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 Thomas and Grunkemeier introduced a nonparametric likelihood ratio approach to confidence interval estimation of survival
 probabilities based on right-censored data. We construct simultaneous confidence bands using this approach. The boundaries of

 the bands are contained within [0, 1]. A procedure essentially equivalent to a bias correction is developed. The resulting increase
 in coverage accuracy is illustrated by an example and a simulation study. We look at various versions of log-likelihood ratio-based
 confidence bands and compare them to the Hall-Wellner band and Nair's equal precision band. We also construct likelihood
 ratio-based bands for cumulative hazard functions.
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 1. INTRODUCTION

 Thomas and Grunkemeier (1975)-TG hereafter-

 introduced a nonparametric likelihood ratio (LR) method

 for obtaining confidence intervals for a survival function

 So (t) at a given time point t. Our problem is to construct a
 simultaneous confidence band for So (t) over the time span

 of interest. We show that TG's pointwise confidence inter-

 vals can be adapted for this purpose. Our approach is based

 on their nonparametric LR statistic

 R(p,t) = sup{L(S): S(t) p, S E 61 (1)
 L(Sn)()

 where e is the family of all discrete survival functions sup-

 ported by the uncensored lifetimes, 0 < p < 1, Sn is the
 Kaplan-Meier estimator of So, and L is the likelihood func-
 tion

 L(S) fJ [S(Ti-) -S(Ti)] f 5(T), (2)
 U C

 where the Ti are the possibly right-censored failure times.
 The first product in (2) is taken over uncensored times, and

 the second product is taken over censored times. Kaplan

 and Meier (1958) showed that Sn, given by (13), is a non-
 parametric maximum likelihood estimator in the sense that
 it maximizes L without constraint.

 Li (1995a) showed that the LR defined by (1) is un-

 changed when e is replaced by the set of all survival func-
 tions on the interval [0, oc), so it represents a "full" LR. The
 TG asymptotic 100(1 - a)% confidence interval for So(t)
 is given by

 {p: - 2 log R (p, t) < x2 ,} (3)
 where 0 < oa < 1 and x2 a is the upper oa quantile of the
 chi-squared distribution with q degrees of freedom.

 A simultaneous large-sample confidence band for So can

 be obtained essentially by replacing p and x2 a in (3) by a
 survival function and an appropriate threshold determined
 by the data. We obtain a LR-based confidence band of the
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 form

 B {S(t): -2 log R(S(t), t) < C2(t), t E [0, T]} (4)

 such that

 P(So E B) - 1- a, as n - oo, (5)

 where C(t) is given by (9) and T is the end of follow-up.

 The ratio L(S)/L(S,) may be regarded to be an "inverse
 distance" between S and Sn in the sense that the larger its

 value, the closer S is to Sn Thus B may be interpreted as

 a "neighborhood" of the Kaplan-Meier estimator Sn

 Note that for a fixed p, -2 log R(p, t) is the empirical LR

 for the upper p quantile and {to: -2 log R(p, to) < X2"}
 is the corresponding empirical likelihood confidence set.

 Owen (1988, 1990) used the empirical LR approach to
 construct confidence intervals for the mean, for a class of
 M estimates that includes quantiles, and for other differ-

 entiable statistical functionals in noncensored iid settings.

 This method has recently been further extended to deal

 with problems arising in linear regression, generalized lin-

 ear models, and other settings. It is advantageous to use
 empirical likelihood for several reasons. As noted by Hall

 and La Scala (1990), empirical confidence regions automat-
 ically reflect emphasis on the observed data set. This is

 seen in TG's confidence intervals for survival probabilities.

 Moreover, empirical likelihood regions are range preserv-
 ing and transformation respecting. That is, a LR based con-

 fidence interval for 0(O), a function of a parameter 0, is
 obtained by applying X to each value in the correspond-
 ing confidence interval for 0. This suggests that our LR
 confidence band for survival functions can be transformed

 to give a confidence band for the cumulative hazard func-

 tion A(t) = (S)(t) = fJt S(s-)-1 dF(s), t < T, where
 F = 1 - S. In Section 3 we show that this is a valid proce-
 dure.

 It was shown by TG and by Li (1995a) that L(S, t)
 -2logR(S(t),t) converges in distribution to chi-squared
 with 1 df for each fixed t E [0, T]. We consider the signed
 root-log-LR statistic
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 W(S,t)= sgn(S,(t) - S(t)) C(S,t) (6)

 and show that the process {f((t)W(So,t),t c [0,T]} con-
 verges weakly to a mean zero Gaussian martingale with
 variance that is consistently estimated by -2(t) = &-(t),
 given by (17). The limiting process can be transformed to

 a Brownian bridge BO, so that

 sup 3.(t)W(So,t) p> sup IB0(x)l, (7)
 tC[O,T] 1 + c2 (t) xG[O,d]

 where d is consistently estimated by d (2 (T)/
 {1 + 52(T)} (see Andersen, Borgan, Gill, & Keiding 1993,
 Chap. IV, Sec. 1.3). This result is used to construct our

 asymptotic 100(1 - oa)% confidence band for So:

 t3 = {s(t): ( ) (S (t) |< Kq,o(d) ,t C [0, T]
 1?8&2 (t) - qc)C,J

 = {S(t): JW(S(t), t)j < C(t), t C [?' T]}' (8)

 where

 C(t) - Kq,o(d) + 82(t) t > O, (9)

 C(O) = 0, and Kq,o(d) is the upper oa quantile of the dis-
 tribution of SUPxc[O,d] IB0(x)l. An explicit formula for the
 distribution was given by Hall and Wellner (1980, eq. 2.9).
 (Some critical values for different choices of oa can also be
 found in that work.) Because -2(t) is a step function, C(t)
 is also a step function, so the confidence band can be com-

 puted in finitely many steps (see Sec. 2). As we have seen
 in (4), the confidence band can be interpreted as a class
 of survival functions. The boundaries of the band are re-

 stricted by [0, 1], which is especially appealing for survival
 probabilities near 0 or 1.

 Simultaneous confidence bands for the survival function
 based on the limiting distribution of the Kaplan-Meier esti-
 mator, as obtained by Efron (1967) and Breslow and Crow-
 ley (1974), have been available since the work of Gillespie
 and Fisher (1979). The most commonly used confidence
 band is that due to Hall and Wellner (1980), HW here-
 after. They proposed the asymptotic 100(1 - a)% confi-
 dence band

 Sn (t) ? n- 1/2Sn (t)Kq,o (d) (1 + ?2 (t)), t C [0, T]. (10)

 This band reduces to the well-known Kolmogorov band for
 uncensored survival data. Another commonly used confi-
 dence band is the equal precision band (Nair 1984)

 1/2e &2~~ (3(t) Sn(t)?n-1/2e cSn(t)c3(t), Vt: a< 2 (2t)_ b. (11)

 Here ec, = ec, (a, b) satisfies

 {uC[Pxb][U(l- ie} l-1a.
 To construct this band, one must choose values of a and

 b. Some critical values for different choices of ae and a=
 1 - b were given by Nair (1984, tab. 2). The equal preci-

 sion (EP) band has the same form as the standard asymp-

 totic pointwise confidence intervals for So(t): Si,(t) ?

 Z./2n-1/2Sn(t)&(t). When there is no censoring, the band
 reduces to

 Sn(t) ? eCo, [nt(-S()]n (12)

 Nair's simulations indicate that the Renyi-type band de-

 scribed by Gill (1980) is generally inferior to the other
 bands, and thus we have excluded it from our numerical
 study.

 A shortcoming of the usual HW and the EP confidence

 bands is that they may contain values outside [0, 1]. One
 way to overcome this problem is to use the log-log transfor-

 mation, g(x) = log(- log x), or the arcsine transformation,
 g(x) = arcsinjix, suggested, respectively, by Kalbfleisch
 and Prentice (1980) and TG. The latter is variance stabi-
 lizing for the situation with no censoring. Our LR band

 does not require such an ad hoc procedure. Nevertheless,
 it is possible and advantageous to consider transformations
 to improve the approximation to the asymptotic distribu-
 tion. With the transformation that Nair used to obtain his
 EP band, we can have an LR band B = {S(t): L(S,t) <
 e2 (a, b)}. Essentially, this takes the same form as TG's con-
 fidence interval in (3), except that the threshold C2(t) is
 replaced by a fixed critical value larger than x2 .

 We recommend the LR confidence bands because, as we
 show herein (a) they have satisfactory coverage accuracy,

 (b) their boundaries are naturally contained in [0, 1], and
 (c) they are transformation preserving.

 The LR approach is useful in other incomplete data
 problems in survival analysis. For example, Li, Hollander,
 McKeague, and Yang (1996) found confidence bands for the
 quantile function, Li (1995b) gave confidence intervals for
 survival probabilities based on truncated data, and Murphy
 (1995) gave pointwise confidence intervals for the survival
 function and the cumulative hazard function.

 In Section 2 we introduce our two LR confidence bands
 and develop the requisite asymptotic theory. The second of
 these bands corrects for possible "small-sample" bias in the
 first band. We discuss LR confidence bands for cumulative
 hazard functions in Section 3. In Section 4 we illustrate
 our survival function bands in examples and report the re-

 sults of a simulation study. We compare our LR bands to
 the Hall-Wellner band and to Nair's equal precision band,
 including their arcsin and log-log transformed bands. We

 present proofs in the Appendix.

 2. CONSTRUCTION OF CONFIDENCE BANDS

 Our basic LR confidence band for the survival function

 is studied in Section 2.1. The bias correction is discussed
 in Section 2.2.

 2.1 Construction of Basic Likelihood Ratio Bands

 Let X1, . .., Xn be iid survival times with survival func-
 tion S, and let Ci, ... ., Cn be iid censoring times with sur-
 vival function Sc, independent of the Xis We observe
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 Table 1. The 1994 JASA Time-to-First-Review Data (Time in Days)

 Ti 8i T1 8i Ti 8i Ti 8i T1 8i Ti 8i T1 8i T1 8i T1 6, Ti 6, T1 8i

 214 1 201 1 28 1 252 0 118 1 187 0 28 1 28 1 76 1 56 0 28 0
 184 1 274 1 287 0 96 1 33 1 152 1 21 1 118 0 18 1 21 1 27 0
 150 1 265 1 195 1 175 1 69 1 46 1 1 1 40 1 88 0 55 0 27 0
 70 1 120 1 86 1 54 1 133 1 103 1 0 1 6 1 85 0 55 0 25 0
 16 1 141 1 137 1 167 1 126 1 37 1 144 0 91 1 85 0 54 0 25 0
 141 1 48 1 74 1 150 1 84 1 170 1 144 0 34 1 85 0 18 1 22 0
 210 1 204 1 71 1 219 1 197 1 64 1 140 0 21 1 20 1 54 0 22 0
 132 1 312 0 140 1 86 1 85 1 182 0 14 1 1 1 83 0 53 0 21 0
 30 1 220 1 22 1 1 1 15 1 180 0 0 1 111 0 82 0 50 0 21 0
 204 1 188 1 120 1 111 1 206 1 176 0 27 1 111 0 81 0 50 0 15 0
 84 1 84 1 176 1 128 1 125 1 175 0 23 1 1 1 81 0 1 1 15 0
 36 1 84 1 181 1 178 1 57 1 64 1 126 1 48 1 11 1 15 1 15 0
 38 1 215 1 155 1 40 1 181 1 42 1 139 0 110 0 77 0 50 0 1 1
 69 1 33 1 74 1 131 1 215 0 175 0 55 1 47 1 77 0 47 0 1 1
 33 1 55 1 29 1 20 1 3 1 149 1 137 0 68 1 70 1 47 0 14 0
 49 1 140 1 100 1 220 1 13 1 158 1 114 1 74 1 74 0 46 0 12 0
 203 1 147 1 195 1 84 1 175 1 169 0 56 1 98 1 71 0 16 1 12 0
 203 1 41 1 127 1 32 1 37 1 169 0 124 1 105 0 23 1 43 0 12 0
 218 1 94 1 34 1 95 1 182 1 22 0 121 1 104 0 28 1 43 0 8 0
 267 1 292 1 177 1 188 1 210 0 168 0 1 1 104 0 70 0 18 1 8 0
 99 1 131 1 150 1 115 1 92 1 157 1 27 1 103 0 44 1 43 0 8 0
 21 1 221 1 265 0 238 0 208 0 89 1 130 0 90 1 69 0 42 0 8 0
 78 1 39 1 174 1 1 1 30 1 165 1 130 0 98 0 68 0 42 0 7 0
 150 1 3 1 104 1 187 1 28 1 14 1 130 0 98 0 67 0 40 0 7 0
 237 1 16 1 203 1 125 1 168 1 161 0 127 0 98 0 64 1 0 1 7 0
 91 1 129 1 109 1 110 1 202 0 161 0 100 1 97 0 30 1 12 1 7 0
 21 1 210 1 217 1 32 1 114 1 159 0 126 0 96 1 41 1 39 0 6 0
 224 1 240 1 238 1 32 1 105 1 91 1 126 0 97 0 62 0 35 0 5 0
 126 1 141 1 210 1 228 1 196 0 146 1 28 1 18 1 61 0 35 0 5 0
 167 1 231 1 22 1 80 1 195 0 159 0 125 0 96 0 20 1 35 0 4 0
 105 1 119 1 148 1 64 1 114 1 134 1 125 0 92 0 57 0 30 1 1 0
 146 1 291 0 142 1 231 0 75 1 13 1 125 0 91 0 57 0 35 0 1 0
 50 1 199 1 126 1 64 1 194 0 159 0 95 1 91 0 57 0 34 0
 28 1 67 1 220 1 228 0 143 1 18 1 95 1 91 0 57 0 34 0
 288 1 263 1 145 1 18 1 106 1 155 0 123 0 31 1 57 0 34 0
 37 1 155 1 21 1 55 1 128 1 154 0 123 0 27 1 57 0 33 0
 18 1 189 1 256 0 154 1 200 0 124 1 123 0 83 1 42 1 33 0
 113 1 0 1 253 0 139 1 129 1 73 1 109 1 33 1 57 0 29 1
 22 1 209 1 22 1 91 1 138 1 51 1 119 0 11 1 57 0 28 0
 234 1 223 1 80 1 196 1 152 1 21 1 6 1 88 0 57 1 27 0

 ('l l v1 ... )v ('ln) 6n)7,) where Ti = min(Xi, C>i), 6i = l (Xi <
 Ci), and I(E) is the indicator of the event E. We reserve
 the notation So for the true underlying survival function.

 We introduce some notation as follows. Let Y(t)

 n I(Ti > t) be the number of individuals at risk just
 before time t, let N(t) = I (Ti < t, 6= 1) be the
 counting process that records the uncensored failures, and

 let AN(s) = N(s) - N(s-). The Kaplan-Meier estimator
 of SO is

 Sn(t) =fl(1 - AN(s), 0 < t < XI), (13)
 S<t Y(S)

 where AN(s)/Y(s) is defined to be 0 whenever Y(s)

 0. Due to tail instability of the Kaplan-Meier estimator,
 simultaneous confidence bands can be obtained only on an

 interval [0, T], where H(T) > 0 and H(t) = So (t)Sc (t). We
 fix such a T from now on.

 We show that W(So, t) converges weakly to a Gaussian
 process; that is the basic result for constructing our confi-

 dence band. To that end, recall from TG that

 L(S, t) = -2 , { [Y(s) - AN(s)]
 s<t

 x log (1 ? Y(s) -AN(s)) }

 + 2 {Y(s) log (1 + f))} (14)
 S<t YS

 where An = An (S, t) satisfies

 i (1 _ AN(s) )=S(t). (15)
 S<t

 To obtain an explicit expression for W, it is necessary
 to solve (15) for An. An explicit solution is not possible,
 but a suitable approximation for L(S, t) will suffice. Thus

 our first step is to find an approximation for A,. For future
 reference, we define

 dA(s)
 052(t) = JOS {A(,) t E [0) T]) r = 0,1, ... ,4)

 (16)
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 and a2 (t) = g2 (t). The asymptotic variance of the Kaplan-

 Meier estimator at time t is u2(t)S02(t). It is easy to show
 that

 &r2(= nr+l [ I(Y > 0) dN (17) r ~ J~yr+l(Y - AN)
 is a uniformly consistent estimator of a 2 (t), t E [0, T]. Also,
 denote &2(t) = &2(t) and

 K(S, t) = log Sn(t) - log S(t). (18)

 Theorem 2.1. The signed root-log-LR of L?(S, t) has an
 asymptotic expansion

 W(S t) = y?K(S,t) _ ? &1K2(S,t)
 a 3

 + 36\J (16&4 - 9&2&f2)K3(S, t) + ? (n-3/2)

 where the dependence of (Jr on t has been suppressed.
 This and all subsequent expansions involving Op terms
 hold uniformly in t over the interval [0, T].

 Remark 2.]. To find the asymptotic distribution of W,
 we need only the first two terms of the foregoing expansion.

 The two-term expansion of W is

 W(S, t) = )K(S,t) _ . &1K2(S,t) ?O0(n71) (19)
 a" 3 &

 To derive the limiting distribution of W, we need a lemma.
 Lemma 2.1. y?K(So, t) converges weakly to U(t) in

 D[O, T] as n -+ ox, where U(t) is a Gaussian martingale
 with mean zero and variance function a2(t).

 Theorem 2.2. &(t)W(So,t) converges weakly to U(t)
 in D[0, T], where U(t) is defined in Lemma 2.1.

 It follows from Theorem 2.2 that

 8(t)W(So0t) , U(t) (20)
 1 + &2(t) 1 ? o2(t)

 in D[0,T], so

 sup & (t) W(So t)D sup IBo(x) (21)
 tE[O,r] 1 ? O"2(t) XE[O,d]

 where

 d- l+ (2(T) d = - - ~~~~~(22)
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 Figure 2. Comparison of LR-, EP-, and Log-Logl-Transformed Bands for the JASA Data. See Figure 1 for key.

 because the processes B0{f2(.)/[1 + a2(.)]} and U(.)/[1
 + a2 (.)] have the same distribution.

 From (21) we can easily construct a confidence band for
 So 13 {S(t): C(S, t) < C2 (t), t E [O, T ] }; refer to (8). We
 call this band LR1.

 Because P2(t) is a step function, so is C(t). Suppose that
 there are k observed distinct uncensored life times, T(i) <

 < T(k). We can write C(s) = Zk=l aiIE%(S), where

 Ei = [T(i - )I T(i) )= 2,... Ik + 1, and T(k+1) = T. For
 each fixed i < k, piecewise constant confidence limits,
 [PL, PU], for S0(t), t E Ei are given by

 PL = J {1- Y (s)?L}
 S<t Ys)+A

 and

 S<t { Y(S) + Au }

 where AL < 0 < Au are the two solutions of the equation

 -2logR(A,t) = C2(t) = a 2, t E Ei (23)

 (see Li 1995a or Thomas and Grunkemeier 1975). We need
 to use a numerical algorithm to obtain the two roots of
 the foregoing nonlinear equation. The following two facts
 ensure the existence of exactly two roots, which are easy
 to find due to the monotonicity of -2 log R(., t):

 a. For each fixed t, -2 log R(, t) is strictly decreasing
 on the interval (D, 0] and increasing on [0, oc), where
 D = N(t) - Y(t). To see this, note that the partial
 derivative of -2 log R(A, t) with respect to A is

 (Y(s)- AN(s) + A)(Y(s) + A)' (24)
 which is negative for A E (D, 0), zero for A = 0,
 and positive for A > 0 (cf. Thomas and Grunkenmeier
 1975).

 b. -2logR(A,t) -* +oo as A -* +oo,-2logR(A,t)
 +oo as A -* D, and -2 log R(0, t) = 0.

 2.2 Bias-Corrected Likelihood Ratio Bands

 The function C(t) defined in (9) is based on the asymp-
 totic distribution of W. The departure of the actual distri-
 bution of W from its asymptotic distribution will directly
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 FiguJre 3. Comparison of LR-, EP-, and Arcsin- Transformed HW Bands for the JASA Data. See Figure 1 for key.

 affect the width of our confidence band, most critically in
 small samples. One way to overcome this problem is to
 bootstrap the distribution of W. An alternative approach
 is to use a correction or adjustment that can improve the
 approximation to the asymptotic distribution. DiCiccio and
 Romano (1989) introduced a mean adjustment to the empir-
 ical LR. In this section we follow their idea to obtain a bias
 correction to our confidence bands by adjusting L(S, t) to
 achieve a similar effect. From now on, a tilde placed over

 an expression indicates that it has been bias corrected. Let

 W(S,t) = (S t) + N/I 1 -5 3 a

 - \/?K(S,t) + (n-l) (25)

 where we have used (19). Note that

 W - V/TK(S, t) + op(n- 1/2

 because the second term in W is Op(n 1/2). They both have
 the same asymptotic distribution; that is, they satisfy (20)

 and (21). Ignoring terms of order Op(n-1) in 12, let

 2 r8~3 (S, t)
 ?(S,t) = ?(S, t) + 2 n 8.6l K

 nK2 (S, t) + Op(n-1) . (26)
 8&2

 Our bias-corrected confidence band is

 B = {S(t): ?(S,t) < C2(t),t C [O,I_]}.

 DiCiccio and Romano (1989) showed that a mean adjust-
 ment improves the coverage accuracy of certain empirical
 LR-based confidence intervals from Q(n-1/2) to 0(n-1).
 We expect the same improvement in our bias-corrected con-
 fidence bands, but because censoring complicates the prob-
 lem, a proof is beyond the scope of this article. In the case
 of pointwise confidence intervals for the survival probabil-
 ity, the adjusted confidence set is

 {p: -2 log R(p, t) < X,}

 where

 -1,a = ~ - 2 n8.2K3 (p, t)
 X~1,a = X1,-a 8.6
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 Figure 4. Effect of the Bias Correction on the LR Bands (JASA Data). (a) LRc, (dotted lines) and LR2c (dashed lines); (b) LRc, (dotted fines) and
 LR, (dashed fines); (c) LR2c (dotted lines) and LR2 (dashed lines); (d) LR, (dotted lines) and LR2 (dashed fines).

 and

 K(p, t) = log Sn (t) - log p.

 In Section 4 we provide examples and simulation results
 to examine the effect of the bias correction.

 3. LIKELIHOOD RATIO CONFIDENCE BANDS
 FOR CUMULATIVE HAZARD RATE

 Another problem related to determining confidence bands
 for the survival function is to construct confidence bands for
 the cumulative hazard rate

 A(t) = (S)(t) = -) t e [O] (27)

 Here we regard A as a functional X of S. The true un-

 derlying cumulative hazard rate is denoted by Ao. Confi-
 dence bands for Ao based on the limiting distribution of
 the Nelson-Aalen estimator A have been studied by many
 authors (see, e.g., Bie, Borgan, and Liest0l 1987). In this
 section we derive LR confidence bands for Ao and show

 that they arise from applying 0 to our LR confidence bands
 for So.

 The log-LR with respect to A is

 sup{L(S): 0(S)(t) = A(t),S E E} (
 R(A, t) = L(-),(28)

 where E is the same as in (1). We show that an asymptotic
 100(1 - a)% confidence band for Ao is given by

 A = {A(t): -2 log R(A, t) < C2(t), t E [O,]}, (29)

 where C(t) is defined by (9).
 It is well known that S may be expressed as the prod-

 uct integral S(t) = 7ro<s<t(l - dA(s)) (see, e.g., Andersen

 et al. 1993). Without constraint, A and Sn(t) = 70<8<t(i -
 dA(s)) are nonparametric maximum likelihood estimators
 (cf. Andersen et al. 1993, Chap. IV, Sec. 1.5). Murphy
 (1995) showed that the constraint alters A and thus S
 by changing the size of risk set: Y(t) is replaced by
 Y(t) + An (t), where An satisfies

 ZE YN(s) =A(t). (30)
 S<t
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 Figure 5. The Effect of the Bias Correction on LR1; With 95% LRcj
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 By Taylor's expansion,

 AN(s)

 Y(s) + An

 Y ) ( + Y() + + yk(S) +Op(r k/2))

 for k > 1, and it follows from (30) that

 2An &2 An ..+&2 An531 0= KA + -n i + +2 4 -5 +QOp(n-3), (31)

 where KA(A, t) = A(t) - A(t) and

 &r2( = nr+1 t I(Y > 0) dN r > 0. (32)
 r ~~~ yr+2

 Here c = 2. Note that 6. is also a uniformly consis-
 tent estimator of a2 (cf. Andersen et al. 1993, Chap. IV,
 Sec. 1). Thus asymptotically, we can replace (r by &r. Fur-
 thermore, An satisfies (A. 1) with K(S, t) replaced by KA.
 As a result, the signed root of -2 log R(A, t), say W(A, t),

 ?. . ... ....-i ,. .

 fi~ ~ ~ ~I ....'--

 0 0 0.2 0.4 0.6 0.8 1.0

 Time

 Figure 6. The Effect of the Bias Correction on LR2; With 95% LR2C
 Band (Dotted Lines) and LR2 Band (Dashed Lines).

 has an asymptotic expansion (19), with K(S, t) replaced
 by KA. The asymptotic distributions of #K(So, t) and

 V/_KA(AO, t) agree (cf. Lem. 2.1), so the same is true of
 W(Ao, t) and W(So, t). It follows that

 A = {A(t): IW(A, t)I < C(t), t E [0, 7]}

 forms an asymptotic 100(1 - a)% confidence band for Ao.
 From the definition of R(A, t) and (29),

 A= {q)(S): S E 3} (33)

 where B = {S: L2(S, t) < C2(t), t E [0,wT]}. Of course, in
 (33) we can replace B by B to get a bias-corrected LR band
 for Ao. Note that B = {S(t) = 7r,<t(1 - dA(s)): A E A}.
 As a result of (33), we can transform an LR confidence for
 SO into an LR band for Ao or vice versa. In general, this
 transformation-preserving property does not hold for other
 confidence bands such as HW and EP bands. It holds for
 the LR bands because W(So,t) and W(Ao,t) are asymp-
 totically equivalent and we use the LR approach instead of,
 say, inverting a goodness-of-fit test (see Nair 1984, sec. 3).

 There is a connection between the LR bands for So and
 general bands for Ao. To see this, assume that So (t) is ab-
 solutely continuous, in which case AO (t) = - log So (t).
 Using the Taylor expansion of log(l + x), it is easily
 shown that logSn(t) = -A(t) + 0p(n-1), where A(t) =

 fg Y (s)-1 dN(s) is the Nelson-Aalen estimator. It then fol-
 lows from Theorem 2.1 that

 & (t)W(So It) = -v/-n-(A(t) - Ao(t)) + Op(n-1/2). (34)

 Bie et al. (1987) showed that for any continuous nonnega-

 tive function b on [0, r ],

 sup v/A(x)-Ao(x)lV(x) D sup IB0(x)b(x)l, (35)
 O<x<r xE[O,d]

 where d is defined by (22) and V(t) = 0f{82(t)/[j +
 8r2(t)]}{1 + 8r2(t)}-1. They pointed out that using (35)
 with different choices of b(x) yields various types of con-
 fidence bands for Ao: A HW-type band is obtained by
 taking b(x) - 1, and an EP-type band corresponds to
 b(U) = [u(1 - U)]-1/2 for a < u < b, and 0 otherwise.

 Combining (34) and (35), we obtain

 sup 8c(t)W(S0,t)lV(t) i sup IB0(x)b(x)l. (36)
 O<t<r xE [O,d]

 This allows us to construct various types of LR bands for

 Ao and So by replacing C(t) in A and B by

 C* () K'q, ,(d) C(t) V(t)8f(t)

 where Kq,(d) is the upper aO quantile of the distribu-
 tion of SUPXE[O,d] IB0(x)b(x)l. The band LR1 for SO given
 in Section 2.1 is based on b(x) _ 1. In the sequel we
 shall also consider the EP-type LR band for So that uses
 C*(t) = eO(a,b); this band will be called LR2. The LR2
 band has equal precision at each point of So(t) in the sense
 that each interval forming the band has asymptotically equal
 probability that S0 passes through it. We restrict attention
 to these two LR bands plus their corrected versions, LR~
 and LRC2, as they are the easiest to implement.
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 Table 2. Observed Percentage Errors of the Nominal 95% LR, HW, and EP Bands Under Model I

 LR1 bands HW bands LR2 bands EP bands

 0 n LRc LR1 HW HW1 HWa LR2c LR2 EP EP1 EPa

 25 5.52 4.58 4.04 6.16 3.24 4.04 3.48 12.58 7.34 3.8
 oo 50 6.05 5.35 4.65 5.35 4.05 4.75 4.05 9.55 7.15 4.9

 100 6.25 6.0 5.3 5.85 4.8 4.8 4.4 7.85 6.45 5.7
 200 6.5 6.2 5.9 5.8 5.5 4.9 4.6 6.9 6.3 5.4

 25 4.7 3.88 4.18 5.76 3.76 4.1 3.44 11.46 7.26 4.12
 3.72 50 5.44 4.82 4.78 5.82 4.82 4.54 4.28 9.32 6.98 4.48

 100 5.46 5.12 4.76 5.36 4.96 3.52 3.42 7.34 6.8 4.64
 200 5.6 5.7 6.1 6.4 5.9 4.1 3.85 5.7 5.50 4.80

 25 3.7 3.18 4.72 5.4 3.92 3.98 3.4 11.42 7.08 4.08
 1.595 50 4.48 3.92 5.26 5.66 4.66 4.32 3.78 9.38 6.6 4.2

 100 4.5 4.4 4.5 5.05 4.7 4.45 4.45 6.65 6.6 3.9
 200 5.65 5.25 5.65 6.5 5.75 4.25 3.95 6.5 6.3 5.75

 25 1.5 1.46 3.92 4.88 1.74 3.06 2.56 11.08 6.62 3.3
 .605 50 2.42 2.16 4.92 4.24 3.32 3.76 3.4 9.76 6.06 4.14

 100 3.1 2.84 4.8 4.76 4.38 4.18 4.08 6.9 6.18 3.94
 200 3.7 3.55 5.3 5.2 5 4.45 4.25 5.9 5.85 4.7

 NOTE: 0 = oo corresponds to no censoring; 0 = 3.72, to 25% censoring; 0 = 1.595, to 50% censoring; and 0 = .605, to 75% censoring.

 4. EXAMPLES AND A SIMULATION STUDY

 In this section we investigate the performance of our var-
 ious LR confidence bands and apply them to a real data set.
 We compare LR1, LR', LR2, and LR' to their six com-
 petitors: HW, HW1, HWa, EP, EP1, and EPa, where HW1
 denotes the log-log-transformed HW band and HWa de-
 notes the arcsin-transformed HW band. Each of the bands
 has an asymptotic coverage level of 95%.

 4.1 Example 1

 We analyzed data on 432 papers submitted to the Theory
 and Methods Section of JASA between January 1, 1994 and
 December 13, 1994; see Table 1. Each observation consists
 of the number of days between a manuscript's submission
 and its first review or the cut-off date, along with a censor-
 ing indicator (1 if a paper received its first review by the
 cut-off date; 0 otherwise). The data are tabulated column-
 wise in the order of the submission dates. There are 275
 uncensored times and 157 censored times.

 The bands in Figures 1-4 were produced in less than 5
 seconds on a SUN Sparc 1. The HW band tends to be too
 wide in the lower and upper tails; its upper boundary may
 have values greater than 1, whereas its lower boundary may
 have values smaller than 0. Nair's EP band cannot avoid this
 shortcoming either. In his comparison of EP and HW, Nair
 (1984) reported that the former is narrower in the upper and
 lower tails, whereas the latter performs better in the middle
 of the distribution; this is also shown in Figure 1.

 LR' almost totally coincides with HW in the middle, be-
 tween 50 and 150 days, but is narrower in the two tails (cf.
 Fig. la); it is strictly contained in the HW band after 150
 days. Also, LR' is contained within EP between 50 and
 300 days, though the improvement is modest (cf. Fig. lb).
 The LR' band is narrower than HW in the tails, especially
 in the lower tail after 180 days, but is slightly wider than
 HW at times (cf. Fig. ic). Finally, LR' is very close to EP
 overall, but displays modest improvement in some regions
 (cf. Fig. Id).

 Due to the relatively large sample size in this example,
 the bias correction (cf. Figs. 4b and 4c) has almost no ef-

 Table 3. Observed Percentage Errors of the Nominal 95% LR, HW, and EP Bands Under Model 11

 LR1 bands HW bands LR2 bands EP bands

 0 n LRc LR1 HW HW1 HWa LR2c LR2 EP EP1 EPa

 25 3.82 3.18 4.46 5.42 3.76 4.06 3.3 11.16 6.96 4.24
 .5 50 4.5 3.98 4.88 5.72 4.58 4.12 4.04 9.06 6.76 4.18

 100 4.68 4.2 4.46 5.4 4.52 4.42 4.42 6.78 6.6 4.16
 200 5.9 5.7 5.5 6.2 5.55 4.5 4.5 5.9 6.2 5.6

 25 2.78 2.44 4.76 4.82 3.22 3.7 3.22 11.62 6.7 4.22
 1.0 50 3.8 3.28 5.58 5.04 4.62 4.08 4.06 9.52 6.4 4.48

 100 4.32 3.98 4.88 5.12 4.78 4.44 4.42 7.02 6.08 4.26
 200 4.45 4.1 5.5 5.8 5.2 4.65 4.54 6.1 6.15 5.25

 25 2.2 2.18 2.74 4.84 1.22 2.42 2.12 9.92 6.46 2.78
 2.0 50 2.82 2.52 4.12 4.02 2.48 3.32 3.02 9.4 6.14 3.74

 100 2.85 2.8 4.2 4.15 3.35 3.9 3.8 6.88 5.98 3.78
 200 3.75 3.65 4.85 4.5 4.45 4.45 4.1 6.1 6.15 5.25

 NOTE: 0= .5 corresponds to 33% censoring; 0= 1.0, to 50% censoring; and 0= 2.0, to 66% censoring.
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 Table 4. Observed Percentage Errors of the Nominal 95% LR, HW, and EP Bands Under Model 1ll

 LR1 bands HW bands LR2 bands EP bands

 (01, 02) n LRC LR, HW HW2 HWa LR2 LR2 EP EP, EPa

 25 1.92 1.46 4.46 5.1 2.42 3.16 2.38 10.44 6.18 3.26
 (1.35, 2) 50 3.38 2.84 4.98 5.14 3.9 4.18 3.7 10.62 6.42 4.46

 100 3.8 3.2 4.3 4.8 3.95 4.5 4.2 7.45 5.65 4.2
 200 4.35 3.95 5.0 4.9 4.9 4.75 4.65 10.6 8.0 7.3

 25 2.42 2.04 3.88 5.18 2.98 3.66 2.84 10.58 6.68 3.74
 (V2,) 50 3.56 3.24 4.62 5.52 4.2 3.82 3.66 8.58 6.72 3.98

 100 4.14 3.88 4.88 5.3 4.92 3.84 3.72 6.52 6.2 3.88
 200 4.85 4.55 5.5 5.9 5.45 4.3 4.1 6.05 5.65 4.95

 NOTE: (01, 02) = (1.35, 2) corresponds to 50% censoring; (0i, 02) = (62 2), to 35% censoring.

 fect. Nor do the log-log and arcsin transformations, except
 to force the boundaries of the HW and EP bands to be con-
 tained within [0, 1] (cf. Figs. 2 and 3). However, the trans-
 formations worsen the nonmonotonicity of the HW band in
 its lower and upper tails (cf. Figs. 2a, 2c, 3a, and 3c). For
 this reason, and because very little improvement in coverage
 probability accuracy is achieved using the transformations
 (see Sec. 4.3), we would not recommend their application to
 the HW band in this example. The upper boundaries of the
 LR bands are closer to the HW and EP bands than are the
 lower boundaries (cf. Figs. 1-3). There is little difference
 between LR1 and LR2, although LR2 is slightly narrower
 in the upper tail. The same can be said of the difference
 between LR' and LR' (cf. Figs. 4a and 4d).

 4.2 Example 2

 To illustrate the effect of the bias correction, we gener-
 ated 100 observations using So = standard exponential and
 Sc = uniform (0, .5), amounting to a 50% censoring rate.

 The bias corrections for the LR1 and LR2 bands over the
 range [0, 1] are shown in Figures 5 and 6.

 The bias correction significantly reduces the widths of
 both LR1 and LR2, especially in the lower tail of LR1. Also
 note that the lower boundaries are adjusted more than the
 upper boundaries.

 4.3 Simulations

 We now report the results of a simulation study to deter-
 mine the error rates of our LR bands and their competitors.
 The data were generated using the following models:

 I. So = standard exponential, Sc = uniform (0, 0)
 II. So = standard exponential, Sc = exponential with

 parameter 0

 III. SO(t) = e-6lt82 (Weibull), Sc = standard exponen-
 tial.

 The terminal point T was adjusted so that the effective
 sample size, nr = #{i: Ti > T} at T, was at least 10%
 of the total sample size; this was done to avoid instabil-
 ity in the bands at large T. Each observed error rate was
 based on 5,000 samples, and each of the confidence bands
 had nominal 95% coverage. From tables of Hall and Well-
 ner (1980), the asymptotic 95% critical level needed for

 the LR1, LRc, HW, HW1, and HWa bands is 1.358, and
 that for the LR2, LRc, EP, EP1, and EPa bands is 3.31.
 Note that LR2, LRc, and Nair's EP band are valid only

 for {t E [0, T] : a < {1&2(t)/[l + &2(t)]} < b}. We chose
 a = 1 - b = .05. The results are reported in Tables 2-4.

 The simulation results in Tables 2-4 clearly indicate that
 LRC, i = 1, 2, outperform EP to a great extent. This is not
 unexpected, because TG originally showed that the LR con-
 fidence intervals are more accurate than those based on
 the simple normal approximation to the distribution of the
 Kaplan-Meier estimator. Nair's EP band is a natural exten-
 sion of the intervals based on the normal approximation,
 whereas our LR bands are based on the LR method. In
 terms of coverage accuracy, LRi, LRc (i = 1, 2), HW, HW1,
 and HWa perform quite well. As shown by Nair (1984),
 the nontransformed EP band gives excessive error rates at
 small sample sizes. EP's large coverage error can be sub-
 stantially reduced by taking the arcsin or the log-log trans-
 formation, as shown by Borgan and Liest0l (1990). These
 authors also showed, however, that these two transforma-
 tions bring very little improvement to the HW bands. This
 is again confirmed by our simulation results.

 Note that under no censoring,

 C0(t) = Kq, a(d) 1 + 82 (t) _Kq, a(d)
 & ( t) ( n ) 1 /2

 which converges to Kq,ae(d)(SF)-1/2 Therefore, LRc and
 LR1 are valid only for a < Fn (t) < b, a similar condition
 required by the Nair's EP band. According to Nair's sim-
 ulation results, a and 1 - b should be chosen to be .05 or
 .1 for the bands to perform well. We already imposed this
 condition while choosing a = 1 - b = .05. If we choose
 a = 1 - b = .1, then the coverage error will be further
 reduced.

 The LR bands perform consistently well in Models I-III.
 Yet note that LR2 and LRc are less affected by the model
 than LR1 and LRc. The LR and HW bands are less affected
 by the censoring than the EP bands.

 The simulation results indicate that the LR bands
 are slightly conservative. This is not always the case,
 however-when T is large, the LR bands tend to have
 smaller than nominal coverage probabilities. To see why
 this can happen, recall that the LR bands have relatively
 narrow tails, so, unlike the HW bands, their coverage ac-
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 curacy is sensitive to changes in the terminal point T;
 they become less reliable as T increases. In the simulation
 study, the LR bands tended to be slightly more conserva-
 tive than the HW bands due to the strong truncation of
 the tails and because the LR bands are a little wider in
 the middle of the distribution. (See Fig. lc for an instance
 of this.)

 5. CONCLUSIONS

 The LR method provides an appealing approach to con-

 structing confidence bands for survival functions. The LR

 bands perform reasonably well in most cases. We recom-
 mend their use in view of (a) their adequate coverage ac-
 curacy, (b) the desirable feature that their boundaries are
 naturally contained in [0, 1], and (c) their transformation-
 preserving property. In particular, we recommend LR' for
 small sample sizes and LR2 for medium and large sample
 sizes.

 APPENDIX A: PROOFS

 Lemma A. 1 provides an approximation for the solution of (1 5),

 which is a first step in finding a suitable approximation for L(S, t).

 Lemma A.]. The solution of Equation (15) has the asymptotic

 expansion

 An(S,t) = - K(S,t) + nIM(t) K 2(S, t)

 n {3&2-(t)&-2(t) t)}K(S,t)
 810 (t)

 + Op(n-1) (A.1)

 where K(S, t) is defined by (18).

 Proof of Lemma A.1

 By (15), An satisfies

 Elog I1- yN(s)() }=log S(t). (A.2)

 Li (1995a) has shown that An = Op(nr1/2). In fact, this order of
 An holds uniformly for t E [0, T] due to (A.7), (A.8), and the
 uniform consistency of &2 (t). For the same reason, the various
 other remainder terms in this article have their specified orders

 uniformly in t E [0, T]. Using the Taylor expansions of log(l + x)

 and 1/(1 + x), we can then develop an expansion of

 log I1- AN(s) g Y(s) +An f

 which we rewrite as

 lo A1_/N(s) (1+An) }

 = log{1~ _ Fjj) (1k;() + Y2(s) -Op(n-3/2) }

 l log (1 - ____ )

 + log{I+ (I - ) > )

 AB,AN(s)_ A 2AN(s)52 ( An/ V( 2 \N ( + Op(n-5/ Y2 (S) Y3 (S)2j

 Here we have used n/Y(s) = Op(1) uniformly for s E [0, T],
 which is implied by the weak law of large numbers and the mono-
 tonicity of Y(s). It then follows from (A.2) that

 logS(t) = log Sn(t) + An (S)(Y(S)-N(s))
 S<t

 _2 AN(s) y2(S)(Y(s) - AN(s))
 s<t

 +*** + A,n S Y5(S)(Y(S) - AN(s)) +
 S<t

 Equivalently,

 ^2 An_ J2 An+ J2 An +O(n ), (3 O=K+u --al-n + + 174 + Op(n- (A.3) n n2 n5

 where we have suppressed t in T(t). It is difficult to obtain a
 closed-form expression for An, the solution of this whole equation.
 Instead, we find an expansion of An term by term. We begin by
 isolating the lowest order of An, noting that the coefficients have
 decreasing orders as the powers of An increase. From the equation

 K+&2 A+On (n 1)=0,

 we easily obtain

 n=- ^2 +P

 Because nK/&2 is of order Op(nl/2), we let A' =-n(K/&2)
 + G, where G is op(n 1/2). Then we substitute this A' into (A.3).
 Combining higher-order terms, we obtain

 [ ^2 1 ^2
 + Op(- ,3/2I G= IK2-pn /)

 which implies G = (ni&2/&6)K2 + Op(n-r1/2). This enables us to
 obtain the second term in the expansion of An, so that

 _nK n K2 + O(-1/2)

 82 6

 Repeating this iteration will give (A.1).

 Proof of Lemma 2.1

 Let 4(S) (t) = log S(t). We apply the functional delta method,
 which essentially allows us to approximate Vn(p(Sn) - (P(So))
 by dso(So)(Vni(Sn - So)) (cf. Andersen et al. 1993, thm. 11.8.1),
 where dp, the Hadamard derivative of p, is pointwise multiplica-
 tion by -1/S. The well-known weak convergence result

 n (Sn - SO) DSOU (A.4)

 (see, e.g., Andersen et al. 1993, thin. IV.3.2) then gives

 <~K(S0,t) -*U(t), as required.

 Before proceeding to prove Theorem 2.1, we record the follow-

 ing expansion of L:(S, t) (cf. proof of Lem. Al1):
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 L (S, t) =AnZ ~ Y~?~
 s<t (s) (Y(s)-(s))

 n24 E{(y(sv1AN(s)) (Yv))}

 + 2 s{(y(s)-AN(s))3 (;S)) }

 + Op(n-3/2)

 2 An 4 2 An 3 J2A 3/2
 n7 - - 7 + - .2 -n + oP(nJ12 (A.5)

 Substituting (A. 1) into (A.5), we obtain, after some lengthy calcu-
 lations,

 t nK2 2 n&2 K3
 L:(S,t) = &2 3 &6

 1 n(6&4 -3&2&2 )K4

 6 &10o

 1 n(6&2&2 - 3&2&2 )K5 + O5(n72) (A.6)
 +6 &12

 Proof of Theorem 2.1

 We expand W = sgn(Sn (t) - S(t)) /(S, t) term by term using
 (A.6). We begin by isolating the first term of L(S, t), nK2/&2, and

 let W = VYK/l&. Then let

 W n- jK(10 w = (1+ G)

 where G is small, and form the equation W2 = L(S, t); that is,

 K2 (I + 2G + G2) = L:(St

 The unknown of lowest order on the left side is 2n(K2/&2)G,
 which we equate to the term of lowest order on the right side
 of (A.6) (except for nK2/8-2 itself). This enables us to obtain
 - (&f2K/&f4), a first-order approximation to G. Then repeating
 this process, replacing W by (V'YK/l&) - (xY/13) (&f2K2/&5), to
 get the term of next highest order, yields the expansion of W.

 Proof of Theorem 2.2

 It follows from the uniform consistency of the Kaplan-Meier
 estimator (cf. Andersen et al. 1993, thm. IV.3.1) that

 sup logSn(s)-logSo(s) l O. (A.7)
 s E [O,rT]

 The inequality

 |ifi{log Sn(s) - log So(s)} 21

 < sup |logSn (s) -logSo(s)j|V| [logSn(S) -logSo(s)]I
 s E [0o,]

 then gives

 sup IV{logSn(s) s)}21 0, (A.8)
 sE [o,TJ

 by Lemma 2.1. Combining (A.8), (20), Lemma 2.1, and the uni-
 form consistency of &2 and 8-2 establishes the result.

 [Received April 1995. Revised January 1996.]
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