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Noncommutative Probability and
Multiplicative Cascades
Ian W. McKeague

Abstract. Various aspects of standard model particle physics might be ex-
plained by a suitably rich algebra acting on itself, as suggested by Furey
(2015). The present paper develops the asymptotics of large causal tree di-
agrams that combine freely independent elements in such an algebra. The
Marčenko–Pastur law and Wigner’s semicircle law are shown to emerge as
limits of normalized sum-over-paths of nonnegative elements assigned to the
edges of causal trees. These results are established in the setting of non-
commutative probability. Trees with classically independent positive edge
weights (random multiplicative cascades) were originally proposed by Man-
delbrot as a model displaying the fractal features of turbulence. The novelty
of the present work is the use of noncommutative (free) probability to allow
the edge weights to take values in an algebra. An application to theoretical
neuroscience is also discussed.

Key words and phrases: Mandelbrot cascade, Marčenko–Pastur law, mar-
tingale convergence, random matrices, Wigner’s semicircle law.

1. INTRODUCTION

Initiated by Dan Voiculescu in around 1986, noncom-
mutative probability has become a flourishing area of
mathematics with close ties to random matrix theory
(Anderson, Guionnet and Zeitouni, 2009) and quantum
mechanics (Collins, Hayden and Nechita, 2017). Random
multiplicative cascades were introduced by Mandelbrot in
around 1974 as a model displaying the fractal features
of turbulence. The present paper develops and discusses
a noncommutative probability version of random multi-
plicative cascades. It is shown that some of the famil-
iar limiting distributions in random matrix theory emerge
in this setting, such as Wigner’s semicircle law and the
Marčenko–Pastur law (noncommutative probability ana-
logues of the Gaussian and Poisson distributions, resp.).
The discussion is essentially self-contained, and no previ-
ous knowledge of these areas is assumed.

The paper was initially motivated by the problem of un-
derstanding the behavior of large particle systems of the
type recently proposed by Furey (2015) in order to explain
aspects of the standard model of particle physics using
“little more than an algebra.” Physical concepts such as
particles, causality and irreversible time are hypothesized
by Furey to emerge from a sufficiently rich algebra A act-
ing on itself. For instance, each of the standard model’s

Ian W. McKeague is Professor of Biostatistics, Department of
Biostatistics, Columbia University, New York, New York
10032, USA (e-mail: ian.mckeague@columbia.edu).

Lorentz representations, scalars, spinors, four-vectors and
the field strength tensor are shown to arise as certain in-
variant subspaces of the complex quaternions C⊗H.

Furey (2015) further proposed that causality might be
explained through the evaluation of algebraic expressions
given by a sum-over-paths in rooted tree diagrams having
edge weights in A. In such diagrams, the sum-over-paths
is defined as the sum over all self-avoiding paths between
a leaf and the root of the tree, where the product of the
edge weights along the path gives its contribution to the
sum; see the example in Figure 1. In the sequel, we re-
fer to this model as a causal tree. Various other concepts
of causal trees and sets have been proposed in connection
with models of quantum gravity (Bombelli et al., 1987,
Markopoulou, 2000, Dowker, 2005). However, it is only
in Furey’s approach, which is also discussed in Cortês and
Smolin (2014a, 2014b), that particles emerge at the funda-
mental level, rather than as artifacts of other phenomena.

Causal trees in which the number of children of each
inner vertex is N ≥ 2 and the edge weights are (clas-
sically) independent copies of a nondegenerate random
variable W ≥ 0 with EW = 1, are known as multiplica-
tive cascades. These were introduced in the seminal work
of Rosenblatt and Van Atta (1972, 1974a, 1974b) as a
tractable way of explaining the fractal nature of turbu-
lence. In the statistical physics literature, they were used
by Derrida and Spohn (1988) to study Gibbs measures
of directed polymers on disordered trees. For references
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FIG. 1. Example of a causal tree with the sum-over-paths given by
the algebraic expression c · (b · a + e · (d + f )) + h · g.

to the extensive literature on multiplicative cascades, in-
cluding their connection to models of quantum gravity,
see Barral et al. (2014), Barral (2014), Huang (2016).

Mandelbrot showed that for a multiplicative cascade on
the N -ary tree of height n, the sum-over-paths (formally
defined in Section 3) when normalized by Nn has an a.s.
limit (XN ) as n → ∞, where EXN ≤ 1. This follows by
application of the martingale convergence theorem. The
distribution of XN is characterized by a solution to the
distributional fixed-point equation

(1.1) XN =d

1

N

N∑
i=1

WiXi,N ,

where the Xi,N are independent copies of XN , and the Wi

are independent copies of W that are independent of the
Xi,N . The derivation is illustrated in Figure 2 below. From
this equation, Kahane and Peyrière (1976) showed that
EXN = 1 if EW logW < logN , and otherwise XN = 0
a.s.; when the condition is satisfied, EX2

N < ∞ if and
only if EW 2 < ∞.

Assuming only that EWγ < ∞ for some γ > 0, Durrett
and Liggett (1983) gave a necessary and sufficient con-
dition on W for (1.1) to have a nontrivial solution, and
showed that the normalized sum-over-paths converges in
distribution to XN when the Laplace transforms of W and
XN have matching behavior at 0. It is difficult to find
(nontrivial) explicit solutions to (1.1) except in some spe-
cial cases; for instance, when W/N has a beta distribu-
tion with certain parameter values then XN has a gamma

FIG. 2. The recursion relation (1.1) is derived from the N -ary tree

structure by noting that X
(n+1)
N is a weighted sum of N i.i.d. copies of

X
(n)
N (where N = 2 in this case).

distribution. This solution and a few other tractable so-
lutions are discussed by Ossiander and Waymire (2002),
who also study the problem of estimating the distribution
of W given data on XN . The asymptotic behavior of XN

as N → ∞ has been studied by Liu and Rouault (2000),
who showed using the Lindeberg–Feller theorem that if
the distribution of W is fixed (i.e., not depending on N )
and EW 2 < ∞, then

√
N(XN − 1) converges in distribu-

tion to normal with mean zero and variance EW 2 − 1.
The natural framework for studying the behavior of

normalized sum-over-paths in causal trees with algebra-
valued edge weights is noncommutative (or free) prob-
ability. In this paper, we introduce free versions of the
multiplicative cascades described above. We show that
the fixed-point equation (1.1) in which the Xi,N are freely
independent copies of XN , and the normalized weights
W̄i ≡ Wi/N are freely independent Bernoulli(1/N) ran-
dom variables, has a nontrivial solution, namely the
Marčenko–Pastur distribution with parameter λ = 1,
which implies the normalized sum-over-paths has a non-
trivial weak limit. This is in marked contrast to the mul-
tiplicative cascade with the W̄i as classically independent
Bernoulli(1/N), for which the weak limit of the normal-
ized sum-over-paths is trivial (Dirac measure δ0); this fol-
lows from the result of Kahane and Peyrière (1976) men-
tioned above (since EW logW = logN in this case).

We also study the asymptotic distribution of general so-
lutions XN to the free version of the fixed-point equation
(1.1) as N → ∞, when the distribution of W is fixed with
EW 2 < ∞. Specifically, we show that

√
N(XN − 1) con-

verges in distribution to Wigner’s semicircle law of radius
R = √

EW 2 − 1, amounting to a free analogue of Liu and
Rouault’s central limit theorem mentioned above.

The paper is organized as follows. Section 2 describes
background on Voiculescu’s theory of free probability that
we need. Readers unfamiliar with this topic should refer
for more detailed information to the many excellent sur-
veys of the subject, including Nica and Speicher (2006),
Anderson, Guionnet and Zeitouni (2009), Tao (2010),
Kargin (2013) and Mingo and Speicher (2017). Section 3
introduces the notion of a free multiplicative cascade,
which we call a free causal tree. Three results about the
limiting distributional behavior of the sum-over-paths of
large free causal trees are developed in Section 4, where
we also discuss an open problem related to our main re-
sult and how it applies to free versions of Galton–Watson
trees and critical percolation on Bethe lattices. Section 5
contains a discussion of how the idea of using suitably
rich algebras acting on themselves to explain the behavior
of complex causal tree structures may also be relevant in
theoretical neuroscience, namely in connection with the
quantum cognition hypothesis.
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2. BACKGROUND ON FREE PROBABILITY

A noncommutative probability space is a pair (A,E),
where A is a ∗-algebra over C and E : A → C is a
linear functional such that E(1A) = 1, where 1A is the
multiplicative identity. The elements X ∈ A are called
(noncommutative) random variables, or “observables” in
quantum probability language. E is a state and assumed
to satisfy E(X∗X) ≥ 0, with equality only when X = 0.
Random variables of the form X∗X will be said to be
nonnegative (although “positive” is the standard termi-
nology), and X is centered if E(X) = 0. The operation
X �→ X − E(X)1A is called centering. Classical prob-
ability theory is based on the commutative algebra of
bounded measurable real-valued functions on some (stan-
dard) probability space, with E(X) = EX = ∫

X dP.
We further assume (essentially without loss of gener-

ality) that A is a von Neumann algebra: A ⊂ B(H), the
space of bounded linear operators on a separable Hilbert
space H , and is closed in the weak operator topology, with
the adjoint being the involution. The state is assumed to
be tracial, meaning E(XY) = E(YX). The spectral distri-
bution (or law) of X is the map L : C[X] → C such that
L(p) = E(p(X)), where C[X] is the set of polynomials
in X having coefficients in C.

When X is self-adjoint (i.e., X∗ = X), which we as-
sume for all random variables from now on, it can be
shown (see Nica and Speicher, 2006, Proposition 3.13)
that there is a unique probability measure μ on R

such that L(p) = ∫
p(x)dμ(x), denoted X ∼ μ. We

say X is bounded if its spectral radius ρ(X) =
limk→∞ |EX2k|1/(2k) is finite, and in that case μ is sup-
ported by [−ρ(X),ρ(X)]; see Tao (2010). A sequence of
random variables Xn ∼ μn is said to converge in distri-
bution to X (denoted Xn →d X) if their laws converge;
when the law of X ∼ μ is determined by its moments,
this is equivalent to weak convergence μn →d μ in the
usual sense.

A family {Ak} of subalgebras of A, each containing 1A,
is called freely independent (or just free) if every finite
product X1 · · ·Xn of centered Xj ∈ Ak(j) with alternat-
ing indices k(j) �= k(j + 1) is also centered. A family of
random variables {Xk} is free if the algebras they gener-
ate are free. Although analogous, free independence is not
a generalization of classical independence as it is based
on a different factorization rule for calculating mixed mo-
ments. Two classically independent random variables X

and Y are free only if one of them is a scalar, since classi-
cal independence implies E(X2)E(Y 2) = E(XYXY), but
the latter expression vanishes when X and Y are free and
centered.

The distributions of X + Y and XY for free random
variables X ∼ μ and Y ∼ ν are determined by μ and ν,
and denoted μ � ν and μ � ν, respectively. The most
tractable way of analyzing these free convolutions is

through transforms, rather than directly with their mo-
ments. The Cauchy transform of a random variable X ∼ μ

is defined by analytically extending

Gμ(z) =
∫
R

1

z − x
dμ(x) = E(z − X)−1

to the upper half of the complex plane {z : Im(z) > 0}. Gμ

uniquely determines μ by the Stieltjes inversion formula

μ((a, b]) = − lim
ε→0

1

π

∫ b

a
ImGμ(y + iε) dy

for any a < b such that μ{a, b} = 0. For bounded X, the
moment EXk is the coefficient of z−(k+1) in the expansion
of Gμ(z) obtained by applying E term-by-term to the for-
mal Neumann series (z −X)−1 = 1/z +X/z2 +X2/z3 +
· · · .

Two other transforms derived from the Cauchy trans-
form play an important role. For compactly supported
μ, the R-transform is Rμ(z) = zG−1

μ (z) − 1, a variation
on the original definition G−1

μ (z) − 1/z introduced by
Voiculescu. For compactly supported μ and ν, the addi-
tion formula Rμ�ν(z) = Rμ(z) + Rν(z) is analogous to
the additivity of the log-characteristic function for classi-
cally independent random variables. An elegant heuristic
proof can be found in Tao (2010). Further, the S-transform
Sμ(z) = R−1

μ (z)/z uniquely determines μ, and for ν �= δ0

on R
+ it can be shown that μ � ν �= δ0 and Sμ�ν(z) =

Sμ(z)Sν(z). See Chapter 5 of Anderson, Guionnet and
Zeitouni (2009) for more details.

EXAMPLE 2.1 (Free central limit theorem). Let Zn =
(X1 + · · · + Xn)/

√
n, where X1,X2, . . . are freely in-

dependent copies of a centered, bounded random vari-
able X with EX2 = 1. Then Zn converges in distribu-
tion to the standard Wigner semicircle law μ with den-

sity
√

(4 − x2)+/(2π). Voiculescu obtained this result
early in the development of free probability. We sketch
a proof based on finding the limit of the R-transform of
Zn. By direct integration, the Cauchy transform of μ is
given by Gμ(z) = (z − √

z2 − 4)/2, so its R-transform
is Rμ(z) = z. Using the addition formula above, the R-
transform of Zn is seen to have the formal series expan-
sion

RZn(z) = √
nRX(z/

√
n) = z + z2/

√
n + · · ·

in which only the leading term (namely Rμ(z)) remains
after n → ∞. The moments of Zn can be expressed
as polynomials of the coefficients (the so-called free-
cumulants of X, see Anderson, Guionnet and Zeitouni,
2009) in the above power series, so each moment of Zn

converges to the corresponding moment of μ, and we con-
clude that Zn →d μ.
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3. FREE CAUSAL TREES

First, we recall the multiplicative cascade on the (full)
N -ary tree, where N ≥ 2 is fixed for now. Let 	 =⋃∞

n=1 	n, where each word σ = σ1 · · ·σn in 	n = {1, . . . ,

N}n represents a self-avoiding path from the root to a
vertex on level n. Let {Wσ ,σ ∈ 	} be (classically) in-
dependent copies of a nondegenerate random variable
W ≥ 0 with EW = 1. As discussed in the Introduction, by
the martingale convergence theorem the normalized sum-
over-paths

X
(n)
N = ∑

σ∈	n

n∏
i=1

Wσ1···σi

/
Nn → XN a.s.

as n → ∞. Clearly, X
(n)
N can be expressed as

(3.1)

X
(n)
N = ∑

σ1∈	1

Wσ1

[ ∑
σ2∈	1

Wσ1σ2

[
· · ·

[ ∑
σn∈	1

Wσ1···σn

]
· · ·

]]
/

Nn.

We introduce the free multiplicative cascade (that we
call a free causal tree) by taking the edge-weights Wσ to
be freely independent, identically distributed, nonnegative
elements of A with E(Wσ ) = 1. In what follows, it is no-
tationally convenient to work in terms of the law ν = νN

of the normalized edge weights W̄σ ≡ Wσ/N , which is a
unique probability measure on R

+ since nonnegative el-
ements of A are normal. It is then easily seen from the
nested form of (3.1) and an inductive argument that the
distribution of X

(n)
N can be expressed as μ(n) = T n

ν (δ1),
where T n

ν is the nth iterate of the (free) Mandelbrot map
Tν : M+ → M+ defined by

Tν(μ) = [ν �μ]�N,

where M+ is the family of probability measures on R
+.

We say that μ ∈ M+ is a fixed point of Tν if Tν(μ) = μ.

EXAMPLE 3.1. The smallest concrete example of a
noncommutative probability space (A,E) supporting a
(nontrivial) countable family of edge-weights {Wσ } for a
free causal tree is the von Neumann algebra B(H) on the
free “baby” Fock space introduced by Attal and Nechita
(2011):

H = C� ⊕ ⊕
n≥1

⊕
i1 �=···�=in

CUi1 ⊗ · · · ⊗CUin.

Here, C� is the one-dimensional subspace spanned by
the vacuum vector � = (1,0)T and Ui = (0,1)T ∈ C

2
(i),

where C
2
(i) is an ith copy of C2. The ground state is given

by E(X) = 〈X�,�〉 for X ∈ B(H). For 0 < p < 1, the
matrix

Xi =
⎡
⎣ p

√
p(1 − p)√

p(1 − p) p

⎤
⎦ ,

viewed as a linear operator on C
2
(i), can be embedded

as a linear operator on H , and as such furnishes a free
sequence of (nonnegative) elements of B(H) (Attal and
Nechita, 2011). The kth moment of Xi for k ≥ 1 is eas-
ily seen to be given by E(Xk

i ) = 〈Xk
i �,�〉 = p, which

agrees with the kth moment of Ber(p). This can be used
to construct an explicit free causal tree with Bernoulli dis-
tributed edge-weights.

4. LIMITS OF FREE CAUSAL TREES

In the classical case, X
(n)
N converges almost surely as

n → ∞ to the nontrivial limit XN ∼ μ provided μ is a
unit-mean solution to the distributional fixed-point equa-
tion (1.1). Analogously, in our free probability setting, we
can show that X

(n)
N ∼ μ(n) converges in distribution to a

fixed point of Tν . This is done using a noncommutative
version of the martingale convergence theorem.

THEOREM 4.1. If the Mandelbrot map Tν has a unit-
mean fixed point, μ ∈ M+ that is determined by its mo-
ments, then μ is the unique fixed point of the Mandelbrot
map and the normalized sum-over-paths X

(n)
N converges

in distribution to XN ∼ μ.

REMARK 4.2. In the classical case, there is a phase
transition in the multiplicative cascade: Kahane and
Peyrière (1976) gave a necessary and sufficient condi-
tion in terms of the edge-weight distribution (namely that
EW logW < logN ) for X

(n)
N to have a nontrivial limit,

representing a high-temperature phase. However, their
proof relies on relating the existence of a nontrivial fixed-
point solution of (1.1) to the left-derivative (EW logW )
of the function h �→ EWh at h = 1, and this technique has
no parallel in the noncommutative setting. Later we give
an example in which the conditions of Theorem 4.1 are
satisfied, thus furnishing a nontrivial weak limit of X

(n)
N ,

but it would be of interest to establish a condition on the
edge-weight distribution to characterize such behavior, as
is possible in the classical case. Unfortunately, we have
been unable to shed any light on this aspect of the free
causal tree, so the existence of a phase transition remains
an open question.

Pisier (2016) provides a summary (Chapter 14) of the
various results on martingales in noncommutative Lp-
spaces that we need to prove Theorem 4.1. For p ≥ 1,
define Lp(A) as the completion of a von Neumann al-
gebra A under the norm ‖X‖p = (E(|X|p)1/p , where
|X| = (X∗X)1/2. It can be shown that Lp(A) is a Ba-
nach space, and when p = 2 it is a Hilbert space with
inner product 〈X,Y 〉 = E(Y ∗X). A filtration in this set-
ting is an increasing sequence of von Neumann subalge-
bras An ⊂ A. For a sequence {Xn} with Xn ∈ L2(An)

for each n ≥ 1, the role of the conditional expectation
E(Xn|An−1) is played by the orthogonal projection of Xn
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into L2(An−1). The martingale property is then defined in
the usual fashion by E(Xn|An−1) = Xn−1.

We will need to appeal to the following version of the
noncommutative martingale convergence theorem (the
first part of Theorem 14.2 of Pisier, 2016).

THEOREM 4.3. If the random variable X ∈ A has fi-
nite moments of all orders, then E(X|An) → E(X|A∞)

in Lp(A) for each p ≥ 1, where A∞ is the von Neumann
algebra generated by the filtration {An, n ≥ 0}.

Let An be the initial subalgebra generated by {W̄σ : σ ∈⋃n
m=1 	m} for n ≥ 1, and A0 the subalgebra generated by

1A. By properties of noncommutative conditional expec-
tation (see Pisier, 2016, page 527), we have for all n ≥ 1

E
(
X

(n)
N |An−1

)
= ∑

σ1∈	1

W̄σ1

[ ∑
σ2∈	1

W̄σ1σ2

[
· · ·

[ ∑
σn∈	1

E(W̄σ1···σn |An−1)

]
· · ·

]]
,

and the martingale property of X
(n)
N then follows from

E(W̄σ1···σn |An−1) = E(W̄σ1···σn)1A = 1

N
1A.

PROOF OF THEOREM 4.1. The uniqueness of the
fixed point obviously follows from the convergence part
of the result. Let Z ∈ A have distribution μ ∈ M+, a
unit-mean fixed point of the Mandelbrot map. There exist
freely independent elements {W̄σ , σ ∈ 	}, having distri-
bution ν, and freely independent elements {Zσ ,σ ∈ 	}
having distribution μ that are free of {W̄σ , σ ∈ 	} such
that for all n ≥ 1

Z = ∑
σ1∈	1

W̄σ1

[ ∑
σ2∈	1

W̄σ1σ2

[
· · ·

[ ∑
σn∈	1

W̄σ1···σnZσ1···σn

]
· · ·

]]
.

This is the noncommutative restatement of (7) in the
proof of Theorem 1 of Kahane and Peyrière (1976). Since
E(Zσ1···σn |An) = E(Zσ1···σn)1A = 1A, it follows that

E(Z|An)

= ∑
σ1∈	1

W̄σ1

[ ∑
σ2∈	1

W̄σ1σ2

[
· · ·

[ ∑
σn∈	1

W̄σ1···σn

]
· · ·

]]

= X
(n)
N .

Appealing to Theorem 4.3 and the assumption that μ

has finite moments of all orders, we obtain E(Z|An) →
E(Z|A∞) in Lp(A) for each p ≥ 1, where A∞ is the von
Neumann algebra generated by {An, n ≥ 0}.

Denote the distribution of XN = E(Z|A∞) by μ̄ ∈
M+. Since E(·|A∞) is a contractive projection on
Lp(A), we have E([E(Z|A∞)]p) ≤ E(Zp) for p ≥ 2, so
μ̄ is determined by its moments (as μ is assumed to have
this property). Also, since

E
([

X
(n)
N

]p) = E
([
E(Z|An)

]p) → E
([
E(Z|A∞)

]p)
for all integers p ≥ 1, it follows that X

(n)
N ∼ μ(n) →d μ̄.

Recall that the notation A ≤ B for self-adjoint A,B ∈
A means that B − A is nonnegative. Appealing to
Corollary 3.3 of Bercovici and Voiculescu (1993), since
E(Z|A∞) ≤ Z (and both are self-adjoint), we find that
the distributions of E(Z|A∞) and Z are stochastically or-
dered: μ̄([t,∞)) ≤ μ([t,∞)) for all t ∈ R. Since μ̄ and μ

have the same mean (namely 1), they must be equal (see,
e.g., Theorem 1.A.8 of Shaked and Shanthikumar, 2007),
and we conclude that X

(n)
N →d XN ∼ μ. �

Our second result establishes the existence of a unit-
mean fixed point of the Mandelbrot map. This fixed point
is a particular instance (λ = 1) of the Marčenko–Pastur
law, which for parameter values λ ≥ 1 is defined by

dμλ(x) =
√

(b − x)(x − a)

2πx
1[a,b](x) dx,

where a = (1 − √
λ)2 and b = (1 + √

λ)2.

THEOREM 4.4. If the normalized edge-weights W̄σ

in the N -ary causal tree are freely independent Bernoulli
random variables with distribution ν = (1 − 1/N)δ0 +
(1/N)δ1, then the Marčenko–Pastur law μ1 is the unique
fixed point of the Mandelbrot map Tν , solving

μ1 = [ν �μ1]�N.

REMARK 4.5. It is easily checked that the Marčenko–
Pastur law μ1 has unit-mean, and of course it is deter-
mined by its moments (having compact support), so the
conditions of Theorem 4.1 hold for Tν with ν = (1 −
1/N)δ0 + (1/N)δ1, and we obtain the nontrivial limit
X

(n)
N →d μ1.

REMARK 4.6. The general Marčenko–Pastur law μλ

is also known as the free-Poisson law (with parameter λ >

0) since it arises as the limit of a free additive convolution
of Bernoulli distributions: [(1−λ/n)δ0 +(λ/n)δ1]�n →d

μλ as n → ∞; see Nica and Speicher (2006). In our
case with λ = 1, the Marčenko–Pastur law has density√

(4 − x)+x/(2πx), which coincides with the density of
the square of a standard Wigner semicircle random vari-
able.

REMARK 4.7. Theorem 4.4 is in marked contrast to
the analogous result in the classical case in which the nor-
malized edge weights W̄σ are independent Ber(1/N) ran-
dom variables. Then (1.1) has only the trivial fixed-point
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solution δ0 and X
(n)
N →d δ0. This follows from Theorem 1

of Kahane and Peyrière (1976), or even more directly as
X

(n)
N can be viewed as the size Zn of the nth generation of

a Galton–Watson branching process with offspring distri-
bution Bin(N,1/N); this is the critical case because the
mean number of offspring is 1. As is well known, in a
critical Galton–Watson tree the population eventually be-
comes extinct with probability 1, and the number of gen-
erations until extinction, τ = min{n ≥ 1 : Zn = 0}, satis-
fies P {τ > n} ∼ 2/(nσ 2), where σ 2 is the variance of the
offspring distribution (σ 2 = 1 − 1/N in this case).

REMARK 4.8. More generally, consider the classical
Galton–Watson branching process with offspring distribu-
tion Bin(N,p) where 0 ≤ p ≤ 1, having mean m = Np.
Note that 0 ≤ m < 1 is the subcritical case, m > 1 the su-
percritical case, and m = 1 is the critical case discussed
above. We define the free version of this process by tak-
ing the “size” Zn of the nth generation as the sum-over-
paths of length n in the N -ary tree with freely independent
Bernoulli(p) edge weights. This is equivalent to defining
Zn = mnX

(n)
N , where X

(n)
N is the previously defined nor-

malized sum-over-paths for the free causal tree with (unit-
mean) edge weights Wσ ∼ Ber(p)/p. We conjecture that
X

(n)
N = Zn/mn converges in distribution to a nondegen-

erate limit for all m ≥ 1, although we have not been able
to prove this (except in the critical case m = 1), because
finding a fixed point μ of the Mandelbrot map appears
difficult unless m = 1. Of course, in a trivial sense the
phase transition behavior is still evident: EZn → 0 in the
subcritical case and EZn → ∞ in the supercritical case.

REMARK 4.9. In the late 1930s, the physicist, Leo
Szilard, reinvented the theory of Galton–Watson pro-
cesses to help explain how the production of free neutrons
in nuclear fission can lead to a sustained chain reaction.
An implication of Theorem 4.4 is that the quantum prob-
ability treatment of such processes has a nontrivial limit
precisely at criticality, in contrast to the classical Galton–
Watson process which dies out at criticality. Similarly,
the result furnishes an example of quantum stability for
a large particle system of the type suggested by Furey
(2015), as mentioned in the Introduction, in reference to
her proposal that irreversible time in the standard model
can be explained through the evaluation of algebraic ex-
pressions arising from causal trees.

REMARK 4.10. In the classical case, the sum-over-
paths Zn in Remark 4.8 is the number of paths connect-
ing the root to the nth level of the tree. The occurrence at
least one infinite path with positive probability is known
as bond percolation, as defined originally by Broadbent
and Hammersley (1957). Braga, Sanchis and Schieber
(2005) give an accessible introduction to percolation the-
ory focusing on Bethe lattices, which are infinite unrooted

trees in which each vertex has a fixed number of neigh-
bors (K ≥ 2, the coordination number). Bethe lattices are
of particular interest in statistical physics because prob-
abilistic models based on them are often exactly solv-
able. In the case of classically independent Bernoulli(p)

edge weights on the Bethe lattice, the critical probabil-
ity for percolation is p = 1/(K − 1), but percolation does
not occur unless p > 1/(K − 1). In the freely indepen-
dent case, however, as we have seen previously, perco-
lation occurs even at the critical probability. Further, at
criticality, the limiting distribution of the sum-over-paths
Zn from a fixed central vertex of the Bethe lattice to the
nth shell around it is Marčenko–Pastur μλ with parame-
ter λ = K/(K − 1). This can be seen by noting that any
fixed central vertex of the free Bethe lattice is connected
to K disjoint N -ary causal trees (each having N = K − 1
children at each vertex). Thus, by Theorem 4.4, the limit
distribution of Zn is the K-fold free additive convolution
[ν � μ1]�K , where ν = Ber(1/N), which coincides with
μλ from similar arguments in the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. By direct integration, the
Cauchy transform of the Marčenko–Pastur law μλ is

Gμλ(z) = z + 1 − λ − √
(z − 1 − λ)2 − 4z

2z
,

and it follows that the R- and S-transforms of μλ are
given by

Rμλ(z) = zG−1
μλ

(z) − 1 = λz

1 − z
,

Sμλ(z) = 1

z
R−1

μλ
(z) = 1

λ + z
.

The S-transform of ν is

Sν(z) = 1 + z

1/N + z

so the S-transform of ν �μ1 is

Sν�μ1(z) = Sν(z)Sμ1(z) = 1 + z

1/N + z
· 1

1 + z
= 1

1/N + z

which is the S-transform of μ1/N , so ν �μ1 = μ1/N . The
R-transform of [ν �μ1]�N is therefore

R[ν�μ1]�N (z) = NRμ1/N
(z) = N · z/N

1 − z

= z

1 − z
= Rμ1(z),

and we conclude that μ1 = [ν �μ1]�N , as required. �

Our last result shows that Wigner’s semicircle law is
the asymptotic distribution of the centered and normalized
sum-over-paths in the N -ary tree as N → ∞.
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THEOREM 4.11. In free causal trees for N ≥ 2,
suppose that all the edge-weights Wσ are identically
distributed with finite second moment and that XN ∼
μN , where μN is a unit-mean fixed point of the Man-
delbrot map Tν for the N -ary tree. Then XN → 1A
in L2(A) and

√
N(XN − 1A) converges in distribu-

tion as N → ∞ to Wigner’s semicircle law with density

2
√

(R2 − x2)+/(πR2) and radius R =
√
E(W 2

σ ) − 1.

PROOF OF THEOREM 4.11. From the definition of a
fixed point of the Mandelbrot map Tν , there exist freely
independent elements {Wi, i = 1, . . . ,N} that are equal
in distribution to Wσ ∼ ν, and freely independent ele-
ments {Xi,N , i = 1, . . . ,N} having the same distribution
as XN ∼ μN that are free of {Wi, i = 1, . . . ,N}, such that
(1.1) holds. This gives

E
(
X2

N

) = 1

N2

[∑
i �=j

E(WiXi,NWjXj,N)

+
N∑

i=1

E(WiXi,NWiXi,N)

]

= 1

N2

[(
N2 − N

) + N
(
E

(
W 2

σ

) +E
(
X2

N

) − 1
)]

,

where the last step follows from a standard free proba-
bility calculation of mixed moments; see, for example,
(1.14) of Mingo and Speicher (2017). Solving for E(X2

N),
we obtain

E
(
X2

N

) = E(W 2
σ ) + N − 2

N − 1
= R2

(N − 1)
+ 1,

so

E
[
(XN − 1A)2] = E

(
X2

N

) − 1 = R2/(N − 1) → 0

as N → ∞, proving the first part of the theorem. From
(1.1),

√
N(XN − 1A) =d N−1/2

N∑
i=1

(WiXi,N − 1A).

The terms (WiXi − 1A) in the above sum are identically
distributed, freely independent, have mean zero and vari-
ance

E
(
(WiXi,N)2) − 1 = E

(
W 2

σ

) +E
(
(XN)2) − 2 → R2

as N → ∞. The second part of the theorem then follows
from a special case of the free central limit theorem for tri-
angular arrays; see Corollary 2.3 of Chistyakov and Götze
(2008). �

5. DISCUSSION

The initial motivation for this paper came from a ques-
tion related to particle physics, but the idea of using suit-
ably rich algebras acting on themselves to explain the

behavior of complex causal tree structures may also be
useful in theoretical neuroscience. A longstanding yet still
highly controversial idea in that field has been that bio-
logical neuronal networks effectively operate near phase
transitions in order to enhance information processing
(the critical brain hypothesis); see Brochini et al. (2016)
for a recent study of the emergence of self-organized crit-
icality in neuronal networks, along with numerous refer-
ences to the literature (of over 500 papers) on this topic.

The critical brain yypothesis was initiated by some re-
marks of Alan Turing in his famous “Imitation Game” pa-
per (Turing, 1950):

“Another simile would be an atomic pile of less
than critical size: an injected idea is to cor-
respond to a neutron entering the pile from
without. Each such neutron will cause a cer-
tain disturbance which eventually dies away.
If, however, the size of the pile is sufficiently
increased, the disturbance caused by such an
incoming neutron will very likely go on and on
increasing until the whole pile is destroyed. Is
there a corresponding phenomenon for minds,
and is there one for machines? There does
seem to be one for the human mind. The ma-
jority of them seems to be subcritical, that is, to
correspond in this analogy to piles of subcriti-
cal size. An idea presented to such a mind will
on average give rise to less than one idea in
reply. A smallish proportion are supercritical.
An idea presented to such a mind may give rise
to a whole “theory” consisting of secondary,
tertiary and more remote ideas . . . ”

Turing’s use of the “atomic pile” simile to speculate on
criticality in cognition has an interesting connection with
our discussion of the free Galton–Watson branching pro-
cess (Remark 4.9). There is a further connection with the
(highly speculative) idea that the brain may function like
a quantum computer (the quantum cognition hypothesis).
The physicist Matthew Fisher recently made an intriguing
proposal in support of this hypothesis: the nuclear spins
of phosphorus atoms could serve as neural qubits (Fisher,
2015). Indeed, if the hypothesis is true, since neuronal
networks are typically organized as complex tree-like or
forest-like structures (Ascoli, 2015), it is conceivable that
their quantum behavior is reflected in the behavior of the
free Galton–Watson process, or percolation on the free
Bethe lattice, as we have described. Our finding that these
processes have a nontrivial limit precisely at criticality
may even be interpreted as circumstantial evidence that
quantum effects are present in the brain, since classical
versions of these processes die out at criticality.

An important problem left open by this work is to de-
termine whether phase transitions exist in free multiplica-
tive cascades. Indeed, despite showing that a stable high-
temperature phase exists for the free Galton–Watson tree,
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we have been unable to find any nontrivial examples of
free multiplicative cascades that have a low-temperature
phase (with δ0 as the limit distribution), even though we
think it highly likely that such examples exist.
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