
 ((r> Board of the Foundation of the Scandinavian Journal of Statistics 1998. Published by Blackwell Publishers Ltd., 108 Cowley Road,
 Oxford OX4 IJF, UK and 238 Main Street, Cambridge, MA 02142, USA Vol 25: 589-601, 1998

 Product-limit Estimators and Cox Regression
 with Missing Censoring Information

 IAN W McKEAGUE

 Florida State University

 SUNDARRAMAN SUBRAMANIAN

 University of Maine, Orono

 ABSTRACT. The Kaplan-Meier estimator of a survival function requires that the censoring
 indicator is always observed. A method of survival function estimation is developed when the

 censoring indicators are missing completely at random (MCAR). The resulting estimator is a

 smooth functional of the Nelson-Aalen estimators of certain cumulative transition intensi-

 ties. The asymptotic properties of this estimator are derived. A simulation study shows that
 the proposed estimator has greater efficiency than competing MCAR-based estimators. The

 approach is extended to the Cox model setting for the estimation of a conditional survival

 function given a covariate.

 Key words: counting processes, incomplete data, Nelson-Aalen estimators, product integral,

 right censorship

 1. Introduction

 In this article we study inference from right-censored survival data in which the censoring

 indicator can be missing for some individuals. Let T denote the failure time of interest, Z a

 covariate vector, and let C be a censoring time that is conditionally independent of T given Z.

 We are given data on X = T A C and also on any covariates Z that are to be included in the

 analysis, but the indicator ( = I(T - C) is allowed to be missing. The problem is to estimate

 the survival function of T and to account for the covariate effect. Apart from the possibility that

 ( is missing, this is the classical survival analysis framework.

 The censoring indicator 6 may be missing for a variety of reasons, e.g. in a bioassay

 experiment some subjects might not be autopsied to save expense, or the results of an autopsy

 may be inconclusive; in population mortality studies relevant death certificate information can

 be missing due to emigration. We shall assume that the censoring indicators are missing

 completely at random (MCAR) in the sense that the mechanism for missingness is independent

 of everything else. MCAR is a special case of missing at random (MAR), which was introduced

 by Rubin (1976), see also Little & Rubin (1987), Heitjan & Rubin (1991), Jacobsen & Keiding

 (1995), and Gill et al. (1997).

 We first consider the problem in the absence of covariates. The survival function of T,

 denoted S, can be consistently estimated under MCAR by simply ignoring the missing data and

 applying the usual Kaplan-Meier estimator to the complete data. However, such a procedure

 (called the complete case estimator) would be highly inefficient if there is a significant degree of

 missingness.

 The first attempt to improve upon the complete case estimator was made by Dinse (1982)

 who used the EM algorithm to obtain a non-parametric maximum likelihood estimator

 (NPMLE). Lo (1991) showed that there are infinitely many NPMLEs, and each of them is self-

 consistent in the sense of Efron (1967). However, Lo noted that some of the NPMLEs may be

 inconsistent. He constructed two alternative estimators, one of which is consistent and

 asymptotically normal. Gijbels et al. (1993), further improved upon this estimator by taking a
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 product-integral of a convex combination of two estimates of the cumulative hazard function

 of T.

 Goetghebeur & Ryan (1995) considered a competing risks model in which cause-of-failure is

 missing at random. Their model is more general than ours in allowing two failure types having

 dependent latent failure times, and in allowing MAR instead of MCAR, but the two cause-

 specific hazard rates (or baseline hazards in the case of a Cox model) are assumed to be

 proportional. Instead, we consider the classical Kaplan-Meier model with independent censor-

 ing, but without any restriction on the hazard rates.

 We shall construct a new estimator for S. The observations are considered to be i.i.d.

 replicates of (X, $, a) where $ is the indicator that 6 is not missing and a = t6. It is assumed

 that $ is independent of T and C, and p = P(0 = 1) > 0. We will find it convenient to view

 this set-up as a four state non-time-homogeneous Markov process having state space

 {0, 11, 10, 00}, where "0" represents the initial state in which no failure has occurred, "11"

 and "10" represent ($, b) = (1, 1) and (1, 0), respectively, and "00" represents a missing

 censoring indicator. The process jumps at time X from state 0 into one of the absorbing states

 11, 10, orO0.

 The cumulative transition intensities AI,, Alo, Aoo for the transitions 0 -* 11, 0 -* 10,
 0 -* 00 can be expressed in terms of the cumulative hazard function of T (denoted by AT), P
 and the survival function of C. The cumulative hazard function AT can in tum be expressed as

 the functional (see section 2):

 AT(t) = q(A lo, A1 1, Aoo)(t) = A 1 1 (t) + ar(t)Aoo(t), (1.1)

 where 2(r) = A I I /(A I0 + A I 1). We shall plug into (1.1) the Nelson-Aalen estimators A1 o, A11 ,
 and Aoo of A1 0, AI,, and A 00. Finally, by taking a product integral we will obtain our estimator
 S. This estimator is easier to compute than the Gijbels et al. estimator, which involves a further

 step of estimating an optimal convex combination of two 'sub-optimal' estimators, and has

 superior small sample performance, see section 2. Moreover, its asymptotic properties are

 relatively straightforward to derive, being a consequence of (1.1) and standard results for

 Nelson-Aalen estimators, and a specially tailored analysis is not required.

 Note that A1iI underestimates AT and we need to compensate by adding a suitably scaled
 estimate of Aoo. The factor :r(t) represents the proportion of transitions to 00 that are
 uncensored failures. In the 'full data' case (p = 1) we have A00 = 0, and p = 1, SO AT reduces
 to the Nelson-Aalen estimator, and S reduces to the Kaplan-Meier estimator.

 We next consider an extension of our approach to the setting of Cox's (1972) proportional

 hazards model in order to account for the effect of the covariate Z. Here the conditional hazard

 function of T given Z z takes the form A(tlz) =Z0(t) exp (3'z), where ,3 is a vector of

 regression parameters and AO is a baseline hazard function. We assume that $ is independent of

 (T, C, Z). If only the complete case data are used, then Cox's maximum partial likelihood

 estimator of , is consistent and asymptotically normal, see Andersen & Gill (1982). Gijbels et

 al. (1993) introduced a more efficient estimator of P based on an optimal linear combination of
 estimating equations corresponding to the 0 -l II and 0 -> 00 transitions, and they showed that
 considerable improvements over the complete case estimator are possible. We propose an

 alternative estimating equation that treats the 0 -s 00 transitions in a way that is similar to our
 derivation of S. Our estimator improves upon the overall performance of Gijbel et al. estimator

 and it is computationally simpler. We also show how our basic estimator S can be extended to

 the Cox model setting for estimation of the conditional survival function of T given Z.

 Van der Laan & McKeague (1998) recently obtained an asymptotically efficient estimator of

 S in the more general setting in which 6 is missing at random (MAR), i.e. p is an unknown
 function of time. Although their estimator is efficient, it requires an artificial binning of the data
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 which can be unappealing in practice, especially for small samples. Our estimator S is

 inconsistent under general MAR, but it does not require binning of the data or any other

 smoothing technique, and is expected to have a better small sample performance under MCAR.

 The paper is organized as follows. Section 2 deals with estimation of the survival function in

 the absence of covariates. We give a brief review of existing estimators in section 2.1. The

 proposed estimator and its asymptotic properties are presented in section 2.2, and some

 numerical results are discussed in section 2.3. We treat estimation for the Cox model in section

 3. Existing estimators of ,B are reviewed in section 3.1. We propose a new estimator of ,3 and

 discuss its asymptotic properties in section 3.2. An estimator of the conditional survival function

 of T given the covariate is introduced in section 3.3. Some numerical results are given in section

 3.4. An important direction for further research is discussed in section 3.5. All proofs are placed

 in the appendix.

 2. Estimation of a survival function

 2.1. Review of existing estimators

 The observations consist of n i.i.d. replicates (Xi, sj, ai) of the generic triple (X, $, a) that was
 defined in the introduction. Lo's (1991) estimator of the survival function S is given by

 SL(t) F 11 r( ) _ ')

 where En = I1 dj/n is the proportion of observed censoring indicators, and r(t)
 #{j: Xj > t} is the "size of the risk set" at time t. Like the complete case estimator, SL jumps
 only at the uncensored failure times with known failure status. Note, however, that SL uses the

 full size of the risk set that would be used by the Kaplan-Meier estimator if all the 6''s were

 observed, so it makes more efficient use of the available data than the complete case estimator.

 Gijbels et al. (1993) observe that SL does not use all of the information from individuals with

 dj = 0, and they find a way to make better use of such information. They first estimate AT and
 then estimate S by taking a product integral (as in (2.3)). Their estimator of AT can be expressed
 as

 AGLY(t) = a(t)A I (t) + (1 - a(t))A2(t), (2.1)

 where 0 S a(t) 1 is specified,

 A A Al(t)= l()p

 A2(t) = Aoo(t)/(l - )-A10(t)/i.

 They estimate the function a(t) that minimizes the asymptotic variance of estimators of the form

 (2.1), and plug that back into (2.1). They point out that the choice a(t) =1 is equivalent to Lo's

 estimator.

 2.2. Proposed estimator

 The distinction between our approach and those of Lo (1991) and Gijbels et al. (1993) is that

 their estimators involve p, whereas the estimator S to be proposed in this section does not. We

 believe that our approach is preferable because p is an ancillary statistic under the MCAR model
 (its distribution is independent of the parameter of interest), so it does not contribute any

 information about S.
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 The distribution functions of T and C are denoted F and G, respectively, and the correspond-

 ing survival functions by S = - F and R = - G. The subdistribution functions Hkl(t)
 P(X - t, $ k, a = I)for (k, 1) G F = {(1, 0), (1, 1), (0, O)}, can be written as

 t

 Hio(t) = pf S_dG,
 0

 rt

 Hli(t)=PJ R_dF, (2.5)

 st

 Hoo(t) = (1 - p) J(S_dG + R_dF),
 o

 where S_(t) = S(t-) is the left-continuous version of S. The range of integration in (2.2) is

 [0, t]. The survival function H of X may be expressed in terms of these subdistribution functions

 as H = 1 - Z(k, l)EF Hkl-
 We shall consider estimation of S over an interval [0, T], where H(r) > 0. The three

 cumulative transition intensities for the non-time-homogeneous Markov process discussed in the

 introduction are defined on [0, r] by dAki = dHkl/HI, for (k, 1) e F. Let Ax denote the

 cumulative hazard function of X. Some basic equations relating these functions on [0, r] are

 Ax = Alo +All +A00,

 pAx = Alo + A1 1,

 PAT = All.

 These identities can be checked directly from (2.2), or more readily using the interpretation of

 the Ak! as cumulative transition intensities. The fundamental identity (1.1) is obtained by
 eliminating p from the last equation using the first two.

 The Nelson-Aalen estimators of the cumulative transition intensities Ak! are given by

 Akl(t) = I _
 o H(s-)

 where H and Hkl are the empirical analogues of H and Hkl. The estimator proposed by Lo and

 the Al and A2 estimators proposed by Gijbels et al. (1993) can be obtained from our basic

 equations by plugging-in the relevant Nelson-Aalen estimators and p. Specifically, Lo's

 estimator and Al arise from our third basic equation PA T = Al1, and A2 arises from

 AT = Aoo/(l - p) - Alolp.
 Our approach is to estimate AT by plugging the Nelson-Aalen estimators Ak! into (1.1) to

 obtain

 AT(t) = AI I (t) + fr(t)Aoo(t),

 where

 2>(t) A Al(t)
 A ,o(t) + A I I (t)

 Here f(t) is defined to be 0 when the denominator vanishes. Finally, our estimator of the survival

 function S is the product-limit estimator

 S(t) = H7(o,](1 - dAT(s)), (2.6)

 where ni denotes the product integral as defined by Gill & Johansen (1990).

 gj Board of the Foundation of the Scandinavian Journal of Statistics 1998.
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 The following result gives the asymptotic distribution of S.

 Theorem 1

 Suppose that F and G are absolutely continuous. Then /ii(S - S) converges weakly in D[O, T]

 to S . L, where L is a continuous zero-mean Gaussian process with covariance function

 cov (L(u), L(v)) = D1 1 (u)Dn 1 (v)Coo(u) + Doo(u)Doo(v)D 1i (u)D 1i (v)Cio(u)

 +(1 +Doo(u)DIo(u))(I +Doo(v)D1o(v))C11(u) (2.7)

 for u - v, and where

 C u dAkl(s) Akl(u)
 Jo H(s-) A Io(u) + A (u)

 An asymptotic 100(1 - a)% pointwise confidence interval for S(t) is given by

 S(t) ? zal2n172 V(t),

 where za is the upper a-quantile of the standard normal distribution and V(t) is a consistent

 estimate of the asymptotic variance of S(t) obtained by replacing the unknown functions in

 V(t) = S(t)2 var (L(t)) by their estimates. Simultaneous confidence bands for S can not readily

 be obtained from the above result, however, because of the complexity of the limiting covariance

 function.

 The proof of theorem 1, given in the appendix, uses the functional delta method of Gill

 (1989) in a similar way to Gill & Johansen's (1990) derivation of the asymptotic distribution of

 the Kaplan-Meier estimator. This approach works because S is a smooth (compactly differenti-

 able) functional of the Nelson-Aalen estimators Akl. Moreover, due to the interpretation of the
 missing censoring indicator model as a non-time-homogeneous Markov process, we can appeal

 to the standard weak convergence result for Nelson-Aalen estimators in that context. This

 makes the proof relatively straightforward, and avoids the lengthy covariance calculations made

 by Gijbels et al. (1993).

 2.3. Numerical results

 In this section we report the results of a simulation study comparing the performance of our

 estimator with that of the Gijbels et al. estimator. We based the comparison on mean integrated

 square error (MISE) over the follow-up period. The failure time and censoring distributions are

 taken to be exponential with parameters 1 and A, respectively, with A adjusted to give prescribed
 censoring rates.

 Figure 1 gives plots of the MISE as a function of the probability of non-missingness p for

 censoring rates 90%, 75%, 50%, sample size 100, and follow-up period [0, 1]. The MISE was

 estimated over a fine grid of values of p using 10,000 samples at each point on the grid.

 In all cases the proposed estimator is found to be more efficient than the Gijbels et al.

 estimator. Moreover, the relative efficiency of S with respect to SGLY, where SGLY denotes the

 survival function estimator of Gijbels et al. (1993), increases as p decreases and as the censoring

 rate increases. The proposed estimator makes significant improvements over SGLY when the

 censoring rate is at least 70% and at least 70% of the censoring indicators are missing.

 3. Adjustment for covariates using the Cox model

 In many applications it is necessary to adjust estimates of the survival distribution for the

 presence of risk factors, and to assess the influence of those risk factors. The standard way of

 ?) Board of the Foundation of the Scandinavian Journal of Statistics 1998.
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 Fig. 1. The MISE of the proposed estimator S(solid line) and Of 5GLY (dotted line) are plotted against the
 probability of non-missingness

 doing this is through a Cox proportional hazards model analysis, and in this section we consider

 an extension of our approach to deal with missing censoring indicators in this model.

 The observations now consist of n i.i.d. replicates (Xi, dj, ai, Zj) of the generic (X, $, a, Z),
 where Z is a p X 1 vector of bounded covariates and the conditional hazard function of T given
 Z is specified by the Cox model, as defined in the introduction. For simplicity, we have assumed
 that the covariates are non-time-dependent, but it is straightforward to extend our results to the

 time-dependent case. We begin with a review of existing estimators of the regression parameter
 /3, the true value of which is denoted 13n.

 ?) Board oft the Foundation of the Scandinavian Journal of Statistics 1998.

This content downloaded from 156.145.72.10 on Mon, 07 Jan 2019 15:47:12 UTC
All use subject to https://about.jstor.org/terms



 Scand J Statist 25 Missing censoring indicator 595

 3.1. Review of existing estimators

 When none of the censoring indicators are missing, the standard estimator of /3 is the maximum

 partial likelihood estimator fp which solves the estimating equation U(,P) 0, where
 n roo

 U(/3) >Zj(Zi - Z(/, t))dNi'(t).

 Here Niu(t) = 6iNi(t) with Ni(t) = I {X, ti,
 n

 E Yi(t)exp(f Zo)zi
 Z(/3, t) =n

 S Yi(t) exp (/'Zi)

 and Y1(t) = l{x,,t} denotes the at-risk indicator for the ith individual. Andersen & Gill (1982)
 showed that

 vlr(Pp - Po) 2- N(O, Z-),

 where Z - limnn,, n-'OU(Po)/IO/ is assumed to be positive definite.
 In the case of missing censoring indicators, Gijbels et al. (1993) proposed the estimating

 equation

 U 1I (/, oc) + DU* (/3, oc) O,

 where D is a certain p X p matrix,

 n ot
 Ul (P,I t) I f (Z- Z(P3, s))$j dNiu(s),

 i10

 U* (/, t) = |(Zi -Z-(, s)) (Il- dj) dNi(s) - A j dN, (s))

 and NC(t) (1 - 6i)Ni(t). They show that solutions of this estimating equation are asymptoti-
 cally normal, and they find the asymptotically optimal choice of D.

 3.2. Proposed estimating function

 The idea is to exploit the information in the 0 -O 00 transitions in a way that is similar to our
 approach in the absence of covariates. Define the estimating function corresponding to the

 0 -* 00 transitions by

 n rt
 U00(A, t) Zf (Zi - Z(1i, s))(1 - tj)dNi(s), (3.5)

 and the estimating function Ulo corresponding to the 0 -* 10 transitions by integrating with

 respect to Qj dNic instead of (1 - t,) dNi. We propose the estimating function

 U(3, t) UlI(P,I t) + ?rp(/3, t)UOo(/3, t),

 where

 kp(/,, t) = P(O,l t)(P(/,, t) + Q(VA, t)<',

 P(/3, t) = diag (UlI(/3, t)), Q(/3, t) = diag (U1o(/3, t)) and diag (v) is the diagonal matrix with
 diagonal v.
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 Our estimator ,3 is a solution to the estimating equation U(,/, oc) = 0. It can be shown that

 within any compact set containing P3o, a unique solution to this estimating equation exists with
 probability tending to 1 as the sample size increases, see the proof of consistency part of

 theorem 2. To show that /3 is asymptotically normal we need the following notation:

 Wi(t) = Zi -z ZOO, t),

 rt

 NCZ(t) J Wi(s) dNi (s),
 0

 -(/3 t) E(Yi (t) exp (/'Zi)ZI)
 E(Y1 (t) exp (/'Z1))

 rt

 NZt=|Wi (s) dNi (s),

 B(t) = diag{E(NCz(t))/E(NZj(t)), j 1, p}.

 Also, let v?2 denote the cross product vv' for any vector v.

 Theorem 2

 The estimator / is consistent and /3fn- Po) -D N(O, V), where

 V '-1 + (p1 - 1)Z-Y1E(Ncz(oo) - B(oc)Nz (0C))02@ '.

 The first term in V is the asymptotic variance of Cox's maximum partial likelihood estimator

 based on the full data, and the second term represents the effect of the missing censoring
 indicators.

 A consistent estimator of V can be obtained as follows. Note that if we suppose that the

 processes NJ' and Nic are observed, each term in V can be consistently estimated by plugging /3
 and p into the corresponding empirical estimator in place of the unknown P3o and p. Replacing
 those (unobserved) processes by 1- %JNJu and ,-%ldN.J, respectively, results in a consistent
 estimator of V.

 3.3. Estimation of the conditional survival function

 In this section we briefly discuss estimation of the conditional survival function S(tlz)
 P(T > tjZ = z) under the Cox model with missing censoring indicators. This will be done by

 plugging /3 and an estimate of the cumulative baseline hazard function AO(t) - ot 20(s) ds into
 the Cox model based expression for S(tjz).

 The baseline hazard Ao can be expressed in the same form as the basic equation (1.1) for AT,
 except that the cumulative transition intensities Ak! are now replaced by the functions

 Akl(t) J0E(Y1(s) exp(/3'Zi)

 This leads to the following consistent estimator of the baseline hazard function:

 AO(t) -A,?,(t) + f?(t)Aoo(t),

 where
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 A1 (t) +A 10(t)

 is defined to be zero when the denominator vanishes, and Ao is the empirical version of AO1.

 The estimator Ao reduces to Breslow's estimator when there are no missing censoring
 indicators.

 The resulting estimator of the conditional survival function is the product integral

 S(tjz) = H(o,t](I - exp (,'z) dAo(s)),

 cf. Andersen et al. (1993, p. 509). It is straightforward to show that S(tlz) consistently estimates

 S(tlz). It is also possible to prove asymptotic normality of S(tlz) using the techniques of
 theorems 1 and 2, but the asymptotic variance is complicated.

 3.4. Numerical results

 We carried out a simulation study to compare the performance of the proposed estimator with

 that of the Gijbels et al. and complete case estimators of P.

 The underlying Cox model was taken to be A(tlz) = exp (/oz), for Po = 0., 0.5, 1.0, and the
 covariate Z was standard normal. The censoring was exponential with the parameter adjusted to

 give prescribed censoring rates of 30% and 80%. In each case the mean square errors (MSE) of

 the various estimators were computed from 10,000 simulated samples of size n= 100, see

 Tables 1 and 2. The "full data" estimator is included for comparison. The results given in Tables

 1 and 2 are classified according to the value of p (0.8 or 0.5).

 The proposed estimator improves upon the Gijbels et al. (1993) estimator in terms of MSE

 when the censoring is heavy (80%) and there is a low proportion of missing censoring indicators

 Table 1. Z - N(0, l),p=0.8

 Full data Proposed Gijbels et al. Complete case

 Censoring

 rate P3o Mean MSE Mean MSE Mean MSE Mean MSE

 0.0 0.003 0.060 0.003 0.067 0.005 0.073 0.005 0.078

 80% 0.5 0.514 0.071 0.514 0.083 0.514 0.087 0.516 0.093
 1.0 1.014 0.101 1.017 0.118 1.016 0.125 1.018 0.134

 0.0 -0.003 0.016 -0.002 0.023 -0.003 0.023 -0.002 0.037

 30% 0.5 0.506 0.019 0.507 0.021 0.506 0.021 0.507 0.025

 1.0 1.011 0.027 1.102 0.031 1.102 0.030 1.014 0.035

 Table 2. Z-N(0, l),p = 0.5

 Full data Proposed Gijbels et al. Complete case

 Censoring

 rate Pob Mean MSE Mean MSE Mean MSE Mean MSE

 0.0 0.003 0.060 0.004 0.106 0.002 0.124 0.004 0.161
 80% 0.5 0.510 0.073 0.513 0.153 0.512 0.150 0.521 0.190

 1.0 1.025 0.101 1.046 0.202 1.042 0.203 1.057 0.254
 0.0 -0.003 0.016 -0.002 0.023 -0.003 0.021 -0.002 0.037

 30% 0.5 0.508 0.020 0.512 0.029 0.512 0.026 0.519 0.044
 1.0 1.012 0.0277 1.014 0.041 1.016 0.036 1.024 0.060
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 (p = 0.8). The degree of the improvement increases as the covariate effect (/&o) diminishes.
 Although ,3 can do slightly worse than the Gijbels et al. estimator (under light censoring and

 p = 0.5; see the last three rows of Table 2), it has the best overall performance. In terms of bias,

 the two estimators have very similar performance. Note that the censoring rate and p can be

 estimated under the MCAR assumption, and this information can be used to choose between the

 proposed method and the Gijbels et al. method.

 3.5. Further research

 One of the referees asked whether the MCAR assumption could be relaxed to allow the

 missingness to depend on the covariate. Our approach does not extend without modification to

 this case; in particular, the above simulation example shows that ,B can be quite biased when p

 depends on Z. Such an extension would be non-trivial because the "curse-of-dimensionality"

 implies that p(Z) is difficult to estimate for high-dimensional covariates unless it is assumed to

 be sufficiently smooth, as in logistic regression model on Z (cf Robins & Ritov, 1997). Such an

 extension is of considerable interest in applications, however, and would be a worthwhile

 direction for further research.
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 Appendix

 Proof of theorem 1. The product-limit functional q)(A T) = (1 - dAT) is compactly differenti-

 able with derivative [d/(A)(l)](t) =-S(t)l(t), for / c D[O, T], see Gill & Johansen (1990).

 Here we have used the continuity of S. We will show below that \/n(AT - AT) converges in

 distribution to the Gaussian process L in theorem 1, so the functional delta-method implies that

 (S-S) converges in distribution to-S* L S. L. This will complete the proof.
 Using (1.1) and the definition of AT we may write

 A00(t)DIA0 ()D1() "(ti(t
 V(AT(t) -A T(t)) =(1+ A0()D?t ) >(A 1(t)-XA (t))

 + D I I(t) v"(Aoo(t) -A00(t)) - o(t)DII (t) >(A (t) -A t
 A1 l l(t) + A lo(t)

 (3.6)

 where bi I is the empirical version of DI,. Now we apply the standard weak convergence result
 for Nelson-Aalen estimators of cumulative transition functions: (/I>(Akl - Akl(t));

 (k, 1) E F) -4 (Wkl; (k, 1) C F) on [0, T], where the Wkl are independent zero-mean continuous

 Gaussian martingales with covariance function cov (Wkl(u), Wkl(v)) = Ckl(u A v), see Andersen
 et al. (1993, p. 198). The assumed absolute continuity of F and G allows us to use the latter

 result, which requires the existence of transition intensities. The filtration used in this connection

 is the natural filtration of the four-state Markov process that underlies the missing censoring

 indicator model. It follows immediately from (3.6) that /ni(AT - AT) converges weakly on

 [0, r] to the Gaussian process

 L(t) = DI1(t)W00(t) - D00(t)D11(t)WI0(t) + (1 + D00(t)DI0(t))WII(t)

 which has the covariance function given in theorem 1. EZ

 Proof of theorem 2. This proof follows the basic approach of Andersen & Gill (1982) in

 deriving the asymptotic distribution of the maximum partial likelihood estimator /3p, and it also
 uses some of the steps taken by Gijbels et al. (1993).

 Taylor expanding U(/3, oc) about P3o and using U(/3, oc) = 0, it is seen that n-'/2U(/3o, oc)

 = n-lJ(/3*, oY)n1/2(/3 - /3), where ,3* is on the line segment between ,3 and Po, and J(f3, oc) is

 the partial derivative of U(,B, oo) with respect to ,3. Thus, once we have shown consistency of P,
 asymptotic normality will follow if we show that n-l2 U( 3o, .) converges weakly to a Gaussian
 process and n-lJ(/3*, oc) converges in probability to the non-singular matrix E for any

 P-* P 13. We only consider the case of a one-dimensional covariate, as the general case is
 similar.

 The following expression for U(,/, t) will be useful: U(/, t) = U11 (/3, t) + UD (/3, t), where
 UD(/, t) = Uoo(/3, t) - P(/3, t)U,o(/3, t), and P(,B, t) = diag(Uoo(/, t))((P(/3, t) + Q(/3, t))-'.

 We begin by establishing the weak convergence of n-1/2U(/o, .). To simplify the notation,
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 when an expression is evaluated at i8 / 3 we shall suppress its dependence on Po. First recall
 that the counting process Ni'(t) has intensity 2i(t) = A(tljZi)Yi(t) with respect to the filtration

 generated by the processes Nj", Yj and Zj, j= 1, ..., n. The corresponding martingale is
 Mi(t) = Ni' (t) - Jot i(s) ds.
 Note that n- 1/2 U1 I (t) is asymptotically equivalent to n- 1/2 U 1(t), where

 n rt n rt
 U11(t) W pE |Wi(s) dMi(s) + >(j -p) Wi(s) dNi (s).

 Next we obtain a suitable representation for UD (t). Note that

 n t
 j (Zi- Z(s))Ai(s) ds 0. (3.7)
 i=l

 Using Ni = N1u + Nic we may write

 n rt n rt
 Uoo(t) SE (Zi - Z(s))(1 - i) dMi(s) + E - (Zi-Z(s))(1 - di)(s) ds

 n rt

 + 5 (Zi - Z(s))(1 - tj)dNic(s).

 Then, since P(t) 1/p l(t) - 1 where

 n rt

 J(Zi - Z(s))T j dNi(s)

 p(t) = iIn 't
 P(Zi - Z(s)) dNi(s)

 we have

 P(t)Uio(t) = f(zi z(s))( ) - 1) i dNic(s).

 Using (3.7), this gives UD (t) = A (t) + A2(t) where

 n tn rt
 A1 (t) = f(Z1 - Z(s))(I - j) dM (s) + 3 (Zi - Z(s))(l - - ((I -p))Ai(s) ds,

 and

 A -O = E | (Zi-Z(s)) 1-A (t) dNic(s).

 Gijbels et al. (1993) (proof of th. 2) show that n- 1/2A (t) is asymptotically equivalent to
 n- 1/2A 1 (t), where

 n rt n rt
 A1 (t) = (1 - p) EJ Wi(s) dMi(s) - (- P) Wi (s) dNu (s).

 Next consider A2(t). Using cond. B and D of Andersen & Gill (1982) it can be shown that

 i, (t) - p = O(n-'/2). In addition, applying the delta method gives

 {t Board of the Foundation of the Scandinavian Journal of Statistics 1998.
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 n t

 AJOt =-E p-X (ti -P) (zi- Z(s)) dNi'(s)

 n t E~- E(Nicz(t)) + ( p- p i p) (Zi-Z(s))dNi(s)) E(N((t)) + rn(t),

 where supt 1r,(t)l = op(n1/2). Using lem. 1 of Gijbels et al. (1993) it can then be shown that
 n-1/2A2(t) is asymptotically equivalent to n-1/2A2(t), where

 n

 A2(t) =- p - j- p)(Nicz(t) - B(t)Niz(t)).

 We have shown that n' 2 U(t) is asymptotically equivalent to n-12 U(t), where U(t)=

 U01 1) +A1(t) +A2(t), which is a sum of n i.i.d. processes. Convergence of the finite
 dimensional distributions of n-1/2 U(_) follows. Tightness can be established as in Gijbels et al.

 (1993) using their lem. 1.

 We next prove consistency. Using the independence assumption of the MCAR model, it is

 easily shown (cf. Andersen & Gill (1982)) that n-1 UI1 (3, oo) converges uniformly in any

 compact set to pm(/3) almost surely, where m(/3) = E fo"(Z1 -(/3, t)) dNu(t). Similarly, using
 the decomposition

 n ) os

 ulD (I 00)=+ (Zi - Z(f3, s))(I - i) dNi(s)

 n roc

 + j(Zi - Z( 3, s))(l - dN1ic(s)
 il0 (3.8)

 n xc |(Z - Z(P, s))1 - dNi(S) n o
 n_ i-_ (Zi Z(Pl, s))tj dNic(s),

 S V (Zi - Z(3, s))dj dNi(s)

 it can be shown that n-I UfD(/3, oc) converges uniformly in any compact set to (1 - p)m(f3),
 since the contribution from the sum of the last two terms in the decomposition is asymptotically

 negligible. Thus n-1 U(,B, oc) is uniformly approximated by the continuous function m(/3),
 which has unique root 13o, and we conclude that /3 is consistent.

 It remains to show that n-'J(/3*, oo) converges in probability to Z. Along the lines of
 Andersen & Gill (1982, p. 1108), but also using the independence assumption of the MCAR

 model, we have that n-10U1I (/3*, oo)/O/3 converges in probability to pf. Similarly, using the
 decomposition (3.8), in which only the first term makes a contribution asymptotically, it can be

 shown that n l-OUD (/*, oO)/&/3 converges in probability to (1 - p)Z. This completes the
 proof.
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