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 PROCESSES1
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 We consider the Bayes estimator bo for a Gaussian signal process observed
 in the presence of additive Gaussian noise under contamination of the signal
 or noise by QN-laws, introduced by Gualtierotti (1979). Upper bounds on the

 increase in the mean square error of bo over the minimum possible mean
 square error under contaminated noise or contaminated signal are given. It is

 shown that the performance of 60 is relatively close to optimal for small
 amounts of contamination.

 1. Introduction. Consider a Gaussian signal process X = (Xt) observed in
 the presence of an additive Gaussian noise process N = (Nt) for t E [0, T]. The
 observed process Y is given by Yt = Xt + Nt, t E [0, T]. The Bayes estimator,
 5o( Y) = E(X I Y), of the signal X can be calculated explicitly in terms of the
 means and covariances of the prior and noise distributions. See Mandelbaum
 (1984) for a recent study of this estimator.

 In the present paper we study the behavior of the Bayes estimator 60 under
 departures from Gaussian law by the prior and noise distributions. This work is
 similar in spirit but conceptually distinct from work on the asymptotic robustness
 of estimators, as in Huber (1981), where an unknown parameter is fixed through-
 out repeated observations and the sample size goes to infinity. It is well known
 that no linear estimator, such as a Bayes estimator, can be asymptotically robust
 with respect to contamination in the noise. However, in the present situation
 where contamination in the noise is restricted to a single realization of the
 process it is to be expected that 5o is qualitatively robust, that is, insensitive to
 small deviations from the assumptions of Gaussian noise and Gaussian prior. In
 the present paper we attempt to assess this robustness of 5o in quantitative terms.
 We propose using a specific contamination model to obtain analytic expressions
 for the amount of deterioration in the performance of 5o under contamination.

 An important consideration in the choice of a contamination model is the
 presence of mutual absolute continuity between the contaminated and uncontam-
 inated Gaussian law. Without absolute continuity it is possible to discriminate
 with zero probability of error between these two laws. This phenomenon of
 singular discrimination is not found in practical situations and should not be
 allowed in our contamination model. Consequently, we are looking for a contam-
 inated Gaussian law which preserves absolute continuity. The requirement of
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 STABILITY OF BAYES ESTIMATORS 1311

 absolute continuity is a severe restriction since in infinite dimensions two
 measures can be close in terms of their defining parameters yet orthogonal. For

 example, let p, 2 be the measures on C[O, T] induced by two Wiener processes
 with covariances s A t and (1 + 6)(s A t) respectively. Then yj and M2 are
 orthogonal for any a > 0. This rules out consideration of a mixture model
 (1 - e)M1 + CM2, where 0 < e < 1, as a realistic contamination model since it can
 be determined with zero probability of error from which law, /,u or M2, the sample
 path originated. This can be done by calculating the quadratic variation of the

 observed sample path (Yt), t E [0, T]:

 limn~ XYo =1 ( tj- Yti l) = T+ a.e. dt, (1 + 6)T a.e. dM2,

 where tj = jTn-1. In practice, where continuous observation of the process is not
 possible, one can still reduce the probability of error to an arbitrarily small
 positive quantity by observing the process at time points tj = jTn-1 for n
 sufficiently large. The mixture model is inappropriate in infinite dimensions
 where, in order to satisfy the absolute continuity requirement, stringent condi-
 tions need to be imposed on the means and covariances of the Gaussian laws
 involved.

 An alternative contamination model, which we use in the present paper, is the
 QN-law introduced by Gualtierotti (1979). QN-laws are defined by a relation dQ
 = qdP, where P is Gaussian and q is a quadratic form. They have more mass in
 the tails than the Gaussian laws while being equivalent to them and they are
 sufficiently tractable to allow calculation of Bayes loss which plays an important
 role in this work. Although the usual concern with robustness is contaminated
 tails, which in the case of QN-laws are fairly mild, over-heavy tail behavior is
 ruled out here by the requirement of absolute continuity.

 The following example will be used to illustrate the abstract setting in which
 the main results of the paper are established.

 EXAMPLE 1. Let the signal process (Xt) and the observation process (Yt)
 satisfy the stochastic differential equations

 dXt = -3Xt dt + dWj, t E [0, 1],

 dYt = Xt dt + d Wt2 t GE [O, 1],

 where W1 and W2 are independent Wiener processes, A > 0, Yo = 0, and Xo is a
 N(O, 1/(2#) random variable which is independent of W1 and W2. This is a
 simple example of a linear dynamical system arising in the Kalman-Bucy filtering
 theory. Formulae for the Bayes estimator bo[ Y](t) = E(X I Y)t, t E [0, 1], have
 been derived by Liptser and Shiryayev (1978, Chapter 12). Let Mx and YN denote
 the measures induced on the Borel a-field of C[O, 1] by the signal process (Xt)
 and the noise process (Wi2) respectively. Consider a contaminated noise distri-
 bution given by the QN-law dvN(x) = CN(1 + e ftx dt) dMN(x), where e > 0 and
 CN is a constant. Let r,(6) denote the integrated mean square error of an estimator
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 1312 I. McKEAGUE

 a under the contaminated noise VN, that is

 r,(6) E(Xt _ 6[y](t))2 dt,

 where the expectation is with respect to the probability measure determined by

 ,ux and VN. Theorem 4.4 gives a bound on the ratio of r,(bo) to the minimum
 possible integrated mean square error under VN,

 r,(b0)/infhr,(A) < 1 + (3/fl)(1 + o(1))e2, as e -- 0.

 An analogous result holds for the case of a contaminated prior distribution given

 by the QN-law dvx(x) = cx(1 + e f x2 dt)dMx(x), except that the 3/f can be
 replaced by 2/fl.

 For a discussion of robust Kalman filtering in discrete time we refer to the
 papers of Ershov and Liptser (1978) and Masreliez and Martin (1977). References
 to other aspects of Bayesian robustness can be found in Berger (1982). QN-laws
 have been applied to signal detection and information theory by Gualtierotti
 (1980, 1982, 1983).

 The results of this paper are given in terms of noise distributions on separable
 Banach spaces. This is general enough to cover the space C[0, 1] arising in
 Example 1. In fact our methods can be carried over to a large class of locally
 convex spaces including I[o,'1. Section 2 contains some preliminary material on
 measures on separable Banach spaces and a derivation of the Bayes estimator 5o.
 Section 3 contains a discussion of QN-laws and posterior distributions when
 either the prior or noise is a QN-law. Upper bounds for the increase in the mean
 square error of 5o over the minimum possible mean square error under a QN-law
 prior or QN-law noise are given in Section 4.

 2. Preliminaries. Let E denote a separable Banach space with topological
 dual E'. The Borel a-field on E is denoted iq(E). Let ,u be a probability measure
 on q(E) such that fE (f, X)2 dM(x) < x, for all f E E'. Then, by Weron (1976),
 ,u has a mean element m in E and a covariance operator R: E' -* E, defined by

 (f, m) = f (f, x) dM(x), (Rf, g) = f (f, x - m) (g, x - m) dM(x),

 for all f, g in E'. There exists a separable Hilbert space H and a continuous linear

 injection j: H -- E such that R = j1*; see Schwartz (1964), Baxendale (1976).
 The Hilbert space H is called the reproducing kernel Hilbert space (RKHS) of
 R. The identity on H is denoted I. For u, v in E, z in E', (u 0 v)(z) = (v, z) u.

 The notation R = En un ? un for Iun, n 2 1} C E means that E (f, un) un -* Rf
 in the norm topology of E, for all f in E'. If {en, n 2 1} is any CONS in H, then
 R = Ejen ? jen; Vakhania and Tarieladze (1978). If each f in E' is a Gaussian
 random variable under A, then ,u is said to be Gaussian and we write ,u -
 N(m, R).

 Let (S, M) and (T, 5) be measurable spaces, Mxy a probability measure on
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 STABILITY OF BAYES ESTIMATORS 1313

 Y x 5,uyx and ,uy the projections of ,uxy. The conditional distribution /.xLy, if
 it exists, is defined to be a probability measure on SV for a.e. dMy(y) such that
 MxIy(A) is measurable as a function of y for each fixed A E Y and

 Mxy(A x B) = f Ax1Y(A) dMy(y) for all A E Y and B E

 The following lemma, which is proved using Fubini's theorem, is a version of the

 abstract Bayes formula of Kallianpur and Striebel (1968).

 LEMMA 2.1. Suppose that the conditional distribution MuylX exists, Mylx << Muy
 a.e. dMux(x) and the map (x, y) -e- (dMyIx/dMy)(x) is Y x S measurable. Then

 the conditional distribution Muxly exists, Muxly << Mux a.e. dMuy(y) and

 (x) = d8ylx (y) a.e. dMx ? My(x, y).
 dMtx dMty

 The probability measure Mxy will be defined through a prior distribution Mx
 on Y for the signal and a noise distribution MN on S The spaces S and T
 represent the signal and observation spaces respectively. For a signal x E Y and
 noise y E T, the observation is given by f (x, y), where f: S x T -) T is an
 Y x S/ S measurable map. Thus, assuming independent signal and noise, the
 joint distribution of signal and observation is given by

 Mxy(A) = MX ? MNI(X, y): (x, f(x, y)) E A}, A E Y x

 It is easily seen that M YIx exists and is equal to MNof -1, where fx: T -) T is defined
 by fx(y) = f (x, y). Under the hypotheses of Lemma 2.1, MxIy exists and is called
 the posterior distribution of the signal.

 The basic framework of our signal + noise model is now described as follows.
 The observation space T is assumed to be a separable Banach space E. A Gaussian
 noise distribution MN = N(O, RN) on -q(E) is specified. The RKHS of the noise

 is denoted HN and the corresponding injection denoted jN:HN -* E. The signal
 space S is taken to be HN and f (x, y) = jN(X) + y, for x E HN, y E E. The prior
 distribution of the signal is assumed to be a Gaussian measure Mx = N(mx, Rx)
 on (HN). The reason for these assumptions is that jN(HN) is the set of
 admissible translates of MN, i.e. translates of ,UN which are mutually absolutely
 continuous with respect to MN, Kuelbs (1970). In Example 1 we have

 E = C[O, 1], MUN = Wiener measure on q(E), HN = L2[0, 1]

 rt

 jN(X) (t) = x(s) ds, 0 < t < 1, x E HN.

 Rx(x)(t) = - el1ts Ix(s) ds, 0 c t C 1, x E HN.

 Let YN denote the closure of E' in L2(E, MN), UN: YN -4 HN the unitary
 operator defined by UNf = jN*f for f in E'. Gaussian covariance operators on
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 1314 I. McKEAGUE

 Hilbert space are trace-class, see Kuo (1975), so that Rx has a series represen-
 tation Rx = En r,en 0 en, where {en, n 2 1j is a CONS in HN, n 2 0 and tr(Rx)
 = EnTn < oo. This particular CONS for HN will be fixed throughout the remainder
 of the paper. The norm in HN is denoted II * 11 The following result describes the
 posterior distribution ,,XY on ?e?(HN)-

 PROPOSITION 2.2. The posterior distribution x,IY exists as a probability meas-
 ure on (HN) and is given by IUxly = N(mxly, Rxl,), where

 mxly = En 1 + {[Ui (en)I (Y) + Ten m n)

 Rxly = RX(I + Rx)-1.

 PROOF. Denote [UNv1(en)](y) by an(y). The an are i.i.d. N(0, 1) random
 variables under AN so that mxIy E HN a.e. d/IN(y). But, ,UN o f x-1 M,ON for each
 x E HN (cf. McKeague, 1982, Theorem 2.1) so that by Baker (1976) IY M IN-
 Thus mx1y E HN a.e. dMy(y) and the pair (mx1y, Rx,y) defines a Gaussian
 measure on A(HN) a.e. dMiy(y). Now check the conditions of Lemma 2.1. Muylx
 exists and is equal to AN o f - * Also MyIx MAN uy for all x E HN. The map
 (x, y) dAylxl/d,y(y) is i(HN) X 5?(E) measurable since

 dytyx (y- dM N ? fx dMN
 d,uy dAN dMuy

 d,UN _YepuN() 1/2 11 X 11 21 - dM (y)expj[U-1(x)]-? IxI
 d,uy

 - d (y)exp I {a,n(Y) (en, x) - 1(e/2 x)(e
 d,uy

 where the Radon-Nikodym derivative dMN o f x11/dMN is given in McKeague (1982,
 Theorem 2.1), for instance. Now applying Lemma 2.1, the characteristic func-
 tional gxly(u) = fHNei(u,x) d,uxly(x), for u E HN, as a function of u, is proportional
 to f HN liMkO-Zk(x) dMx(x), where

 Zk(x) = exp Zk=1 $i(en, u) (en, x) + an (Y) (en, x) - 1/2(en, x)21.

 Provided that $Zk, k 2 1 is uniformly integrable, the result now follows from
 routine calculations since the (en, x), n 2 1 are independent N((en, mx), Tn)
 random variables under Mux. But

 IN |4Zk(x) 2 dMx(x) c JN expJ2 k=i a?n(Y) (en, x) } dMx(x)

 = expJ2 Ek=l (a 2(y) rn + an(Y) (en, mx))1,

 which shows that fZk, k 2 11 is a.e. dMy(y) uniformly integrable with respect to
 Mx, as required. E1
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 STABILITY OF BAYES ESTIMATORS 1315

 3. QN-laws. In this section we derive the posterior distribution for the
 signal + noise model when either the prior or noise distribution is allowed to be
 a QN-law. We start with the definition and formulae for the mean and covariance
 of QN-laws.

 Let El and E2 be separable Banach spaces. Suppose that g = N(m, R) on
 i~(E1) with RKHS denoted H and injection j:H -- E1; also let A:E2 -* E2 be a
 symmetric nonnegative operator, a E E2 and J:E1 -? E2 be a bounded linear
 operator. Denote c-1 = fE, (1 + (A(J(x)- a), J(x)- a)) d,i(x). Note that c-1 <
 00 since fE, 11 x 11 El d ,(x) < 0 by Fernique (1970). Define a probability measure v
 on i?(E1) by the relation

 (d /cdu)(x) = C(1 + (A(J(x)- a), J(x)- a)).

 The measure v, written v = QN((J, a, A), it), is called a QN-law and was
 introduced by Gualtierotti (1979). When E1 = E2 and J is the identity map write
 v = QN((a, A), A).

 The statistical significance of the parameters J, a, A can be described as
 follows. The operator A controls the amount and direction of the non-Gaussian
 contribution to v. For instance, if A is a projection onto the span of an element
 b then P can be non-Gaussian in the direction of b and Gaussian in directions
 orthogonal to b. The element a controls the origin of the non-Gaussian contri-
 bution. The need for two spaces E1, E2 and the operator J transferring the effect
 of A and a to the E1 space arises intrinsically in defining the posterior distribution
 when the noise is a QN-law, as will be seen in Proposition 3.2.

 In Example 1 we have VN= QN((0, cA), ,UN) on 93(E), where E = C[O, 1] and
 A:E -> E' is defined by

 (Ax, y) = f x(t)y(t) dt, x, y E E.

 The contaminated prior distribution Vx = QN((O, cA), ,ux) on ?q(HN), where A
 is the identity operator on HN.

 Gualtierotti (1980) calculated the mean and covariance of QN-laws on sepa-
 rable Hilbert space. It is possible to extend this result to separable Banach spaces
 as follows.

 LEMMA 3.1. (i) j*J*AJj is a trace-class operator on H and C1 = I +
 tr(j*J*AJI) + (A(J(m)- a), J(m)- a).

 (ii) The mean mQ and covariance operator RQ of v = QN(( J, a, A), ,) are given
 by

 mQ=m+u, RQ=R+2cRJ*AJR-uXu,

 where u = 2cRJ *A (J (m)- a).

 PROOF. (Sketch) Assume that m = 0 and consider just the evaluation of RQ.
 The operator J *AJ: El - E', is nonnegative and symmetric so that, by Schwartz
 (1964), there exists a separable Hilbert space H1 and a continuous linear injection
 i:Hi E', such that J*AJ = ii*. Let $un, n 2 1) be a CONS in H1 and let gn -

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 18:05:27 UTC
All use subject to https://about.jstor.org/terms



 1316 I. McKEAGUE

 i(un), n 2 1. Then it is easily seen that J*AJ - En gn, ? gn, where gn E El. Thus,
 for f E E'

 Ls (f, x)2(AJ(x), J(x)) d,(x) = E2 nT (f, X)2(gn, X)2 dL(x),

 so that we can reduce to evaluating integrals of the form SE1 (f, x)2(g, X)2 dpi(x).
 Choose hn E E such that j*(hn), n 2 1 is a CONS for H. Define

 7rkX = En=. (hn, x)Rhn, x E E1.

 Then, by Tien (1978, Lemma 2), lrkx converges a.s. [,u] to x. But

 A(fi 7rkX)4 (gs 7XX)4 d,u(x)

 c { f (f, lrkX) du(x)} 2{ (g k) du(x)

 c 105 (Rf, f)2(Rg g)2,

 since (f, 7rkX) is a N(0, Ek=l (Rhn, f)2) random variable and Ek=l (Rhn, f)2 c
 (Rf, f ). It follows that I (f, kX)2 (g, 7rkX)2, k > 1j is uniformly integrable and the
 Lebesgue convergence theorem can be applied. The integral SE1 (f WXkX)2(g, iXkX)2
 d1s(x) can be calculated using the fact that (hn, x), n > 1 is an iid N(0, 1)
 sequence of random variables with respect to ;. 0

 The next proposition shows that the posterior is a QN-law if either the prior
 is Gaussian and the noise is a QN-law or the prior is a QN-law and the noise is

 Gaussian. Let AN = N(0, RN), ,uX = N(mx, Rx) as in Section 2 and let Axly
 denote the corresponding posterior distribution given in Proposition 2.2.

 PROPOSITION 3.2. (i) If the prior is ;x = N(mx, Rx) and the noise iS VN =
 QN((a, A), JAN) then the posterior is vxly = QN((jN, y - a, A), Ixly).

 (ii) If the prior is Vx = QN((a, A), gx) and the noise is IAN = N(O, RN) then the
 posterior is Vxly = QN((a, A), AXIy).

 The proof of this proposition uses the following consequence of Lemma 2.1.

 LEMMA 3.3. Let Axy and vxy be probability measures on Y x 5 such that

 (a) ,ux vx and ,uy vy;

 (b) ;iyjI and vyl, exist and ,ylx vylx a.e. d,ux(x);

 (c) P yIx <? i y a.e. dux(x);

 (d) the maps (x, y) '-+ dvylxld/cylx(y), (x, y) -+ d,gyjx/d,uy(y) are 5? x Y
 measurable. Then vxly exists, vxly /'uxly a.e. dMy(y) and

 (x) = y) dvx1 (y) (x) a.e. drtLx ? y(x, y).
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 STABILITY OF BAYES ESTIMATORS 1317

 PROOF. From (a) - (c) it follows that vylx < vy a.e. dvx(x) and

 dv =( dv (y) dIt (y) d (y) a.e. dMx 0 uy(x, y)

 dpy dgylx duy dvy

 so that, by (d), the function (x, y) -4 dvy1x/dvy(y) is 5? x 5 measurable and
 vXIy exists by Lemma 2.1. The proof is completed by applying Bayes formula.

 PROOF OF PROPOSITION 3.2. (i) We check the conditions of Lemma 3.3.
 /uy V vy since I.ylx - vylx for all x in HN. gYIX <? ,Uy a.e. dltx(x) by the proof of
 Proposition 2.2.

 (Y) = CN(1 + (A(y - a - INX), Y - a jNX)),

 so that the map (x, y) '-4 dvylx/d,Ay x(y) is (HN) x ?q(E) measurable. The
 map (x, y) + d,ylxl/d,y(y) is ?q(HN) x ?e(E) measurable from the proof of
 Proposition 2.2. Thus, by Lemma 3.3, vxIy exists and

 (X) = - (Y)CN(1 + (A(jNX - (y - a)), jNX - (y - a))),
 dttxly dry

 which shows that vxly = QN((jN, y - a, A), $txly). The proof of (ii) is similar. f

 4. The performance of 6o under QN-law contamination. Let 6 denote
 a decision rule for estimating the true signal. 6 is a measurable function from the
 observation space E into the signal space HN. For prior vx and noise VN the mean
 square error of 6 is given by

 r(vx, PN, 6) = L II x - 6(y) 112 dvxy(x, y),
 HXE

 where 11 11 is the norm in the signal space HN. In Example 1, where HN =
 L2[0, 1], we have

 r(vx, VN, 6) = E (Xt - 6[Y](t))2 dt,

 which is a reasonable measure of the closeness of the estimate 6[ Y] to the signal
 X= (Xt).

 The following quantities are natural measures of the performance of an
 estimator 60: the increase in the mean square error of 60 over the Bayes loss (the
 minimum possible mean square error),

 'A (VXN, '5o) = r(vx, VN, 60)- inf5r(vx, VN, 6),

 and the ratio of the mean square error of 6o to the Bayes loss,

 4(VPX, VN, 60) = r(vx, VN, 60)
 inf6r(vx, VN, 6)

 If b(vX, PN, 60) is close to 1 we would be satisfied that the performance of 60 is
 close to optimal under vx and VN.
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 1318 I. McKEAGUE

 Now fix 60 as the Bayes estimator (i.e. the optimal estimator in the mean
 square sense) for Gaussian prior ,ux = N(mx, Rx) and Gaussian noise AN =
 N(O, RN). bo is given by the posterior mean calculated in Proposition 2.2, 6o(y)
 = mxly. The results of this section give some upper bounds on A(vx, VN, 6o) and
 (VX, VN, 60) for vx and VN as QN-law contaminations of ,ux and ,UN respectively.
 First we evaluate the mean square error of bo under contaminated prior or
 contaminated noise. Denote R1 = Rxly = Rx(I + Rx)-1.

 LEMMA 4.1. (i) Let vx = QN((a, A), Mx). Then

 r(vx, AUN, 60) = tr(R1) + 2cxtr(AR1)

 where cj1 = 1 + tr ARx + (A(mx-a), mx - a).

 (ii) Let VN = QN((a, A), AN). Then

 r( ux, VN, 3o) = tr(R1) + 2cNtr(ANR1),

 where AN = jNAjN and c-1 = 1 + tr(AN) + (Aa, a).

 PROOF. (i) r(vx, VN, 60) = fHN fE 11 MXy- X 112 dAyl.(y) dvx(x). But

 mXly - X = Xn-l 1 T [UH,1(en)I(y)Y- (x, en) -(x - mx n)en

 so that

 I11 mxy - x 112 di.ylx(y)

 = zn1 (1 +)2 f {([UN (en)I(Y) - (x, en) - m e dMylx(y)

 since =Xn~l ( ~n~ i+(x - mx, en )2)
 = Enol(1 ) 1 + . 2 )

 since [UN1(en)](y) - (en, X) is a N(O, 1) random variable under Mylx. By Lemma
 3.1

 T (en, x - mx)2 dvx(x) = Tn + 2cxT2(AenI en),

 so that

 r(vx AN, = 6 n-1 ( ) 2n(l1 + + 2cx(Aen, en))

 = tr(Rx(I + RX)-1) + 2cxtr(ARx(I + Rx)-2).

 (ii) is proved in a similar way. O

 The following theorem gives an upper bound on the increase in the mean
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 STABILITY OF BAYES ESTIMATORS 1319

 square error of bo over the minimum possible mean square error under a contam-
 inated prior distribution. If V is a bounded linear operator on HN then 1I V
 denotes its operator norm.

 THEOREM 4.2. Let Vx = QN((a, A), ,x). Then

 (PX~ wUN) 60)

 c 4c2 1 RjA 112[tr RxRj + 2cxtr AR 2 + (1 + 4cxI 1ARxR 11 )11 mx - a 112],

 where cL1 = 1 + tr(AR,).

 PROOF. It is easily checked that A(Vx, MN, 6) = fE 11 mXly - mQy 11 2 dvy(y).
 By Proposition 3.2 and Lemma 3.1, mx1y= mxly + 2cxjyRxjyA(mx,y - a), so that

 A(IVX9 MN, 60) C 4C2 || RjA 112 I| mxly - a 112 dvy(y).

 Now consider

 11 mxly - a 11 2 dvy(y) = J f II mx Iy - a 11 2 dy Ix(y) dvx(x).

 I {([UTI(eiv)I(Y) -(en, x) + (en, x -a) + (en, mx- a()}

 = Xnol (1 + )2(i + {(en, x-a) + (e,m } )}2

 Use Lemma 3.1 to get

 T- (en, mxa- a)]2 dv (x)

 x )+ I-

 HN tn~~~~~~~~~~~~~T

 = Tn + 2cx(RxARxen,, en)

 + 4cx( f)(en, RxA(mx - a))(en, mx - a) + (1 ) (en, mx - a)2.
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 1320 I. McKEAGUE

 This yields

 Js11 mxly - a 11' dpy(y)
 I~~~~~~~~~~~~~~~

 = Xn21 {r2(1 + rn)1 + 2cx( n )(RxARxen, en)

 + 4cx(AR2(I + Rx)-len, mx - a)(en, mx - a) + (en, mx - a)2}

 c tr R2(I + Rx)-1 + 2cxtr ARx(I + Rx)-2

 +4cxlIAR2(I+ Rx)1ll jnmx - all2 + llmx - all2,

 and the result follows. 0

 COROLLARY 4.3. Let vx = QN((a, cA), ,ux), where c > 0. Then

 MXAN, 60) 2 + 411 R1A 11 2[tr(RxR,) + 11 mx - a 11 ] (1 + o(1))C2,
 tr(R1)

 as e- 0.

 In particular, 4(vX, MN, = 1 + 0(C2), c 0.

 PROOF. The result follows from Proposition 4.1, Theorem 4.2 andthe identity

 4)(PX ,AN, 60) = 1 + M(PX AN, 60)
 r(vx, MN, 60) - A(VX, MN, 60)

 If vx = QN((O, Ji), Ax) where I is the identity on HN it follows from Corollary
 4.3 and the inequality tr(RxRi) c 11 Rx 11 tr(Rj) that

 '(vX , MN, 60) c 1 + 411RxII (1 + o(1))e2, as c -- 0.

 Thus, in Example 1 where 11 Rx 11 < 1/2,B we have

 P(VX, MN, 60)' 1 + (2/13)(1 + 0(1))C2,

 as stated in Section 1. The next theorem gives an upper bound on the increase
 in the mean square error of 60 over the minimum possible mean square error
 under a contaminated noise distribution.

 THEOREM 4.4. Let VN = QN((a, A), MN). Then

 L(MX, VN, 60) < 8C21 11 RlAN 112 [tr RxRi + 2cNtr AnR2]

 + tr R2(ANRxAN + AN + 2CNA3) + (1 + 4CNII ANII) (ARNAa, a) j,

 where AjN = jiAjN and c-1 = 1 + tr(ANRl).
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 PROOF. By Proposition 3.2, vxl, = QN((jN, y - a, A), Axly), and by Lemma
 3.1, mQ1y = mX1y + 2cxIyRlj*A(jNmxIy - y + a). Thus

 A(AX, VN, 60) = f II mx1y - mQ1y 112 dvy(y)

 < 4c2 I |I RljjNA(jNmxly - y + a) 11 dvy(y)

 < 8C&[2R1 112 Ja 11 mXIy - mxII2 dv1(y)

 + fI|| R1jjNA(jNmx - y + a) 112 dpy(y)].

 It is easily checked that

 I ll 1 mXy- mx 112 dpy(y) = tr(RxR,) + 2cNtr(ANR1).
 Q

 Note that my = jNmx + u and RQ = jNRXijN + RN + 2CNRNARN - U ? U,
 where u = -2cNRNA(a). Hence

 I11 Rij*A(jnmx - y + a) 112 dvy(y)

 =tr(R2j*ARMAjN) + || Rijj*A(a - u) 112

 = tr(R2(ANRxAN + AN + 2cNA3)) - || RljN,A(u) 112 + 11 RijjA(a - U) 112

 = tr(R2(ANRxAN + AN + 2cNA3)) + 1 RijjA(a) 112

 + 4CN(RlIjNA(a), R,ANjhvA(a))

 c tr(R2(ANRxAN + AN + 2cNA3)) + (1 + 4cNI1 ANII)(ARNAa, a).

 The result follows immediately. O

 COROLLARY 4.5. Let VN = QN((a, eA), IAN), where e > 0. Then

 (DAX, PVN, 60)

 8[ II R1AN II trRxRl + tr R2(AN RxAN + AN) + (ARNAa, a)] c 1 +
 tr(R1)

 (1 + 0(1))e2,

 as e -O 0. In particular, 4(x,uX VN, 60) = 1 + O(e2) e __ 0.

 If VN = QN((O, CA), AN) it follows from Corollary 4.5 that

 (DAX, VN, 5o) ' 1 + 24 11 RX 11 11 AN 11 (1 + o(1))e2, as e -- 0.
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 1322 I. McKEAGUE

 In example 1, where HN = L2[O, 1], it is easily checked that the operator AN is
 given by

 AN(X)(t) (s A t)x(s) ds, O s t < 1, x E HN.

 Since 11 AN 11 < 1/2 and 11 RX 11 < 1/(2f) it follows that

 ?(X, VN, 60)< 1 + (3/f3)(1 + 0(1))e2,

 as e -O 0, as stated in Section 1.
 The upper bounds obtained for 4 under contaminated signal and contaminated

 noise differ by a factor of 2/3. Since these bounds are fairly tight, it seems
 reasonable to conclude that contamination in the noise is only slightly, if at all,
 more serious than contamination in the signal.
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