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Abstract 

It is shown that three important Gatlssian random fields arising in statistics can be transformed to Brownian sheet. The 
Kiefer process; the tleti:ttr~t:l ~i:~59¢flii~tl sheet, and the 4-sided tied-down Brownian sheet are treated in this fashion. An 
~l~l~lit~ailt)tt ~t~ ~hange-l~int analysis is developed. 

[ (~ords:  Innovation martingale; Kiefer process; Tied-down Brownian sheet; Change in distribution; Kolmogorov- 
Smirnov statistics 

1. Introduction 

Let b(t) be a Wiener process and b°(t) = b(t) - tb(1), 0~<t~< 1, the corresponding Brownian bridge. The 
martinsale part of the Doob~Meyer decomposition of b ° is 

ft bO(s). w(t)=b°(t)+ ~(as, 0~<t~<l, (1.1) 

which is also a Wiener process. The so-called 'innovation martingale' w plays a fundamental role in 
Khmaladze's (1988, 1993) theory of goodness-of-fit tests. The innovation martingale is adapted to the filtration 
generated by b °, and the transformation b ° ~ w is one-to-one (Khmaladze, 1988). The inverse transformation 
is given by 

f0 t w(dz), (1.2) 
1 

b°(t) = (1 - t) 'i .... O~<t~<l. 

* Corresponding author. 
I Research partially supported by NSF Grant ATM-9417528. 
2 Research partially supported by NIH Grant T32CA09667. 

0167-7152/96/$12.00 @ 1996 Elsevier Science B.V. All rights reserved 
SSD10167-7152(95)00140-9  



312 1. V~ McKeague, E Sun/Statistics & Probability Letters 28 (1996) 311-319 

The above transformation can be generalized to yield the innovation martingale of  any process of  the form 
~(t) = b(t) -K( t )~ ,  where ~ is any random variable, K(t) = fo k(s)ds, and k(t) is a nonrandom function in 
L2[0, 1] such that f} k2(s)ds > 0 for all t < 1. The innovation martingale is now 

' f~ k_(u) dq(U)k(s ) ds, f 
w(t) = tl(t ) - Jo fs 1 k2(v) dv 0~<t~<l, (1.3) 

which is again a Wiener process. Here the stochastic integral with respect to t/ is defined in terms of  the 
Wiener integral with respect to b; see, e.g., Kallianpur (1980, p. 135). 

McKeague et al. (1995) extended these transformations to a class of  random fields defined in terms of  a 
Brownian sheet B on [0, 1] 2, which is a continuous Gaussian process with mean zero and covariance function 
cov(B(tl,zl),B(t2,z2)) = (tl A t2)(Zl A z2). Their transformation is given as follows. 

Proposition 1. Let B be a Brownian sheet. Given any random variable ~, and continuous function k: [0, 1] 2 --~ 
such that fulk2(s,v)dv > 0 for O~<u < 1, O~<s~<l, let q( t , z ) - - -B( t , z ) -K( t , z )~ ,  where K ( t , z ) =  

foZfo ' k(s,x) ds dx. Then 

fo~ [ f o / l  k(s'u)k(s'x) dq(s,u)] dx (1.4) W(t,z) : q(t,z) - x fx 1 k2(s,v)dv 

is a Brownian sheet on [0, 1] 2, where the stochastic integral with respect to ~l is defined in terms of  the 
Wiener integral with respect to B (e.9., Wong and Zakai, 1974). 

McKeague et al. (1995) used this result to derive a consistent, distribution-free test for the independence 
of  a survival time from a covariate. 

The purpose of  the present paper is to give a further statistical application of  this result, namely to non- 
parametric chafige-point analysis. We derive the specific forms of  the transformations in Section 2. The 
change-point application and the results of  a simulation study designed to assess the value of  the approach 
are presented in Section 3. Proofs of  some asymptotic results needed in Section 3 are given in the Appendix. 

2. Transformations 

I11 this section we obtain some interesting transformations of  a few familiar Gaussian random fields to 
Brownian sheet. Let B denote a Brownian sheet. 

Example 1. Transformation of  a Kiefer process to a Brownian sheet. 

A Kiefer process can be represented in terms of  a Brownian sheet by :~{(t,z) = B(t ,z)-zB(t ,  1), see Cs6rg6 
and R6v6sz (1981, p. 80). In Proposition 1, let k(t,z) = 1 and ~ = 0. Then 

= B(t,z) - f z  B(t, 1) - _  B(t, x) dx W(t,z) 
Jo 1 x 

1 ) ÷  flz B(t, x) - xB(t, 1 ) B(t,z) zB(t, -1 - - x  dx 

: SU(t,z) + fo z __J~U(t' X) l_x  dx (2.1) 
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is a Brownian sheet. Since for each fixed t > 0, t - l /2w( t ,  .) is a Wiener process and t-1/23f~(t, .) is a Brownian 
bridge, it follows from the one-to-one relationship in (1.1) that the transformation (2.1) o f  the process ~,~'(t, z) 
is invertible. The solution to (2.1) is 

fo z 1 W(t, dx). (2.2) JF(t ,z)  = (1 - z) 1 - x 

Example  2. Transformation of  a tied-down Brownian sheet. 

The tied-down (or pinned) Brownian sheet is defined in terms of  a Brownian sheet by B°(t ,z)  = B ( t , z ) -  
tzB(1, 1), see Gaenssler and Stute (1979, p. 225). It arises as a weak limit o f  empirical distribution functions 
in two dimensions. In Proposition 1, let k ( t , z ) =  1 and ~ = B(1, 1). Then 

= BO(t,z ) _ fo z B°(t, 11 ) - -B°(t'x x)  dx (2.3) 

is a Brownian sheet. However,  unlike the one-to-one transformation (1.1) between the Wiener process and the 
Brownian bridge, the relationship (2.3) is no longer invertible since for any random variable 4, the process 
B°(t ,z)  - tz~ is a solution to (2.3). 

Example  3. Transformation of  a 4-sided tied-down Brownian sheet. 

The 4-sided tied-down Brownian sheet is defined by 

Be(t,z) = B( t , z )  - tB(1,z)  - zB(t, 1 ) + tzB( 1, 1 ). 

Notice that 

Be(t,z) = >U(t,z) - t ~ ( 1 , z ) ,  

where J ( ( t , z )  = B ( t , z ) -  zB(t, 1) is a Kiefer process. Let W be the Brownian sheet obtained by (2.1). It 
follows from Example 1 that 

fo z :- W( t , z )  - tW(1 , z )  (2.4) 
Be(t ,x)  

~ * ( t , z )  = Be(t ,z)  + 1--- x dx 

is also a Kiefer process, and the transformation (2.4) is invertible, with 

~ z 1 ~ * ( t ,  dx). (2.5) Be(t,z) = (1 - z )  1 - x  

Eqs. (2.4) and (2.5) give a one-to-one relationship between the Kiefer process ~((,* and the 4-sided tied-down 
Brownian sheet B e. 

Let W* be the Brownian sheet obtained by transform (2.1) o f  ,~#*. Then 

fo ' ~ * ( s , z )  
W*(t , z )  = oU*(t,z)  + -1 ~ s  as 

fz f, Be(s,z).  o:fo' BO(s,x) Be(t 'X) dx + -1--- s a s +  = B e ( t ' z ) +  1 ----'--~ (1 - - -~((1--x)  d s d x  (2.6) 
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is a Brownian sheet. This transform is one-to-one with inverse 
z , 

Bc(t,z) (1 - t)(1 - z )  (1 - s ) ( 1  - x )  

It is easily seen, in view of  the symmetry between t and z, how to generalize the transformations (2.6) and 
(2.7) to higher dimensions. 

3. Nonparametric change-point problem 

The stochastic processes mentioned in the previous section arise in a variety of  hypothesis testing situations. 
In this section we explore one such application and present the results of  a simulation study. The nonparametric 
change-point problem has been studied by Cs6rg6 and Horvfith (1987) and Hawkins (1988), among others. 
Let X,, i ~> 1, be independent continuous random variables with corresponding distributions functions Fi. We 
wish to test the null hypothesis 

Ho: Fi = Fo, i =  1 . . . . .  n, 

where Fo. is a fixed distribution function (possibly specified), against the alternative that there is a change in 
distributiQn: 

HI: Fi=Fo, i =  1 . . . . .  "c -  1 and Fi=F~¢Fo,  i='c ..... n, w h e r e ' r E  {2 . . . . .  n}. 

The null hypothesis H0 states that there is no change in distribution from F0 over the duration of  observation. 
The alternative hypothesis states that a change in distribution occurs at observation ~, where r is unspecified. 

Let 

l~m(X) = __1 ~ l(Xi <~X), 
m 

i = 1  

t~nm(X ) __ _1 ~ I(Xi <~x), 
n m 

i : m + l  

DOm(x ) =/,/-1/2(/,/ _ m )( l~nm(X ) _ No(X)) ,  

Dnm(X) = n - l / 2 m ( n  - m )  (fi'nm(X) -- F m ( x ) ) .  
I'l 

Hawkins (1988) proposed the following test statistics. When F0 is specified, the test statistic 

T ° = max sup IO°,.(x)l 
O<~m<n x 

is used to measure the discrepancy between the data and the null hypothesis. When Fo is unknown, instead 
use the test statistic 

T, = max sup ]Dnm(x)l. 
O<~m<n x 

Let Fol(X) = inf{t :  Fo(t)>~x}, 0 < x  < 1, be the quantile function. Consider the 'test processes '  

D°(t, x) = n -1/2 ~ {I(Xi ~Fol(X)) - x}, 
i=[nt]+l 
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if F0 is specified, and 

O,(t ,x)  = n -'/2 ~ ~-~ l(Xi <~lg'~-l(x))- [nt] ~__., I(Xi ~<Pn-l(x)) 
I n i=1 

if F0 is unknown, where 0 < t < 1, 0 < x < 1, and P~l (x)  is the empirical quantile function. Cs6rg6 and 
Horvfith (1987) proposed a slightly different test process in the case that F0 is unknown: 

[nt] 
Yn(t, x )  = n -1/2 ~ ~(~(Xi - F n - I  ( x ) ) ,  

i=1 

where 

- ( l - x )  if u~<0, 
~kx(U) = x if u > 0 .  

As we show in the Appendix, Y, and D, are asymptotically equivalent in the sense that 

IDn(t,x) + Y,(t,X)I <~n -1/2 (3.1) 

for all 0 < t,x < 1. 
Hawkins (1988) and Cs6rg6 and Horv~th (1987) showed that under H0 the test processes D O and D~ con- 

verge weakly to the time-reversed Kiefer process d{' and 4-sided tied-down Brownian sheet B e, respectively. 
Here gff'(t, x) = JF(1 - t ,  x). Cs6rg6 and Horvfith (1988) considered nine different test statistics based on Y, 
and indicated where tables for the various limiting distributions can be found in the literature. For example, 
the distribution of the square integral of  B e has been tabulated by Blum et al. (1961 ) and Cotterill and Cs6rg6 
(1985). 

Our approach is to transform the test processes D O and D, by the transformations in Examples 1 and 3, 
so the resulting processes, denoted D O* and D*, converge in distribution to time-reversed Brownian sheet 
W' and Brownian sheet W, respectively. The independent increment property of Brownian sheet makes this 
approach especially appealing. We propose the following Kolmogorov-Smirnov-type test statistics and show 
that they have asymptotic null distributions of  a relatively simple form: 

7 "0* = sup sup ID°*(t, x) I ~ sup sup IW(t,x)l (3.2) 
0 < t < l  0 < x < l  0~<t~<l 0~<x~<l 

and 

T * =  sup sup ID.(t,x)l~ sup sup IW(t,x)l (3.3) 
0 < t < l - - n  - t  0 < x < l  0~<t<~l 0~<x~<l 

under H0. The asymptotic null distributions of  the untransformed test statistics T ° and Tn have a more 
complicated form, being given in terms of extrema of the Kiefer process and the 4-sided tied-down Brownian 
sheet. 

Proofs of (3.2) and (3.3) are given in the Appendix. Note that in defining T* we have restricted t to the 
interval (0, 1 - n - l ) .  This was done to avoid instability close to t = 1 in the transformed process D*(t,x),  
which is caused by limsTl Dn(s,x) ¢ 0 for each n and x < 1. A similar restriction was used by Cs6rg6 and 
Horv,tth (1988, p. 412). 

3.1. Simulation results 

We carried out a simulation study to compare the performance of the tests based on T °* and T* with that 
of  7 ° and Tn. We considered a change in distribution from unit exponential (exp) to piecewise exponential 
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(p-exp) having hazard rate 2(x) = 1 for 0~<x~<0.5, and 2(x) = 0.5 for x > 0.5. We also considered a shift 
of  the standard normal distribution by 0.5. Table 1 shows the observed levels and powers of  the tests at 
an asymptotic level of  5%, for various values of  n and z. Table 2 shows the corresponding results when 
F0 is unspecified. Each entry is based on 1000 samples. The 5% critical level used in the tests (i.e., the 
95th percentile of  the distribution of SUpo~<t~< 1 sup0~<x~< 1 ]W(t,x)l) was 2.397. This was determined using 
a simulation of 104 Brownian sheets evaluated on the grid defined by 300 equally spaced points on each 
axis. 

Inspecting the results, the power of  our test is seen to be higher than that of the untransformed test if F0 
is specified or if  the change in distribution takes place late in the sequence of observations. The power of  
the untransformed test tends to deteriorate as the change in distribution occurs later in the observation period 
(cf. the simulation results of  Hawkins, 1988), whereas the transformed test tends to maintain its power 
throughout. This is not surprising in the case of  T* since the transformation in Example 3 involves di- 
vision by the weight function 1 - t ,  emphasizing changes close to t = 1. Similarly, the weight function 
1 - x in Examples 1 and 3 increases the power of  the tests against changes occurring in the tail of the 
distribution. 

Cs6rg6 and Horv~ith (1988) and Szyszkowicz (1994) have studied test processes of  the form Dn(t, x)/q(t), 
for various weight functions q(t), with the aim of increasing the power of  their tests against early or late 
changes in distribution. Our weight function 1 - t has a similar effect (for late changes), although it operates 
like a convolution rather than a scale change. 

We have focused on statistics of  Kolmogorov-Smirnov type (based on D o* and * Dn ), but other types are 
possible (cf. Cs6rg6 and Horv~ith, 1988, p. 411). As mentioned earlier, it is straightforward to find the re- 
quired asymptotic critical values by Monte Carlo: repeatedly simulate Brownian sheet on a fine grid of  points 
in [0, 1] 2 and evaluate the statistic (e.g., the square integral in the case of the Cram6r-von Mises statistic). 
FORTRAN computer code to do this can be obtained from the authors. 

Table 1 
Observed levels and powers of tests for a change in distribution 
F0 is specified; at an asymptotic level of 5% 

when 

n F0 r,0 r .  °* 

100 exp exp - -  0.041 0.060 
25 0.65 0.981 

exp p-exp 50 0.315 0.792 
75 0.115 0.443 

150 exp exp - -  0.07 0.066 

50 0.788 0.978 
exp p-exp 75 0.502 0.929 

100 0.207 0.735 
100 N(0,1) N(0,1) - -  0.035 0.076 

25 0.977 0.995 

N(0,1) N(0.5,1) 50 0.733 0.944 
75 0.285 0.456 

150 N(0,1) N(0,1) - -  0.058 0.063 
50 0.980 0.993 

N(0,1) N(0.5,1) 75 0.902 0.906 
100 0.599 0.807 



I.W. McKeaoue, Y. Sunl Statistics & Probability Letters 28 (1996) 311-319 

Table 2 
Observed levels and powers of tests for a change in distribution when 
F0 is unspecified; at an asymptotic level of 5% 

n Fo F~ r T. 7".* 

100 exp exp - -  0.058 0.051 
25 0.082 0.111 

exp p-exp 50 0.174 0.312 
75 0.136 0.439 

200 exp exp - -  0.058 0.046 

50 0.218 0.272 
exp p-exp 100 0.397 0.510 

150 0.132 0.570 

100 N(0,1) N(0,1) - -  0.045 0.051 

25 0.277 0.176 
N(0,1) N(0.5,1) 50 0.511 0.445 

75 0.282 0.455 

200 N(0,1) N(0,1) - -  0.067 0.057 

50 0.569 0.385 
N(0,1) N(0.5,1) 100 0.830 0.756 

150 0.535 0.812 
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Appendix  

P r o o f  o f  (3.1). Rewrite Yn as 

[nt] 
rn(t, x) = n -1/2 Z {--(1 -- x)I(Xi ~</On--l(x)) + xI(Xi >/~'n--1 (x))} 

i=1 

( [nt] 
= --n-l/2 ~ i~=t l (Xi~l~nl(x)) - -  [nt]x } 

and use the fact that [ F . ( P . - l ( x ) ) -  x I ~<n - l .  [] 

Let D2 denote the extension of  the usual Skorohod space to functions on [0, 1] 2, see Neuhaus (1971 ), and 
let II • II denote the supremum norm on D2. For T < 1, define the transformation H r :  D2 ~ D2 by 

f zAT nr(~(t,z) = (b(t,z) + ~b(t, x)  dx. 
ao 1 - x  

Let W' be the t ime-reversed Brownian sheet W'(t, z) = W(1 - t ,  z), and define the t ime-reversed Kiefer process 
o,U' similarly. Let H1 be the transformation defined in Example 1, so that Hl ( : ' f f ' )  = W' and D o* = Hi(D°) .  

P r oof  of  (3.2). This proof  is essentially due to Yongyuan Li. It suffices to show that HI (D °) --* H1 (>'g'). We 
apply Theorem 4.2 o f  Bil l ingsley (1968), for which the following three conditions need to be checked: 

( i)  Hr(D°)3~Hr(OU ') for each T < l ;  
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(ii) Hr(~ff')--+ Ht(~,~U ' ) e  as T 7 1; 
(iii) lim l i m s u p P ( l [ H r ( O  °) - Hl(D°)][ > E) = 0 for every e > 0. 

T,71 n - -*~  

Now (i) follows from D O & JU' (see the proof  of  Theorem 1 of  Hawkins, 1988) and the continuous mapping 
theorem (Hr  is continuous for each T < l).  To prove (ii), notice that 

f r  I iSU'( t' x) I 
[ I Hr (~ ' )  - H,(:¢f')[I ~< sup dx 0~t~l T ~ X  

and for e > 0, 

P sup dx > e ~< 
\o~<t~<l 1 - x  1 - x  

1 fT 1 2(E~f2(1,x)) 1/2 4 -  
1 - x  

1 f l  2(1 --X) 1/2 
dx~< 

4 _  
dx = - x / 1  - r ~ 0 (3.4) 

8 

as T 7 1, where the second inequality in (3.4) follows by Doob ' s  inequality since 3ff(t,x) is a martin- 
gale in t for each fixed x. The proof  of  (iii) is parallel to that o f  (ii), with J d '  replaced by D °. Notice 
that 

n--[nt] 

D°n(t,x) ~ n-l~2 Z {I(Xi <~Fol(X))- x} = Mn(n - [nt],x), 
i=1 

and that M,(k,x) is a martingale in k for each fixed n and x, so we can rewrite (3.4) with 3if'U, x) replaced 
by M , ( n -  [nt],x). [] 

Proof of  (3.3). First note that (t, x)  can be restricted to the rectangle Rn =- (0, 1 - n - I  )2 without affect- 
ing T*,  since D,(t,x) = 0 for x>~l - n -1. Next, from Theorem 2.1 of  Csrrg6 and Horvfith (1987) and 
(3.1), one can define a sequence of  4-sided tied-down Brownian sheets {B~(t,x),O<<.t,x<~l}, n>>.l, such 
that 

P ~ sup ]Dn(t,x)-Ben(t,x)[ > A,n-1/4(logn)3/4}<~B,n -~: 
1,0<t ,x<l  

for all ~ > 0, where A1 = A(e) and Bl are constants. This leads to 

sup I D , ( t , x )  - B e ( t , x ) l ( 1  - t)-v'(1 - x )  -v2 f-e-,O 
( t,x )E R,, 

(3.5) 

as n --* oc, for any vl > 0 and v2 > 0 such that v I -~ v 2 < 1/4. Denoting the transformation in Example 3 by 
J ,  we have that J(B e), n >/1, is a sequence of  Brownian sheets, 

s u p  IJ(B~n)(t,x)l ~ sup IW(t,x)l (3.6) 
(t,x)ER. O<~t,x<~ 1 

and 

D* =--J(D,,)=J(BC,)+J(D,-Be) o n R  (3.7) 
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The last term above is asymptotically negligible on R~ since 

sup IJ(D, - B,~)(t, x)[ 
(t,x)ER. 

~ l p  ID.( t ,  x )  - Be(t ,  x)[ + sup 
( t,x )~ R. ( t,x )E R,, 

fo x Dn(t,u) - Be(t,u) du 

fotDn(s'x)-B~n(S'X)ds foXfotDn(s,u)-Be~(s,U)dsdu, 
+ sup - + sup ~i--Ss~f--~-- ~ (t,x)ER. 1 S (t,x)ER,, 

which ~¢ads ~o zero in probability by (3.5). We conclude from (3.6) and (3.7) that 

rn* ~ sup tJ(D.)(t,x)l~ sup IW(t,x)l, 
(t,x)ER. O<~t.x<~ 1 

as required. [] 
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