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BAYESIAN ESTIMATION IN SINGLE-INDEX MODELS
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Abstract: Single-index models offer a flexible semiparametric regression framework
for high-dimensional predictors. Bayesian methods have never been proposed for
such models. We develop a Bayesian approach incorporating some frequentist meth-
ods: B-splines approximate the link function, the prior on the index vector is Fisher-
von Mises, and regularization with generalized cross validation is adopted to avoid
over-fitting the link function. A random walk Metropolis algorithm is used to sam-
ple from the posterior. Simulation results indicate that our procedure provides
some improvement over the best frequentist method available. Two data examples
are included.

Key words and phrases: B-splines, Fisher-von Mises, projection pursuit regression,
random walk Metropolis.

1. Introduction

Single-index models offer a flexible alternative to standard linear regression,
with the conditional expectation of the response Y; allowed to be an arbitrary
link function of a finite linear combination of predictors: E(Y;|X;) = f(X!6),
i = 1,...,n. The vector of regression coefficients 6, or index vector, is iden-
tifiable up to a constant of proportionality. The link function f is considered
an infinite-dimensional nuisance parameter. Such models arise in Friedman and
Stuetzle’s (1981) projection pursuit regression, and they have extensive applica-
tions in econometrics. Single-index models with Gaussian predictors were formu-
lated by Brillinger (1977, 1982). In this paper we propose a Bayesian approach
incorporating some frequentist methods, as well as useful prior information, into
the inference machinery.

Existing approaches to estimating the index vector are based on two meth-
ods: (1) average derivative estimation and (2) semiparametric M-estimation. The
average derivative estimation approach, introduced by Stoker (1986) and Pow-
ell, Stock and Stoker (1989), exploits the fact that the index vector is propor-
tional to the expected value of the (weighted) gradient of the regression function
E(Y;|X; = -), which can be estimated nonparametrically. The method pro-
vides a y/n-consistent estimator of the index vector, but may fail in practice
with high-dimensional predictors because of the curse-of-dimensionality. Various
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improvements and extensions have been studied by Hérdle and Stoker (1989),
Hérdle and Tsybakov (1993), Hardle, Marron and Tsybakov (1992) and Samarov
(1993). Asymptotic efficiency of the estimator has been studied by Newey and
Stoker (1993). A fast implementation using binning was developed by Turlach
(1994). Recently, a sophisticated method of iterative improvement was intro-
duced by Hristache, Juditsky and Spokoiny (2001a); this method extends to
multiple-index models, see Hristache, Juditsky, Polzehl and Spokoiny (2001b).
A goodness-of-fit test for the single index model has recently been developed by
Delecroix, Hall and Vial-Roget (2002).

The semiparametric efficiency approach derives an M-estimator for 8 based
on a nonparametric estimator of f with X/0, i = 1,...,n as the design points.
Various semiparametric estimators have been studied by Klein and Spady (1993),
Ichimura (1993), Horowitz and Hérdle (1996) and Delecroix and Hristache (1991),
among others. Hérdle, Hall and Ichimura (1993) considered the problem of band-
width selection. In some cases the estimators are shown to be /n-consistent and
asymptotically efficient. Chiou and Miiller (1998) developed a three-stage itera-
tive procedure to estimate the index vector, the link function and the variance
(modeled as a function of the mean response) in a quasi-likelihood version of the
single-index model, but a strong condition is imposed on the design and there
is no guarantee that the iterative procedure converges. Despite good theoretical
properties, the semiparametric approach often leads to computational difficulties
when attempting to evaluate the estimate of the index vector (which requires the
solution to a high-dimensional maximization problem).

The numerical instability of the existing approaches persists even with so-
phisticated bandwidth selection or iterative improvement techniques; see, e.g., Yu
and Ruppert (2002) and Carroll, Fan, Gijbels and Wand (1997). A Bayesian ap-
proach offers the hope of more stable estimates, especially for small or moderate
data sets with low signal-to-noise ratio. The price to pay is that the imple-
mentation needs computationally intensive Markov chain Monte Carlo (MCMC)
techniques. Nevertheless, the basic simplicity of the single-index model suggests
that Bayesian methods should be relatively easy to develop and implement. Our
aim in this paper is to implement the Bayesian approach in Matlab so that it
runs within a few minutes on standard desktop computers for moderately large
data sets.

Bayesian approaches have been successful with many other nonlinear re-
gression models in recent years, e.g., additive semiparametric regression (Biller
(2000)), semiparametric hazard function regression (McKeague and Tighiouart
(2000)), nonparametric regression with measurement error (Berry, Carroll and
Ruppert (2002)), and generalized linear models with parametric link function
determination (Ntzoufras, Dellaportas and Forster (2003)). To the best of our
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knowledge, however, a Bayesian approach has not previously been developed for
single-index models.

The prior distribution of @ is taken as Fisher—von Mises, which is a tradi-
tional model in the analysis of directional data (Mardia and Jupp (2002)). The
link function f is treated as another unknown and approximated by a linear
combination of B-spline basis functions with regularly spaced knots. The prior
distribution for the B-spline coefficients 3, conditional on 8, is specified as nor-
mal with the same dispersion matrix as the least squares estimator. This popular
conjugate prior is known as Zellner’s (1986) g-prior. We assign an inverse gamma
prior for the observation error variance 0. This framework allows 3 and o2 to be
analytically integrated out of the posterior, greatly simplifying the computations.

We add a regularization feature to avoid over-fitting the link function f.
Regularization could be achieved by adapting Smith and Kohn’s (1996) (see
also Kohn, Smith and Chan (2001)) variable selection procedure for the B-spline
basis coefficients. In our setting, however, this would slow down the MCMC by at
least an order of magnitude. Instead, we develop two simple ridge-regression type
modifications, either of which can be used to reduce the bias in the estimates,
leading to a much improved regression fit without additional computational cost.
The regularization is controlled by a smoothing parameter which is selected by
an empirical Bayes procedure.

We use a random walk Metropolis algorithm to sample from the regularized
posterior. The proposal distribution is taken as Fisher—von Mises, which is sam-
pled using an algorithm of Ulrich (1984). The resulting Markov chain is easily
seen to be geometrically ergodic.

We carry out a small simulation study to compare the performance of our
estimator with that of Hristache, Juditsky and Spokoiny (2001a) (HJS for short),
which seems to be the best of the existing frequentist estimators. The results
indicate that our procedure provides some improvement over HJS.

The paper is organized as follows. The Bayesian single-index model is for-
mulated in Section 2. The regularization procedure is described in Section 3,
and the random walk Metropolis algorithm in Section 4. Section 5 contains the
results of the simulation study, and two data examples are given in Section 6.

2. Model Formulation

We consider the single-index model
Y= f(X[0)+¢, i=1,...,n, (2.1)

where the Y; are scalar response variables, the X; are d-dimensional predictors,
and the ¢; are independent N(0,02) random errors. The unknown parts of the
model are the d-dimensional index vector @, which is normalized to have unit

euclidean norm, the link function f, and the error variance 2.
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The prior is defined in a hierarchical fashion, starting with @ and o2, and
then specifying the conditional distribution of f given @ and ¢? in terms of a B-
spline approximation. Some guidance on the choice of various hyperparameters
that are fixed (and thus treated as tuning constants) is given later. The prior is
specified as follows.

1. The prior of 8 is Fisher-von Mises with concentration parameter Aprior > 0 and
modal direction @pior. In other words, the prior density for 8 is proportional
t0 exp(Aprior® Oprior), for € in the unit sphere in RY,

2. The prior of 02 is inverse-gamma with density proportional to o~
(=B71672), 0 > 0. Here A > 0 and B > 0 are tuning constants.

3. Given 6 and 0?2, the link function f is represented by a linear combination of
B-spline basis functions:

2(4+1) oxp

K
Ft) =" B;B;(t), (2.2)
=1

where Bj is the jth B-spline basis function of degree ¢ based on m + 1 equis-
paced knots over the interval [ag, by, and K = m+q. Here ay = min{X/0,i =
1,...,n} —d and by = max{X/0,i =1,...,n} + § for some § > 0. For given
0 and o2, the basis coefficients have prior

B=(Brs-- s Bx) ~ N (By, 0*(XpXo) "), (233)

where Xj is the design matrix in the B-spline representation of f evaluated
at the ‘transformed design points’ X/0, i = 1,...,n, and ,39 = (XéX@ +
pl )_lXéY is the corresponding penalized least squares (or ridge regression)
estimator of 8. The positive integers ¢ and m, and 6 > 0, p > 0, are tuning
constants. The full definitions of B; and Xy are given below.

B-splines provide an attractive system of basis functions. Their simplicity
allows X, to be computed quickly compared with other systems, which is an
important consideration, because this matrix is recalculated at each step of the
sampler.

A B-spline basis function of degree ¢ consists of ¢ + 1 polynomial pieces of
degree ¢ such that the derivative of order ¢ —1 is continuous. Each basis function
is positive on its support, which is spanned by ¢ + 2 knots. To approximate a
function f on a finite interval [a, b], divide the interval into m subintervals using
m+1 equispaced knots z; = a+(i—1)hy,, i = 1,...,m+1, where hy, = (b—a)/m.
Each subinterval is covered by ¢ + 1 non-zero B-splines of degree q. The total
number of knots for the construction is m + 1 + 2¢, with the extra 2¢ knots
entering because we need to add ¢ knots to the left of a and ¢ knots to the
right of b. The number of basis functions needed to approximate f on [a,b] is
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K = m + q. The basis functions are written as B, j = 1,..., K with the index
j connecting the basis function to a unique knot.

The B-spline representation of f in (2.2)) allows the single-index model to be
written in the form

Y = B(X60)8 +e, (2.4)

where B is the matrix-valued function defined by B(t);; = B;(t;), t = (t1,...,tn)
eR", Y = (Y1,...,Y,) is the vector of responses, X = (Xi,...,X,) is the
original design matrix, and € = (e1,...,€,) is the vector of observation errors.
The design matrix in this form of the model is denoted Xy = B(X8). Note
that the basis functions B; used here implicitly depend on 6 through the interval
[ag, bg] that was arranged to cover the transformed design points X/6.

We suggest choosing Aprior in the range 100—700, depending on the degree of
confidence in the prior modal direction. The modal direction @, can be taken
as one of the existing frequentist estimates of 8; we have obtained good results
using the HJS estimator and when we tried an arbitrary @p.ior, the results were
poor. When nothing is known about the error variance, A should be small (say
0.001) and B large (say 100). For typical applications, ¢ = 2, m =15—20, and
d = 0.001 work well, cf. the number of knots used in Yu and Ruppert (2002).
These are only general guidelines, however, and for any specific application it is
important to experiment with various choices of Aprior, 4, B and m by examining
the plots of the estimated fit, as we illustrate in Sections 5 and 6. Automatic
data-driven selection of these tuning parameters could be handled by an empirical
Bayes procedure (we discuss this further in the next section), or, alternatively,
by assigning higher level priors, as in hierarchical Bayesian modeling. However,
we found in our numerical studies that the results are relatively insensitive to
variations in these parameters, so the extra effort required to implement such an
extension was not considered worthwhile.

3. Regularization

The posterior density of 6, derived in the Appendix, is proportional to
D(0) = (5(8) + 2/B)~ "2 exp(Apriord Oprior ) (3.5)

where

S5(0)=Y'Y-Y'X, (20 + %ZP(I — zglzp)) XY, (3.6)

X, = (Xéf(@ + pI)~! and Xy is B, with p set to zero. For a given 6, use of the
ordinary least squares estimator (i.e., Bg with p = 0) in place of Bg, and with
S(0) in ([B.6]) reducing to the error sum of squares, cf. Kohn, Smith and Chan
(2001), results in severe over-fitting and high bias in the predictions; this is hardly
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surprising because then there would be no variable selection or regularization
feature built into the prior for f.

We refer to our method of specifying the prior mean of 3 to be the penalized
least squares estimator 3y = argmin,(|[Y — XoB|% + p||B8]|%) as internal regular-
ization. Here || - || is the euclidean norm, p > 0 controls the penalty and I is
the K x K identity matrix. More generally, the P-spline methodology of Eilers
and Marx (1996) could be applied: I is replaced by a K x K symmetric positive
semidefinite matrix @, and the penalty term p||3|? is replaced by pB'Qg.

This contrasts with a simpler though not-strictly-Bayesian method we call
external regularization in which the ordinary least squares estimator is used as
the prior mean for 8 and the posterior is directly regularized by replacing S(8)

in (3:6) by
Sp(0) =Y'Y - Y'Xp2,X;Y. (3.7)

Both methods of regularization are computationally much less demanding than
the Bernoulli prior of Smith and Kohn (1996) for variable selection of the B-spline
basis coefficients.

The smoothing parameter p is an important hyperparameter that needs to be
selected automatically from the data. For this purpose we consider an empirical
Bayes procedure adapted to the MCMC technique of the next section. An optimal
p is selected at each MCMC update step via a type of generalized cross validation
(GCV) used by Yu and Ruppert (2001). Given 8, we minimize

n” Y — X

N = T w o) 9

where L(p) is the smoothing spline operator corresponding to p with

L(p) = Ls(p) +{I — Ls(p)} Xo{Xy(I — Ls(p)) Xo} " Xp{I — Ls(p)} (3.9)

and Ly(p)) = Xp¥,X)). Note that the trace of L(p) can be calculated in such a
way that only the traces of matrices of dimension dim(3) x dim(83) need to be
evaluated. The minimization of GCV(p) is carried out with @ replaced by its
current estimate.

When this procedure is repeated at each step of the MCMC, the sampler
converges to the empirical Bayes posterior distribution of €, see Casella (2001).
However, the knots and therefore the B-spline basis are modified at each step
of the MCMC, so this would be computationally demanding. We have already
noted that p mainly controls the smoothness of the estimated link function f
but has relatively little effect on the estimation of the single index 6. Thus it
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is reasonable to minimize GCV(p) just at the start of the MCMC run with the
HJS estimate in place of the unknown @; this is what we do in the sequel.

4. MCMC Algorithm

We use a random walk Metropolis algorithm to sample from the regularized
posterior. The proposal distribution is taken as Fisher-von Mises with concen-
tration parameter Apop, > 0 and modal vector given by the current value of
0 = &. The algorithm of Ulrich (1984) is used to generate the proposals from
the Fisher-von Mises distribution. The concentration parameter A,.op needs to
be calibrated to ensure that the sampler explores the state space adequately. We
have found by experiment that Ay, = 1,000 produces good results for small
and moderate datasets; this value is larger than that recommended for the prior
concentration parameter Apior. The acceptance probability for the proposal is
a(€.6) = min{1, D(8)/D(€)}.

The following result shows that the sampler is geometrically ergodic, so we
can expect good performance in practice. In particular, ergodic averages converge
rapidly, the Central Limit Theorem holds, and the standard technique of assessing
Monte Carlo error by the method of batch means is applicable. Even though the
proof is routine, we include it here for completeness.

Lemma 1. The random walk Metropolis sampler for the reqularized posterior
density of 0 is geometrically ergodic.

Proof. Note that the state space (the unit-sphere in R?) is compact and the
target density is bounded away from 0 and oo, as is the proposal density. The
random walk Metropolis Markov chain is therefore u-irreducible, aperiodic and
its state space is a small set, cf. Theorem 2.2 of Roberts and Tweedie (1996).
Here p denotes Haar measure on the unit-sphere in R%. It suffices now to check
the Foster-Lyapunov drift conditions in Theorem 14.0.1 and Theorem 15.0.1 of
Meyn and Tweedie (1993). In their notation, we can take the function V =1, C
as the whole state space, b =1 and A = 1/2. This completes the proof.

The sampler generates a sequence of index vector values with unit norm. We
estimate @ by the mean or the component-wise median of those values, renor-
malizing to obtain unit norm. Given such an estimate 9, the estimated fit for
the response vector at the tranformed design points is taken as 5(9,39 with 0 set
to . An alternative way of estimating the fit (as pointed out by a referee) would
be to average X@Bg over the sampler output for @, but we found this produced
less satisfactory results.

5. Simulation Study

The main goal of this section is to assess the performance of our estimator
of the index vector and the resulting fit through a simulation study. We compare
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our estimator with that of HJS, and with the results from a generalized additive
model. We also examine the behavior of the internal and external regularization
methods. The programs are written in Matlab and are available upon request
from the authors.

We first consider a single index model with d = 4 index coefficients described
by equation (ZI) and link function given by f(u) = u?e*. We use a moderate
sample size, n = 100, and two noise levels ¢ = 0.2 and ¢ = 0.5, which, given the
link function, correspond to a moderate and a low signal-to-noise ratio, respec-
tively (by signal-to-noise ratio we mean the integral of f2 over the interval [ag, by]
divided by 02). Each predictor X;, i = 1,...,n is generated independently from
the uniform distribution in the cube [~1,1]*. The index vector is taken to be
0 =(2,1,1,1)'//7. A typical simulated sample from (2I) with such parameters
and a noise level o = 0.5 is displayed on the left panel of Figure 1.

True signal (solid line) and Noisy data Estimated fit (solid line) and true signal
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Figure 1. A simulated example. Left display: the true link function (solid
line) and the response data at the true transformed design points; right
display: the estimated fit (solid line) using external regularization and the
true link function (dashed line).

For each value of the noise level, and each type of regularization, 100 sim-
ulation runs were performed holding the design and all other model parameters
constant, except the {¢;} which were regenerated for each run.

To measure the quality of our estimator (and that of HJS), we use two
different criteria: angle(8,8) = cos_l(éla), and sup norm sup;< <y |9] -0,
Throughout this section, the prior concentration parameter is taken as Aprior =
150 and the modal direction @0 as the estimate of HJS. For the parameters of
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the inverse gamma distribution specifying the prior distribution of o2, we chose
A = 0.001 and B = 100. The B-splines had 20 knots (m = 19) and were of
degree q = 2, reflecting assumed knowledge that the link function is smooth.
Edge effects were controlled using § = 0.001. The minimization of GCV(p) is
carried out on a grid of 20 p-values ranging from 0.1 to 4.

The random walk Metropolis algorithm was implemented as follows. We
chose Aprop = 1,000 for the concentration parameter of the proposal distribution,
reflecting our confidence in HJS’s estimate as a good starting point. This gave
an acceptance rate for the proposals of 52%. Roberts and Rosenthal (2001) have
shown that the optimal acceptance rate in terms of minimal Monte Carlo error for
this type of Metropolis sampler is 23.4%; although we have a slightly suboptimal
acceptance rate, the issue of optimality is not very important in our case as the
MCMC output is obtained so quickly. After a burn-in of 500 iterations, we used
4,000 iterations to obtain 9; the Monte Carlo error based on the 4,000 sampled
values of 8 was negligible.

The left panel of Figure 1 displays the true link function and the responses
at each of the transformed design points. The right panel displays the true and
estimated fit by our method; ‘fit” here is defined as the link function interpolated
from the estimated transform of the design points. It can be seen that the
estimated fit displays large variability in the lower part of the design interval,
probably due to the low signal-to-noise ratio on this part of the design.

That regularization is necessary for estimating the link function is illustrated
in Figure 2, which is similar to Figure 1, but with p = 0 (no regularization).
Clearly, the absence of any regularization has a disastrous effect on the estimates.

True signal (solid line) and Noisy data Estimated fit (solid line) and true signal
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Figure 2. Same as Figure 1 but with p = 0.

Figures 3 and 4 compare the performance of our estimator with the internal
and external regularizations to that of the HJS estimator, for two noise levels.
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The posterior mean is the best estimator in each case, and outperforms the
estimator of HJS. There are no significant differences between the two types of
regularization.
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Figure 3. Box plots of the error criteria over 100 simulation runs with noise
level 0 = 0.2, d = 4; left panels: external regularization; right panels:
internal regularization.
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Next we consider higher dimensional predictors. Using the same single index
model as before, but with d = 10 and 6 = (1,1,1,2,0,0,0,0,0,0)' /v/7, we find
that the Bayesian estimators continue to offer some improvement over HJS, see
Figure 5. For the same model, Figure 6 shows boxplots of the average squared
error of the fit from nonlinear least squares compared with our Bayesian approach;
the nonlinear least squares fit is obtained under the assumption that an oracle
provides the link function. Notice that the average squared errors have greater
dispersion for the Bayesian fit, but the means are almost identical, suggesting
that our approach provides an efficient adaption to the unknown link function.
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Figure 5. Box plots of the error criteria over 100 simulation runs with noise
level 0 = 0.5 and d = 10. Internal regularization.
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Figure 6. Box plots of averaged squared errors over 100 simulation runs with
noise level ¢ = 0.5 and d = 10; left: Bayesian fit based on the posterior mean
with internal regularization; right: fit based on nonlinear least squares with
an oracle providing the link function.

We next examine the behavior of the Bayesian single index model fit to a
departure from the model through nonlinear interactions between the predictors.
We simulated data from the model E(Y|U,V) = f(g(U) + h(V)), where f is
the standard normal cdf, g(u) = 0.5(exp(0.35u) — 1), h(v) = 0.5sin(7wv/3), and
the predictors U,V are independent N(0,4). The sample size is n = 100 and
o = 0.1. Note that g has a much larger squared-L?[—10, 10]-norm (29.2) than
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h (3.8), so the single index parameter estimate corresponding to U is expected
to dominate. Indeed, the posterior mean 0 = (0.9995,0.0325)", indicating that
only the variation due to the first predictor (U) is captured by the single index
model. Figure 7 (left panel) displays the single index model fit and the function
u +— f(g(u)) that it tends to approximate. In the right panel we plot the first
generalized additive model component obtained using the Splus script gam of
Hastie and Tibshirani, which is seen to be in quite close agreement with the
single index model fit.
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Figure 7. A simulated generalized additive model with two components
and a nonlinear link function; left: the single index fit (solid line), and the
approximated link function (dotted line); right: the single index model fit
(solid line), and the first component of the gam fit (dashed line).

6. Examples

We now test our methodology on two data examples. The first dataset
originated from a petroleum reservoir study conducted by BP Research, and
contains measurements on four cross-sections from each of twelve core samples.
Each core sample was measured for permeability, and the cross-sections analysed
for total area of pores, total perimeter of pores, and shape. The data are available
in the MASS Splus library of Venables and Ripley (1999). The aim of the study is
to predict permeability Y (a property of fluid flow) measured in milli-Darcies from
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the cross-section measurements, which are the end-product of a complex image
processing procedure performed at the University of Oxford, providing the total
area in pixels (area), total perimeter in pixels (peri), and shape = peri/ /area,
a measure of roundness of the pores in the cross-section. As permeabilities vary
greatly (6.3-1300), we have used a log scale.

To fit our Bayesian single-index model to these data, and in the second
example below, we used the following values of the tuning parameters: Aprior =
700, Oprior is again the HJS estimate, A = 0.001, B = 100, ¢ = 2, § = 0.001, and
m = 14. Here we used 15 knots rather than 20 due to the small sample size. The
concentration parameter of the proposal distribution is Apop = 1,000, and the
smoothing parameter, determined by GCV, is p = 1.82. The plot of the resulting
fit is shown in Figure 8.

Estimated fit (solid) and observed data

4 . .
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

single index

Figure 8. Permeability data example: estimated link function over the trans-
formed design points.

After a burn-in of 500 iterations, 4,000 iterations of the sampler gave pos-
terior mean 6 = (0.3418,—0.9343, —0.0463)" with corresponding componentwise
posterior standard deviations (0.0379,0.0150,0.0808). Note that the variables
area and peri dominate. Note also that the resulting index vector matches
closely with the first projection pursuit direction given in Venables and Rip-
ley (1999) for the same data. It also matches well with the HJS estimate
(0.3714,—0.9267, —0.0580)" with corresponding standard deviations (0.0425,
0.0183,0.0896)’.

For our second example, the dataset originated from an environnemental
study relating ozone concentration Y to three meteorological variables, namely
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wind speed, temperature and radiation. The data are daily measurements of the
four variables for n = 111 days (Chambers and Hastie (1992)). As the ozone
concentrations vary greatly, we have used a log scale. The smoothing parameter,
determined by GCV, is p = 1.86. The plot of the resulting fit is shown in Figure 9.

Estimated fit (solid) and observed data
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Figure 9. Ozone data example.

The posterior mean estimate of the index vector is 0 = (0.0817,0.5565,
—0.8103)" with corresponding componentwise posterior standard deviations
(0.0677,0.1248,0.0832)". This is close to the HJS estimate (0.0407,0.5263,
—0.8493)’, with corresponding standard deviations (0.0821,0.1469, 0.0886)". The
resulting fit also matches closely with the generalized additive model fit given in
Chambers and Hastie (1992) for the same data. Note also that the temperature
and wind variables in the second and third components dominate, which is con-
sistent with the conclusion of Chambers and Hastie.

In future work it would be of interest to extend our Bayesian single-index
model to allow o2 to depend on the index, or even on the mean response, cf.
the quasi-likelihood model of Chiou and Miiller (1998). This would not be a
straightforward extension however, because it would probably no longer be pos-
sible to integrate out o2 from the posterior, and a much more sophisticated
MCMC strategy would be needed.
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Appendix. Proof of (3.5)

The derivation of the posterior marginal distribution of € under internal
regularization requires some care, so we have included it here for completeness.
First recall the notation B, = X,X,Y for the prior mean of 3 given 6, where
Y, = (XpXo+pI)~ L

From Bayes formula, the joint posterior density of the parameters in the
model is

p(0,8,0°|Y) xp(Y[0,8,0°) p(B|6,0%) p(0)p(c?)

1 nd ~
” W o {_ﬁ(Y — XoB)'(Y — Xeﬂ)}
1

1 A e .
| det Xg|V/2(2m02)n/2 exp {_ﬁ(ﬂ ~By) 2ot (B~ 59)}

1 —1
PO Opin) ey o { 5 |-

By straightforward calculations, the first two exponential terms can be written
as

X . o o
exp {‘ﬁ2 (8568 —28/(1+ 25" S,) XY + Y'Y + Y'X,%,5; '8, XY } '

Thus, integrating out 3 yields

[ e {5z (Y= XoBy (Y = %) + (8- By)'=5 (6 - )|
1

" Tdet So[/2(2702)

= exp {—%Sl(m} /exp {—%ﬂ’([ + 2512p)XgY}
1

" Tdet %o 1/2(2702)

= exp {—%&(0)} ) (%(I + Zglxp)XgY) ,

n/2 dp

s {05518} dp

where S1(8) = Y'Y + Y'Xp%,%; !5, XY and ¢ is the Laplace transform of the
N(0,(c2/2)X0) distribution. Replacing ¢ by its familiar expression allows us to
write the last line above in the form

1 1 L
exp {—ﬁsa (0)} exp {@Y/XQAXéY} s
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where we denote A = (I + X,57")%0( + ¥,5;"). Note that A = 45, when
p = 0. The result of the above calculus can be restated as
1
AT
X exp {—i (i +51(0) — 1Y’)Z(,A)Z’) }
202 \ B/2 2 o)

The final step is to integrate out 0. This gives

p(97 02 ‘ Y) X exp(/\prioraloprior)

P(BIY) 5 D(6) = exD(pior Bpior) (S(6) +2/B)~ 44/,
5(6)=5.(0) — %Y’f(gAX’éY
=YY -Y'X, (20 + %zp(f - zglzp)) XY,
completing the derivation.
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