Workshop on Empirical Likelihood
Methods in Survival Analysis

lan McKeague
Department of Statistics
Florida State University




Outline

Background on empirical likelihood (EL)

Background on survival analysis




Classical likelihood ratio method

{F,} a parametric model

0 = 6(n) a g-dimensional parameter.

Likelihood ratio statistic:




Theorem (Wilks, 1938). Under mild regularity
conditions, if 8 = 6, then

—2log R(6p)—x>

Likelihood ratio confidence region for 6:

(0: ~2log R(0) < x2,.}




Background on Empirical likelihood

Thomas and Grunkemeier (1975) for survival function
estimation. Owen (1988, 1990, . .., 2001).

First developed for finite-dimensional features 6 = 6(F)




Advantages

Disadvantages

reflects emphasis on
the observed data
(cf. bootstrap)

better small sample performance
than approaches based on
asymptotic normality (uses
Neyman—Pearson critical regions)

confidence bands reflect the
range of the parameter

computational
problems more severe
than in Wald type
procedures (Lagrange
multipliers)

asympt of LR statistics
can be difficult to
develop beyond the
classical parametric
setting, e.g., Cox
model with interval
censoring




Empirical cdf

Nonparametric likelihood

n




EL ratio

~

R(F) = f((g)) = H np;

where (part of) the mass on X;isp; >0, > ", p; < 1.

To maximize R(F), only need consider F supported on
the data, i.e.,

n




Contours of EL ratio for n = 3

Simplex
{(Pbpzap?)) :pi = 0,p1 + p2 + p3 = 1}
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Lemma If R(F) > 7 > 0 then F places mass
m, = O(1/n) outside {X1,..., X, }.

Proof
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EL function
R(fo) = sup{R(F):6(F) =6}

Equivalently

sup{ L(F") : 0(F) = o}

R(0o) =

sup{ L(F")}
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EL for means

n=FE(X)cR?

R(p) = max {ani: Zpin- = p,pi = 0, sz- = 1}
1=1 1=1

1=1

Computation of R(u)?
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Example

Cavendish's Data Empirical Likelihood Function

4.0 4.5 5.0 556 6.0

Earth’'s Density Mean Earth Density

R(p) (solid curve); 95% confidence limits (dotted bars); from Owen (2001).

Louvain-la-Neuve Workshop May, 2002



14

Method of Lagrange multipliers

Maximize f(x) subject to the (multivariate) constraint g(x) = 0.

Find * = x*(\) maximizing f(z) — M'g(x) such that g(«*) = 0.
Then z* solves the constrained problem.




Geometric intuition available when ¢ is univariate

At the maximum, V f and Vg must be parallel: Vf = AVg for some
constant A\ (Lagrange multiplier).

Louvain-la-Neuve Workshop May, 2002
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Maximize .
log B(py,- -, pn) = »_ log(np;)
1=1

under the constraints:

nzpi(Xi —u)=0, 1- sz' =0
i=1 i=1

Write
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SO

. 0G
O:Zpic?pi =n+7
1=1

giving v = —n. Thus

1 1
Cn 1+ MNX —p)

Di

Plugging this back into the constraint:
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Theorem (ELT, Owen 1990) X, ..., X, iid with finite mean o,
finite covariance matrix of rank ¢ > 0. Then

D
~2log R(juo) 22

Sketch of proof Case d = 1. The Lagrange multiplier X is the
solution to

gN) =n"ty R =
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Thus A = (X — o) /62 + op(n~2) = Op(n='/?). Recall

1 1
n 14+ MX; — o)

Pi

so, using the Taylor expansion log(1 + z) = x — 22/2 + O(a?),

—2log R(pp) = —2 Z log(np;) = 2 Z log(1 + A(X; — o))
i—1 =
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This suggests the y*-calibration with threshold

ro = exp(—x?],a/Q)

for a 100(1 — «)% confidence region; actual coverage
l—a+0(m1).

Fisher calibration
d(n—1)

n—d Fd,n—d,a
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Bootstrap calibration

*

..., X2 iid from F),. Simulation used to find the upper

a-quantile of —2log R*(X), where

R*(X) = Ilax {ﬁnpii zn:piX: =X,p; > O,Zn:pz' — 1}
i=1 i=1 '

=1




Example

Counts of two types of aquatic larvae at 22 locations in Wales.
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Caddis fly larvae

Bivariate 95% confidence regions calibrated by X2 and by the bootstrap (larger region); from Owen (2001).

Louvain-la-Neuve Workshop

May, 2002
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Extensions

Smooth functions of means: 6 = h(u)

Linear functionals of F: § = E(h(X)) = [ h(x) dF(x).

Implicitly defined parameters: E(m(X,0)) = 0 where m(X,0) is
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Theorem Let X1,..., X, beiid, and suppose m(X, ) has finite
covariance matrix of rank ¢ > 0. If E(m(X,6y)) = 0, then

—2log R(@O)Lxg.

Proof Immediate from ELT upon some changes in notation: X is
replaced by m(X, #), which has mean zero when 6 = 6.

Notice the basic ingredients:
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EL simultaneous band for F

Local EL function at 8y = Fy(?):

sup{L(F) : F(t) = Fo(t)}
Rt) = sup{L(F)]

(F()(t) )nFn(t)( 1—F0(t) )n(l—Fn(t))
nFy(t) n(l—Fp(t))

()"
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Hence
Fo(t)
Fn(t)

—2n (1 — F,(t)) log

—2log R(t) = —2nkF,(t)log

1 — Fo(¢)
1 — Fn(t)

Taylor expanding log(1 + z) = x — 22/2 + O(2?) we have

2
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W standard tied-down Wiener process (Brownian bridge)
W standard Wiener process

Fo(t)

o?(t) = T Rol)
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Simultaneous confidence band for F' over an interval [a, b]:
{(t, Fo(t)) : =2log R(t) < Ca,t € |a,b]}

C, the upper a-quantile of

W2(t)

sup

te[62(a),62(b)]
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EL test for F' = Fj
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EL test for sym metry Einmahl and McKeague (2001): EL tests for symmetry, exponentiality,

independence and changes in distribution.

Hy: F(—x)=1— F(xz—), forall x > 0.
Local EL function:

~

_ sup{L(F) : F(—z) =1 — F(z—)}

R(x) , x> 0.

sup{L(F)}
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Point masses on observations in the respective intervals:

p/2 p/2 1—p
np1 nps n(l —p)’

p=pP1+p2, P1 = Fn(—2), po =1 — F,(x—). Maximum of

(p/2>nﬁ1 <p/2)n232( 1_p )n(l—ﬁ)
npi np2 n(l—p) ’
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+ nps log b

log R(x) = nplog

2p1 2p2
= nkF,(—x)log Falza) +1 = Fufz)
2F,(—x)

(1 — Fy(2—)) log Ln=0) £ 1= Fule)

2(1 = Fo(z—))
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Theorem Let F' be continuous. Then, under Hy

1 2
T. 2 /W(t)dt
0

t
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Survival analysis

Right-censored lifetime data

Observe n iid pairs (Z;, ;)

Zi = HliIl(Xz', Y;), 52 = I{XZ < Y;}, Xz and Y:,, independent.
F : cdf of X;

G : cdf of Y;
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Review of some basics

There is a 1-1 correspondence between survival functions and
cumulative hazards. If F' is continuous: A = —log(.5),

S =exp(—A).

Lemma If F'is a discrete cdf, the corresponding cumulative hazard

function is
AF(s)

AN =D T F oy

s<t

Conversely
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Proof Given a discrete chf A, write S(¢) =] [,.,(1 — AA(Z)). Then
S has chf A, because S(t—) = S(t)/(1 — AA(t)) and

S(t) = AF(s)
Sit-) 1—F(s—)

AAt) =1 —

Conversely, given a discrete survival function S, then
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Hazard functions

If F' has density f, define the hazard function
a(t) = f(t)/S(t) =~ P(X € [t,t+dt)| X >t)/dt

Thus

P(X € [t,t+dt)|X >t) ~ a(t)dt
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Counting process approach

N@#) =1{Z<t6=1)

At risk indicator: Y (t) = 1{Z >t}

t

Basic martingale: M (t) = N(t) — [, Y(s)a(s) ds

0
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Nonparametric likelihood

To maximize L(F'), we only need consider F' supported on the
uncensored lifetimes.
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Ordered uncensored lifetimes: 0 < T} < ... < Ty, 15 =0

hj — AA(TJ) =1-— S(TJ>/S(TJ_1) jump in chf at Tj

r; =Y o 1{Z; > T;} size of the risk set at T;—, with 71 = 0.
d; > 1 denotes the number of uncensored failures at T}.

Lemma If F'is supported on the uncensored lifetimes, then
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Proof Note that the number of censored lifetimes in |1}, T;41) is
r; — dj — Tj4+1 , SO

L(S) = H(S(Zi_)_S(Zi))(si(S(Zi))l_(si
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Nonparametric MLEs

L(S) is maximized when h; = d;/r;, giving the Nelson—Aalen
estimator:
d;

An(t) = Z 7“_

GT<t 4

Kaplan—Meier estimator:




43

Asymptotics

Assume now F' is continuous. Then

where
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EL function

sup{ L(5) : 6(S) = bo}

R(6o) sup{L(S)}

EL suddenly becomes difficult because of the censoring!

Unless 6(S) has a particularly simple form, R(6y) may be intractable.
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Known tractable forms of 8(S) or 0(A):
S (to)
A(to)

quantiles

linear functionals 6(F) = [ h(t) dF(t)
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EL for means

| inear functional

(e.g., mean lifetime).

F,, is an inverse-probability-of-censoring weighted average:
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E(h(X)) can be estimated by

1 h(Z;
EZ: — Gl )

Lemma

h(Z)6 )

E(h(X)) = E (1 (7
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Proof

F(F Gty ) = L de e

/0 1—G() ) /:O dG(y)dF ()
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Proof

F(F Gty ) = L de e

_ /0 1_G() E /:O 4G (y)dF ()

> h(x)
_ /O (L~ G dF@




49

If censoring cdf G were known, standard EL for means could be used
(everything inside the expectation is observable):

—2log R(0o, G)—=2.

Wang and Jing (2001) replace G by its Kaplan—Meier estimator and
show

—2log R(0y, Gn)chi

where ¢ Is an estimable constant.
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EL for the Cox model regression parameters

a(t|z) = ao(t) exp(8'z)

Estimating equation for (3:

EU(Bo)) =0

where U is the partial likelihood score function.
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EL for survival function at a fixed point
p = S(to), with tg fixed, 0 < p < 1.

Method of Lagrange multipliers is

S maximizing L(S) subject to the constraint S(to) = p is
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Equivalently,

o) = 3 tog (1= 25 ) = logp = —A(t

Theorem If S is continuous, 0 < p = S(t9) < 1 and G(tp) < 1, then

—21log R(p)—x>




Taylor expansion of g leads to

where 52

—2log R(p)

\ —

n(A(to)

is an estimate of o2 (¢).

2(log(L

_22

1: T <tg

A

(S) —

{ry

— log(

— Au(t0))/6% + Op(1)

)
) log (1 +

’I“j—dj

)

53
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EL simultaneous band for S

As a processin t € |a, b,

2log R(t) 2o (W<02<t))> : ,

Simultaneous confidence band for .S over an interval |a, b]:

{(t,S(t)) : —2log R(t) < Cy,t € |a,b]}




Example

Data on 432 manuscripts submitted to JASA during 1994. Time to first review censored by the end of the year.

Louvain-la-Neuve Workshop
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Estimated Probability (Red Line) that a First Review of a
JASA Manuscript Takes Longer Than t Days
With 95 % LR Band (Green Line) and HW Band (Blue Line).

Source : Holfander, McKeague and Yang (1997, Journal of the American Statistical Association)

May, 2002
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Two-sample problem with censoring

Comparison of treatment and placebo groups.

Notation
Index sample by j
Assume n;/n — p; > 0
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Standard method: logrank test for S; = Ss.

Wald-type comparison of S; and S5 using some smooth functio-

nal (S1,55) and the functional delta method typically leads to
intractable limiting distributions. Simulation needed.

Gaussian multiplier simulation technique

Martingale increments dM;(t) replaced by G;dN;(t), where
G; ~ N(0,1). (Lin, Wei and Ying, 1993)
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Q-Q plot

{(F7(p), F5 " (p)) : 0 < p < 1}

Einmahl and McKeague (1999) constructed an EL confidence band
for the Q-Q plot:

{(t1,t2): —2log R(t1,t2) < Cq,t1 € [a,b]}

where C, uses




Mayo Clinic trial Q-Q plot

Randomized clinical trial for primary biliary cirrhosis of the liver.

158 patients in treatment group, and 154 in placebo group.
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JASA time to first review Q-Q plot

JASA manuscripts data: 432 submitted in 1994, and 444 in 1995.
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May, 2002
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Relative survival

0(t) = Si(t)/S2(t)

More relevant than a Q-Q plot to medical practice and easier to
Interpret.

McKeague and Zhao (2002) construct an EL simultaneous band:

{(t,0(t)): —2log R(t) < Cia,t € [a,b]}
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Mayo clinic trail: placebo/treatment relative survival

<S4y <
(%] 1%
j c
8 2
3] ©
c c
2 o 2 o
= Empirical likelihood confidence band = Empirical likelihood pointwise confidence band
= Estimated ratio of survival functions = Estimated ratio of survival functions
e R =
2] n
2~ ER
o o
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ROC curve (P-P plot) {(Fi(x), Fx(x)) : x € R}
Claeskens, Jing, Peng and Zhou (2001): pointwise EL band using
kernel smoothing; no censoring.

Simultaneous band for differences in cumulative hazards:

Ay () — Az(t) = —log(51(¢)/52(1))

EL works without simulation, McKeague and Zhao (2002).
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Simultaneous band for vaccine efficacy: measured as 1 minus some
measure of relative risk (RR) in the vaccinated group compared
with the unvaccinated group (VE = 1 - RR):

vaccine t
VE(#) = 1 — Svaccinel?)
aplacebo(t)

Avaccine (t)

VE.(t) =1 —
( ) Aplacebo(t)

Halloran, Struchiner and Longini (1997)




65

EL test for equal hazard rates

Hy : al(t) — Oég(t), t € [a,b]
EL works if a > 0 as Hj is then equivalent to constant relative
survival:

S1(t)/S2(t) =6, t € |a,b]

for some (unknown) constant 6.

Use a plug-in estimate 0 in the EL function in place of
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Conclusion

EL shows great promise for further development in more complex

clinical trial settings.

As we have seen, simulation is often needed to adequately calibrate
EL for simultaneous inference in survival analysis.




