � is geometrically ergodic.
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Proof. A Markov chain is geometrically ergodic if its transition kernel
�

is \ -irreducible,
aperiodic and satisfies a Foster–Lyapunov drift condition (see Meyn and Tweedie 1993, The-
orems 15.0.1 and 16.0.1). To check these conditions, we use of the following easily verified
bounds on the Hastings ratios: � ð�� � > � is bounded away from zero, and there exist constantsK�Þu�3Þ � , mëpÕK such that� Ê ½¸ÚÒÀ¼k��Ù���f � Ï'�	����Ùk	 ì 	 � �AÏ m¼���Ù���f � ] � Ü ��Ù�	 ì 	 � �!é ¼���Ù��m � (A.5)

Let \ denote the dominating measure for the posterior density. To establish \ -irreducibility we
need to show that for any initial position ��Ù�	 ì � and measurable set R such that \6�>Rë�ëp«K , theó -step transition probability

� û �"��Ùk	 ì ��	BR&��p¬K for some ó é � . First note that a transition��Ùk	 ì �U� ��Ù§+$	 ì +Á� can be made by ¼k��Ù�� death steps immediately followed by ¼���Ù�+Á� birth steps.
From (A.5), the Hastings ratios involved in such a sequence of updates are bounded away from
zero. Thus, since the random walk moves (on the components of

ì
) have proposal densities

that are bounded away from zero on compact intervals, for any ó¦éj¼���Ù�� there is a non-trivial
absolutely continuous part of

� û and the corresponding density ç û �"��Ù�	 ì �/	 > � (with respect to\ ) is bounded away from zero on S û �J�e��Ù§+$	 ì +ä����¼k��Ù§+ ���¨ó�T�¼���Ù��/� . But

\,�>R&�N� ^¡
û ¢ Ê ½ÅÚ�À

\6�>R`_2S û �Up�K
so there exists an ó éu¼���Ù�� such that \,�>R`_aS û ��pÕK , and we have

� û �"��Ù�	 ì �/	(R&�!é � û ����Ù�	 ì ��	(Rb_aS û ����gdc�e$fhgëç û ����Ù�	 ì ��	 > � < \tpuKL	
as required

Next we show that v«�Í�e��Ùk	 ì ���"¼���Ù��!Þ ª � is a small set for any constant ª . Fix ó é ª ,
and note that, arguing as above, there is a non-trivial absolutely continuous part of

� û andç û �"��Ù�	 ì �/	 > � is bounded away from zero on �$iL�kjuí uniformly in ��Ù�	 ì �ê%Vv , where i is
the empty configuration of points in

Ì
. Thus there exists a constant l�prK such that for all��Ùk	 ì ��%qv and all measurable sets R ,

� û ����Ù�	 ì ��	(Rë�Ué g cde/m npoXqsr?t Z ç û ����Ù�	 ì ��	 > � < \téul$v§�>Rë��	
where v is the uniform distribution on �$iL��j|í . This shows that v is a small set.

The Foster–Lyapunov drift condition can be shown to hold for the small set v provided ª
is chosen large enough. This involves using the upper bound (A.5) on the Hastings ratio for
birth proposals to find constants K'ÞxwâÞ � , ùJÞW£ , such that

� ( Ïyw;(�f«ù �Hz , where()��Ù�	 ì �²� å È ÷§� � 	�m Ê ½¸ÚÒÀ.� . This can be done by simple modification of an argument of Geyer
and Møller (1994, p. 365). Aperiodicity is easily checked, and we conclude that the Markov
chain is geometrically ergodic.
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