
Supplementary Material for

“Testing for Marginal Linear Effects in Quantile Regression”

by Huixia Judy Wang, Ian W. McKeague and Min Qian

This supplement contains the proofs of Lemmas 1–4, Corollary 1 and Lemmas 5–6 in

the main paper, and some additional simulation results.

For any vector v ∈ Rp, let vk denote its kth element, and v(−k) denotes its subset exclud-

ing the kth element, for any k = 1, . . . , p. For notational simplicity, we write k̄n{τ,b0(τ)}
as kn(τ), and omit the argument τ in various expressions such as Mk(τ, ·), πk(τ, ·), Vk(τ, ·),

Jk(τ, ·) and etc. when necessary. We note that even though T is assumed to be a set con-

sisting of L prespecified quantile levels in the main paper, the results in Theorem 1 and

Lemmas 1-4 in fact hold uniformly over τ ∈ T for any T ⊂ (0, 1).

S.1. Proofs of Lemmas 1–4

LEMMA 1 Suppose that assumptions A1–A5 hold. For all τ ’s in T for which β0(τ) 6= 0

and k0(τ) is unique, we have k̂n(τ)
a.s.→ k0(τ) and

n1/2{θ̂n(τ)− θn(τ)}
σ̂n(τ)

d→
Mp+k0(τ){β0(τ)}πk0(τ){β0(τ)} −Mk0(τ){β0(τ)}µk0(τ){β0(τ)}

Vk0(τ){β0(τ)}σk0(τ)(τ)
.

Proof: By the proof of the consistency part of Theorem 3 of Angrist et al. (2006), (α̂k, θ̂k)−
(αk, θk) = op∗(1) uniformly in τ ∈ T . Under assumptions A1-A3, and the uniqueness

condition of k0(τ), by the Lipschitz property of ρτ , we have E{ρτ (Y − αk − θkXk)} −
E{ρτ (ε + α0 + XTβ0 − αk − θkXk)} → 0 uniformly over k and τ . Therefore, kn(τ) =

argmink minα,θ E{ρτ (Y − α − θXk)}= argminkE[ρτ{Y − αk(τ) − θk(τ)Xk}] → k0(τ)

uniformly in τ ∈ T . Note that the empirical process (τ,β) 7→ Pn[ρτ (Y −XTβ)] is stochas-

tically equicontinuous over T × B, where B is any compact set. This together with the

Lipschitz and convexity properties of ρτ and the strong law of large numbers leads to the

following uniform convergence result:

Pn[ρτ{Y − α̂k(τ)− θ̂k(τ)Xk}]− E[ρτ{Y − αk(τ)− θk(τ)Xk}]
a.s.→ 0. (S.1)

Thus we have k̂n(τ)− kn(τ)
a.s.→ 0 and k̂n(τ)

a.s.→ k0(τ) uniformly in τ ∈ T , where k̂n(τ) =

argminkPn[ρτ{Y − α̂k(τ) − θ̂k(τ)Xk}]. By the proof of the asymptotic normality part of
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Theorem 3 in Angrist et al. (2006), we have the following uniform asymptotic representation

√
n

{(
α̂k(τ)

θ̂k(τ)

)
−

(
αk(τ)

θk(τ)

)}
= J̃−1

k (τ)Gn

[
X̃kψτ{Y − αk(τ)− θk(τ)Xk}

]
+ op∗(1), (S.2)

provided that J̃k(τ) = E
[
fY {αk(τ) + θk(τ)Xk|X}X̃kX̃

T
k

]
is positive definite for all τ ∈

T , where fY (·|X) is the conditional density of Y given X, Gn =
√
n(Pn−P ) is the empir-

ical process and ψτ (u) = τ −I(u ≤ 0). It is easy to see that under the local model, J̃k(τ) =

E
[
fε(τ){αk(τ) + θk(τ)Xk − α0(τ)−XTβn(τ)|X}X̃kX̃

T
k

]
→ Jk{τ,β0(τ)}, which is pos-

itive definite by condition A5. In addition, by using similar arguments as in the Appendix

A.1.4 of Angrist et al. (2006), we can show that σ̂k(τ)→ σk(τ) uniformly in τ ∈ T . Then,

since P{θ̂n(τ) = θ̂k0(τ)(τ)} → 1, we have

n1/2{θ̂n(τ)− θn(τ)}
σ̂n(τ)

=
n1/2{θ̂k0(τ)(τ)− θk0(τ)(τ)}

σk0(τ)(τ)
+ op∗(1)

d→
Mp+k0(τ){β0(τ)}πk0(τ){β0(τ)} −Mk0(τ){β0(τ)}µk0(τ){β0(τ)}

Vk0(τ){β0(τ)}σk0(τ)(τ)
(S.3)

uniformly in τ ∈ T , where the last step comes from extracting the second element of the

vector on the right side of (S.2) with k = k0(τ).

LEMMA 2 If assumptions A1–A5 hold, we have(
αk(τ)

θk(τ)

)
=

(
α0(τ)

βn,k(τ)

)
+ {J−1

k (τ,0)}AT
k (τ)βn,(−k)(τ) + o(n−1/2) (S.4)

uniformly over τ for which β0(τ) = 0, where Ak(τ) =
(
E{fε(τ)(0|X)X(−k)}, E{fε(τ)(0|X)XkX(−k)}

)
.

Proof: When β0(τ) = 0, we haveQτ (Y |X) = α0(τ)+n−1/2XTb0(τ). Under assumptions

A1, A3 and A4, we can show that Qτ (Y |X) → α0(τ) uniformly in τ ∈ T . In addition,

recall that (αk(τ), θk(τ)) is the population quantile coefficient vector obtained by regressing

Y onXk, soQτ (Y |Xk) = αk(τ)+Xkθk(τ). Therefore,Qτ (Y |Xk)→ α0(τ), which implies

that (αk(τ), θk(τ))→ (α0(τ), 0) uniformly in τ ∈ T .

We next establish the approximate representation of (αk(τ), θk(τ)) under the local model

with βn(τ) = n−1/2b0(τ). Under this model, (α0(τ),βn(τ)) = (α0(τ), βn,k(τ),βTn,(−k)(τ))
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= argmin
(α,βk,β(−k))

E
{
ρτ (Y − α−Xkβ −XT

(−k)β(−k))
}

is the population quantile coefficient

vector obtained by including both Xk and X(−k) as predictors, while (αk(τ), θk(τ)) are ob-

tained by including only Xk in the regression. By applying the last formula in Section 2.3

of Angrist et al. (2006), we get(
αk(τ)

θk(τ)

)
=

(
α0(τ)

βn,k(τ)

)
+
[
E
{
Wkτ (X)X̃kX̃

T
k

}]−1

E
[
Wkτ (X)X̃kRτ (X)

]
, (S.5)

where X̃k = (1, Xk)
T ,Rτ (X) = Qτ (Y |X)−(α0(τ), βn,k)

T (τ)X̃k = (α0(τ)+XTβn(τ))−
(α0(τ)+βn,k(τ)Xk) = XT

(−k)βn,(−k)(τ), Wkτ (X) = 1/2
∫ 1

0
fε(τ) {u∆kτ (X)|X} du,∆kτ (X) =

{αk(τ) + θk(τ)Xk} − {α0(τ) + XTβn(τ)}. The first expectation in the right side of (S.5)

can be expressed as

1/2Jk(τ,0)− E
[{

1/2fε(τ)(0|X)−Wkτ (X)
}
X̃kX̃

T
k

]
, (S.6)

and below we show that the second term above tends to the zero matrix uniformly in τ ∈ T .

In a similar fashion, the second expectation in (S.5) can be expressed as

1/2AT
k (τ)βn,(−k)(τ)− E

[{
1/2fε(τ)(0|X)−Wkτ (X)

}
X̃kX

T
(−k)

]
βn,(−k)(τ), (S.7)

the second term of which has order o(1)βn(τ) = o(n−1/2). The result then follows easily

from (S.5) by retaining the leading terms in (S.6) and (S.7), and noting that the remainder

term is of order o(n−1/2).

It remains to show that the second term in (S.6) tends to the zero matrix. Recall that in

the first paragraph of the proof we showed that (αk(τ), θk(τ)) → (α0(τ), 0) uniformly in

τ ∈ T . It follows that ∆k(τ)(X) → 0, so, by assumptions A1 and A4 (using the continuity

of fε(τ)(y|X) at y = 0 in this case) and the dominated convergence theorem, Wkτ (X) →
1/2fε(τ)(0|X) uniformly in τ ∈ T . Applying the dominated convergence theorem to the

expectations in (S.6) and (S.7), using condition A3 and the second part of A4 to check that

the integrands are dominated, completes the proof.
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LEMMA 3 If assumptions A1–A5 hold, we have(
n1/2

(
α̂k(τ)− α0(τ)

θ̂k(τ)− βn,k(τ)

))p

k=1

d→

(
J−1
k (τ,0)

{(
Mk(τ,0)

Mp+k(τ,0)

)
+ AT

k (τ)b0,(−k)(τ)

})p

k=1

uniformly in τ ∈ T for which β0(τ) = 0.

Proof: From (S.2),

J̃k(τ)n1/2

{(
α̂k(τ)

θ̂k(τ)

)
−

(
αk(τ)

θk(τ)

)}
= Gn

[
X̃kψτ{ε(τ)−∆kτ (X)}

]
+ op∗(1),

where J̃k(τ) = E
[
fε(τ){ek(τ)|X}X̃kX̃

T
k

]
, and

∆kτ (X) = {αk(τ) + θk(τ)Xk} − {α0(τ) + XTβn(τ)}

= X̃T
k

[
J−1
k (τ,0)AT

k (τ)βn,(−k)(τ) + o(n−1/2)
]
−XT

(−k)βn,(−k)(τ) (S.8)

uniformly in τ ∈ T . By Lemma 2, when β0(τ) = 0, it is easy to show that J̃k(τ) =

Jk(τ,0) + O(n−1/2) uniformly for all k = 1, . . . , p under assumptions A1, A3 and A4.

Writing

Gn

[
X̃kψτ{ε(τ)−∆kτ (X)}

]
= Gn

[
X̃kψτ{ε(τ)}

]
+Gn

(
X̃k[ψτ{ε(τ)−∆kτ (X)} − ψτ{ε(τ)}]

)
,

we can show that the second term above converges to zero uniformly in τ ∈ T . This

follows by applying Lemma 19.24 of van der Vaart (2000), and the fact that (τ,β) 7→
Gn[ψτ (Y −XTβ)X] is stochastically equicontinuous over T ×B, where B is any compact

set. To check the conditions of that lemma, first note that the class of functions F = {y 7→
ψτ (y − δ) − ψτ (y) : δ ∈ R} is P -Donsker (for any distribution P on the real line). Also

note that the function g : δ 7→ E[ψτ{ε(τ) − δ} − ψτ{ε(τ)}]2 is continuous (by A4) and

vanishes at δ = 0, and ∆kτ (X) → 0, so g{∆kτ (X)} → 0, and therefore g{∆kτ (X)} → 0

uniformly in τ ∈ T . This shows that Gn [ψτ{ε(τ)−∆kτ (X)} − ψτ{ε(τ)}] tends to zero in

probability. A similar argument applies to Gn [Xk(ψτ{ε(τ)−∆kτ (X)} − ψτ{ε(τ)})], the

second component of Gn

[
X̃k(ψτ{ε(τ)−∆kτ (X)} − ψτ{ε(τ)})

]
.
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Therefore, we have

n1/2

{(
α̂k(τ)

θ̂k(τ)

)
−

(
αk(τ)

θk(τ)

)}
= J−1

k (τ,0)Gn[X̃kψτ{ε(τ)}] + op∗(1). (S.9)

Combining Lemma 2 and (S.9), we get

n1/2

(
α̂k(τ)− α0(τ)

θ̂k(τ)− βn,k(τ)

)

= n1/2

[(
α̂k(τ)

θ̂k(τ)

)
−

(
αk(τ)

θk(τ)

)]
+ n1/2

[(
αk(τ)

θk(τ)

)
−

(
α0(τ)

βn,k(τ)

)]
= J−1

k (τ,0)
(
Gn[X̃kψτ{ε(τ)}] + AT

k (τ)b0,(−k)(τ)
)

+ op∗(1). (S.10)

Lemma 3 thus follows by the Slutsky’s theorem and a multivariate central limit theorem.

LEMMA 4 Under assumptions A1–A5, we have

n1/2{θ̂n(τ)− θn(τ)}
σ̂n(τ)

d→
Mp+K(τ)(τ,0)π(τ,0)−MK(τ)(τ,0)µK(τ)(τ,0)

VK(τ)(τ,0)σK(τ)(τ)

+

{
CK(τ)(τ)

VK(τ)(τ,0)
−

Cκτ{b0(τ)}(τ)

Vκτ{b0(τ)}(τ,0)

}T
b0(τ)

σK(τ)(τ)

uniformly over τ ∈ T for which β0(τ) = 0, where

K(τ) = argmax
k=1,...,p

{
Mk(τ) + BT

k (τ)b0(τ)
}T

J−1
k (τ,0)

{
Mk(τ) + BT

k (τ)b0(τ)
}

with Mk(τ) = (Mk(τ,0),Mk+p(τ,0))T .

Proof: Note that

k̂n(τ) = argmin
1≤k≤p

Pn
[
ρτ{Y − α̂k(τ)− θ̂k(τ)Xk} − ρτ{ε(τ)}

]
. (S.11)
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Denote

Zk =

 1

Xk

X

 , δk(τ) = n1/2

αk(τ)− α0(τ)

θk(τ)

−βn(τ)

 , δ̂k(τ) = n1/2

α̂k(τ)− α0(τ)

θ̂k(τ)

−βn(τ)

 .

Then Pn [ρτ{Y − αk(τ)− θk(τ)Xk} − ρτ{ε(τ)}] = Pn
[
ρτ{ε(τ)− n−1/2ZTk δk(τ)} − ρτ{ε(τ)}

]
is minimized at δ̂k(τ) for each τ ∈ T . By Knight’s identity (1998)

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u ≤ 0)} ds,

we get

nPn
[
ρτ{ε(τ)− n−1/2ZTk δk(τ)} − ρτ{ε(τ)}

]
= −Gn

[
ZTk δk(τ)ψτ{ε(τ)}

]
+ nPn [U{δk(τ),Zk}] , (S.12)

where

U(δk,Zk) =

∫ n−1/2ZTk δk

0

[I{ε(τ) ≤ s} − I{ε(τ) ≤ 0}] ds.

Now write the second term of (S.12) as

nPn[U{δk(τ),Zk}] = nE [U{δk(τ),Zk)] + nPn [U{δk(τ),Zk} − E (U{δk(τ),Zk})] .

By assumptions A3 and A4, we have that uniformly in τ ∈ T ,

nE [U{δk(τ),Zk}] = nE

[∫ n−1/2ZTk δk(τ)

0

{
Fε(τ)(s|X)− Fε(τ)(0|X)

}
ds

]
=

1

2
δTk (τ)Dk(τ)δk(τ) + o(1), (S.13)

where

Dk(τ) = E
[
fε(τ) (0|X)ZkZ

T
k

]
=

(
Jk(τ,0) BT

k (τ)

Bk(τ) C(τ)

)
,
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Bk(τ) = E
{
fε(τ)(0|X)XX̃T

k

}
and C(τ) = E

{
fε(τ)(0|X)XXT

}
. Thus the bound

Var {nPn[U{δk(τ),Zk}]

≤ nE
[ ∫ n−1/2ZTk δk(τ)

0

[I{ε(τ) ≤ s} − I{ε(τ) ≤ 0}]−
{
Fε(τ)(s|X)− Fε(τ)(0|X)

}
ds
]2

≤ nE
[∣∣ ∫ n−1/2ZTk δk(τ)

0

[I{ε(τ) ≤ s} − I{ε(τ) ≤ 0}]−
{
Fε(τ)(s|X)− Fε(τ)(0|X)

}
ds
∣∣]

×2|n−1/2ZTk δk(τ)|

≤ 4nE [U{δk(τ),Zk}] |n−1/2ZTk δk(τ)|,

since U{δk(τ),Zk} ≥ 0. By (S.13) and assumption A3, Var {nPn[U{δk(τ),Zk}] → 0

uniformly in τ ∈ T for any δk(τ) = O(1). Therefore, for any δk(τ) = O(1),

nPn
[
ρτ{ε(τ)− n−1/2ZTk δk(τ)} − ρτ{ε(τ)}

]
= −Gn

[
ZTk δk(τ)ψτ{ε(τ)}

]
+

1

2
δTk (τ)Dk(τ)δk(τ) + op∗(1).

Under the local model with βn(τ) = n−1/2b0(τ), Lemma 2 suggests that δ̂k(τ) = Op(1).

Thus by the convexity lemma in Pollard (1991) and the stochastic equicontinuity of (τ, (α,β)) 7→
Pn[ρτ (Y − α−XTβ)− ρτ{Y − α0(τ)−XTβ0(τ)}], we have

nPn
[
ρτ{Y − α̂k(τ)− θ̂k(τ)Xk} − ρτ{ε(τ)}

]
= nPn

[
ρτ{ε(τ)− n−1/2ZTk δ̂k(τ)} − ρτ{ε(τ)}

]
= −Gn

[
ZTk δ̂k(τ)ψτ{ε(τ)}

]
+ 1/2δ̂

T

k (τ)Dk(τ)δ̂k(τ) + op∗(1). (S.14)

By (S.10), it is easy to show that

n1/2

(
α̂k(τ)− α0(τ)

θ̂k(τ)

)
= n1/2

(
α̂k(τ)− α0(τ)

θ̂k(τ)− βn,k(τ)

)
+

(
0

b0,k(τ)

)

= J−1
k (τ,0)

[
Gn[X̃kψτ{ε(τ)}] + Ak(τ)Tb0,(−k)(τ) + Jk(τ,0)

(
0

b0,k(τ)

)]
+ op∗(1)

= J−1
k (τ,0)

(
Gn[X̃kψτ{ε(τ)}] + BT

k (τ)b0(τ)
]

+ op∗(1).
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Thus

δ̂k(τ) = n1/2

α̂k(τ)− α0(τ)

θ̂k(τ)

−βn(τ)

 =

(
J−1
k (τ,0)

(
Gn[X̃kψτ{ε(τ)}] + BT

k (τ)b0(τ)
)

−b0(τ)

)
+ op∗(1).

Plugging δ̂k(τ) in (S.14), we get

nPn
[
ρτ{Y − α̂k(τ)− θ̂k(τ)Xk} − ρτ{ε(τ)}

]
= −Gn

[
X̃T
kψτ{ε(τ)}

]
J−1
k (τ,0)Gn

[
X̃kψτ{ε(τ)}

]
−Gn

[
ψτ{ε(τ)}X̃T

k

]
J−1
k (τ,0)BT

kb0(τ)

+Gn

[
ψτ{ε(τ)}XT

]
b0(τ) +

1

2
Gn

[
X̃T
kψτ{ε(τ)}

]
J−1
k (τ,0)Gn

[
X̃kψτ{ε(τ)}

]
−1/2bT0 (τ)

{
Bk(τ)J−1

k (τ,0)BT
k (τ)−C(τ)

}
b0(τ) + op(1)

= −1/2Gn

[
X̃T
kψτ{ε(τ)}

]
J−1
k (τ,0)Gn

[
X̃kψτ{ε(τ)}

]
−1/2bT0 (τ)

{
Bk(τ)J−1

k (τ,0)BT
k (τ)−C(τ)

}
b0(τ)

−
(
Gn

[
ψτ{ε(τ)}X̃T

k

}
J−1
k (τ,0)BT

k (τ)−Gn

{
ψτ (ε)X

T
])

b0(τ) + op(1)

= −1/2MT
k (τ)J−1

k (τ,0)Mk(τ)− {MT
k (τ)J−1

k (τ,0)BT
k (τ)−MT

(2)(τ)}b0(τ)

−1/2bT0 (τ){BkJ
−1
k (τ,0)BT

k (τ)−C(τ)}b0(τ) + op(1), (S.15)

where Mk(τ) = (Mk(τ,0),Mp+k(τ,0))T , and M(2)(τ) = (Mp+1(τ,0), . . . ,M2p(τ,0))T .

It is easy to see that the minimizer of the summation term on the right hand side of (S.15)

with respect to k is equivalent to K(τ).

In addition, for all j 6= k,
(
Mj(τ)+BT

j (τ,0)b0(τ)
)T

J−1
j (τ,0)

(
Mj(0)+Bj(0)Tb0(τ)

)
6=(

Mk(τ)+Bk(τ)Tb0(τ)
)T

J−1
k (τ,0)

(
Mk(τ)+Bk(τ)Tb0(τ)

)
almost surely. Then it follows

by Lemma 3 of McKeague and Qian (2015) that K(τ) is unique, a.s.. The lemma is thus

proven by combining Lemma 3, (S.15), the uniform consistency of σ̂k(τ) and the continuity

mapping theorem as used in the proof of Lemma 2 in McKeague and Qian (2015).

S.2. Proof of Corollary 1

For the homogenous case with constant error density, we have fε(τ)(0|X) ≡ fε(τ)(0). Then

Jk(τ,0) = fε(τ)(0)

(
1 E(Xk)

E(Xk) E(X2
k)

)
, J−1

k (τ,0) =
1

fε(τ)(0)Var(Xk)

(
E(X2

k) −E(Xk)

−E(Xk) 1

)
,
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and Bk(τ) = fε(τ)(0)E(XX̃T
k ). Therefore,

(Mk(τ) + BT
k (τ)b0(τ))TJ−1

k (τ,0)(Mk(τ) + BT
k (τ)b0(τ))

=
1

fε(τ)(0)Var(Xk)

[{
M2

k (τ)E(X2
k)− 2Mk(τ)Mp+k(τ)E(Xk) +M2

p+k(τ)
}

+2fε(τ)(0)bT0 (τ)
{
Mk(τ)

(
E(X)E(X2

k)− E(XkX)E(Xk)
)

+Mp+k(τ)Cov(Xk,X)
}

+f 2
ε(τ)(0)bT0 (τ)

{
E(X)E(X2

k)− E(XkX)E(Xk)
}
E(XT )

+Cov(Xk,X)E(XkX
T )
}
b0(τ)

]
,

where Mj(τ) = Mj(τ,0), j = 1, . . . , 2p. Note that E(X)E(X2
k) − E(XkX)E(Xk) =

E(X)Var(Xk)− E(Xk)Cov(Xk,X), and when β0(τ) = 0, M1(τ) = · · · = Mp(τ). Then

(Mk(τ) + BT
k (τ)b0(τ))TJ−1

k (τ,0)(Mk(τ) + BT
k (τ)b0(τ))

=
1

fε(τ)(0)Var(Xk)

[
{Mp+k(τ)−M1(τ)E(Xk)}2 +M2

1 (τ)Var(Xk)

+2fε(τ)(0)bT0 (τ)Cov(Xk,X){Mp+k(τ)−M1(τ)E(Xk)}

+2fε(τ)(0)bT0 (τ)M1(τ)E(X)Var(Xk)

+f 2
ε(τ)(0)bT0 (τ){E(X)E(XT )Var(Xk) + Cov(Xk,X)Cov(Xk,X

T )}b0(τ)
]

=
1

fε(τ)(0)Var(Xk)

{
Mp+k(τ)−M1(τ)E(Xk) + fε(τ)(0)bT0 (τ)Cov(Xk,X)

}2

+M2
1 (τ)/fε(τ)(0) + 2bT0 (τ)E(X)M1(τ) + fε(τ)(0)bT0 (τ)E(X)E(XT )b0(τ),

where fε(τ)(0) and the last three terms do not depend on k. Thus

K(τ) = argmax
k=1,...,p

{
Mp+k(τ)−M1E(Xk) + fε(τ)(0)bT0 (τ)Cov(Xk,X)

}2
/Var(Xk).

The limiting distribution of n1/2{θ̂n(τ)−θn}/σ̂n(τ) when β0(τ) = 0 can be simplified with

some basic algebra. �
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S.3. Proof of Lemmas 5 and 6

LEMMA 5 Suppose the assumptions in Theorem 1 hold. Then k̂∗n(τ)
PM→ k0(τ) conditionally

(on the data) a.s. and

n1/2(θ̂∗n(τ)− θ̂n(τ))

σ̂n∗(τ)

d→
{Mp+k0(τ)(β0(τ))πk0(τ)(β0(τ))−Mk0(τ)(β0(τ))µk0(τ)(β0(τ))}

Vk0(τ)(β0(τ))σk0(τ)(τ)

for all τ ∈ T for which β0(τ) 6= 0, conditionally (on the data) in probability, where

Mj{β0(τ)} = Mj{τ,β0(τ)}.

Proof: When β0(τ) 6= 0, the local parameter b0(τ) in βn(τ) is negligible. For simplifi-

cation, we prove the lemma under model (1). First note that by equation (13) in the main

paper, (α̂∗k(τ), θ̂∗k(τ)) converges to (αk(τ), θk(τ)) conditionally in probability. Thus, for

k = 1, . . . , p,

|P∗n{ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)} − P{ρτ (Y − αk(τ)− θk(τ)Xk)}|

≤|(P∗n − Pn){ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)}|+ |(Pn − P ){ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)}|

+ |P [ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)− ρτ (Y − αk(τ)− θk(τ)Xk)]|

≤ sup
(α,θ)∈Ξ(τ)

|(P∗n − Pn){ρτ (Y − α− θXk)}|

+ sup
(α,θ)∈Ξ(τ)

|(Pn − P ){ρτ (Y − α− θXk)}|+ oPM (1)

+ |P [ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)− ρτ (Y − αk(τ)− θk(τ)Xk)]|

=|P [ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)− ρτ (Y − αk(τ)− θk(τ)Xk)]|+ oPM (1)

=oPM (1)

conditionally in probability, where Ξ(τ) ∈ R2 is a closed ball around (αk(τ), θk(τ)), the

second to last equality follows by the P-GC property of the function class {ρτ (Y −α−θXk) :

(α, θ) ∈ Ξ(τ)}. The last equality follows by applying the bootstrap continuous mapping

theorem to the function g(α, θ) = P [ρτ (Y − α − θXk)]. Since the bootstrap estimate of
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k0(τ) satisfies k̂∗n(τ) = argmin
k

P∗n{ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)}, we have

PM(k̂∗n(τ) 6= k0(τ))

=PM

 ⋃
k:k 6=k0(τ)

{
P∗n{ρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)} < P∗n{ρτ (Y − α̂∗k0(τ)(τ)− θ̂∗k0(τ)(τ)Xk0)}

}
≤

∑
k:k 6=k0(τ)

PM
(
P∗nρτ (Y − α̂∗k(τ)− θ̂∗k(τ)Xk)− Pρτ (Y − αk(τ)− θk(τ)Xk)

+ Pρτ (Y − αk(τ)− θk(τ)Xk)− Pρτ (Y − α0(τ)− θ0(τ)Xk0)

< P∗nρτ (Y − α̂∗k0(τ)− θ̂∗k0(τ)Xk0)− Pρτ (Y − α0(τ)− θ0(τ)Xk0)
)

=
∑

k:k 6=k0(τ)

PM
(
P{ρτ (Y − αk(τ)− θk(τ)Xk)} − P{ρτ (Y − α0(τ)− θ0(τ)Xk0)} < oPM (1)

)

which tends to zero in probability for all τ ∈ T for which β0(τ) 6= 0, by the condi-

tion that k0(τ) is unique. This together with the fact that σ̂k0(τ)
p→ σk0(τ)(τ) implies that

σ̂n∗(τ)
PM→ σk0(τ)(τ) conditionally in probability. Using equation (14) in the main paper and

by bootstrap consistency of the sample mean, we have

√
n(θ̂∗n(τ)− θ̂n(τ))

σ̂n∗(τ)

=

√
n(θ̂∗

k̂∗n(τ)
(τ)− θ̂∗k0(τ)(τ)) +

√
n(θ̂∗k0(τ)(τ)− θ̂k0(τ)(τ)) +

√
n(θ̂k0(τ)(τ)− θ̂n(τ))

σ̂n∗(τ)

=
J−1
k0(τ)(τ,β0(τ))G∗n[ψτ (Y − αk0(τ)(τ)− θk0(τ)(τ)Xk0(τ))X̃k0(τ)]

σ̂n∗(τ)
+ oP ∗

M
(1) + op(1)

d→
{Mp+k0(τ)(β0(τ))πk0(τ)(β0(τ))−Mk0(τ)(β0(τ))µk0(τ)(β0(τ))}

Vk0(τ)(β0(τ))σk0(τ)(τ)

for all τ ∈ T for which β0(τ) 6= 0 conditionally in probability.

LEMMA 6 Suppose all assumptions in Theorem 1 hold. Then V∗n(τ,b0(τ)) converges to the

same limiting distribution as
√
n(θ̂n(τ)− θn(τ))/σ̂n(τ) for all τ ∈ T for which β0(τ) = 0

conditionally (on the data) in probability.
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Proof: For any b ∈ Rp, define

k̄n(τ,b) = argmin
k=1,...,p

min
α,θ

E[ρτ{ε(τ) + α0(τ) + XT (β0(τ) + n−1/2b)− α− θXk}]. (S.16)

Let Un(τ,b) and Ln(τ,b) be p-vectors, with the k-th components given by

Un,k(τ,b) =
(
Gn{X̃kψτ (ε(τ))}+ B̂T

k (τ)b
)T

Ĵ−1
k (τ)

(
Gn{X̃kψτ (ε(τ))}+ B̂T

k (τ)b
)

and Ln,k(τ,b) = min
α,θ

E[ρτ{ε(τ) + α0(τ) + XT (β0(τ) + n−1/2b)− α− θXk}],

respectively. Then k̄n(τ,b) = arg mink Ln,k(τ,b). Let Wn(τ,b) be a p× p matrix with the

(j, k)-th element given by

(−µ̂k(τ), π̂(τ))Gn{X̃kψτ (ε(τ))}
V̂k(τ)σk(τ)

+

(
Ĉk(τ)

V̂k(τ)
− Ĉj(τ)

V̂j(τ)

)T
b

σk(τ)
.

Also let Dn(τ,b) be a p-vector of zeros, apart from a 1 in the entry that maximizes Un(τ,b),

and Dn(τ,b) be a p-vector of zeros, apart from a 1 in the k̄n(τ,b)-th entry (i.e. the entry

that minimizes Ln(τ,b)). Then

Vn(τ,b) = Dn(τ,b)TWn(τ,b)Dn(τ,b).

Similarly, define U(τ,b), W(τ,b), D(τ,b) and D(τ,b) as processes of the same forms

as Un(τ,b), Wn(τ,b), Dn(τ,b) and Dn(τ,b), except with Gn{X̃kψτ (ε(τ))} replaced by

Mk(τ), k̄n(τ,b) replaced by its limit κτ (b), and the sample variances/covariances replaced

by their population versions. Lemma 4 implies that

n1/2(θ̂n(τ)− θn(τ))

σ̂n(τ)

d→ D(τ,b0(τ))TW(τ,b0(τ))D(τ,b0(τ)) (S.17)

for all τ ∈ T for which β0(τ) = 0.

Let D∗n(τ,b) be a p-vector of zeros, apart from a 1 in the entry that maximizes U∗n(τ,b),

and D∗n(τ,b) be a p-vector of zeros, apart from a 1 in the entry that minimizes Ln(τ,b),

where U∗n(τ,b) and Ln(τ,b) are defined at the beginning of the proof of Theorem 2. Let
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W∗n(τ,b) be a p× p matrix with the (j, k)-th element given by

(−µ̂k(τ), π̂(τ))G∗n{X̃kψτ (ε̂n(τ))}
V̂k(τ)σ̂k(τ)

+

(
Ĉk(τ)

V̂k(τ)
− Ĉj(τ)

V̂j(τ)

)T
b

σ̂k(τ)
.

Then V∗n(τ,b0(τ)) = D∗n(τ,b0(τ))TW∗n(τ,b0(τ))D∗n(τ,b0(τ)).

Note that G∗n{X̃kψτ (ε̂n(τ))} can be decomposed as

G∗n{X̃kψτ (ε̂n(τ))} = G∗n{X̃kψτ (ε(τ))}+ G∗n{X̃k[ψτ (ε̂n(τ))− ψτ (ε(τ))]}, (S.18)

and ε̂n(τ) = Y − α̂n(τ)− θ̂n(τ)Xk̂n(τ) = ε(τ) + (α0(τ)− α̂n(τ)) +XTβn(τ)− θ̂n(τ)Xk̂n
.

By bootstrap consistency of the sample mean,

G∗n{ψτ (ε(τ)), X1ψτ (ε(τ)), . . . , Xpψτ (ε(τ))}T d→ (M1(τ,β0),Mp+1(τ,β0), . . . ,M2p(τ,β0))T

conditionally in probability. To deal with the second term on the RHS of (S.18), define

F = {f(X, ε;α,β, θ, k) = I(ε < 0) − I{ε + (α0 − α) + XTβ − θXk < 0} : (α,β, θ, k)

∈ R2+p × {1, . . . , p}}. Then F is P -Donsker and G∗n{X̃T
k [ψτ (ε̂n(τ)) − ψτ (ε(τ))]} =

G∗n
[
X̃T
k f(X, ε(τ); α̂n(τ),βn(τ), θ̂n(τ), k̂n(τ))

]
. Note that α̂n(τ)

P→ α0(τ), βn(τ) = o(1),

and θ̂n(τ) = op(1). By Assumption A4, {g : (α,β, θ, k) → E[X̃T
k f(X, ε;α,β, θ, k)]2} is

continuous. Since f(X, ε;α0,0, 0, k) = 0 for any k ∈ {1, . . . , p}, we have

E[X̃T
k f(X, ε(τ); α̂n(τ),βn(τ), θ̂n(τ), k̂n(τ))]2 = op(1)

by the continuous mapping theorem. Using similar arguments as in the proof of van der

Vaart (2000), we can show that G∗n{X̃k[ψτ (ε̂n(τ))− ψτ (ε(τ))]} = oPM (1) for all τ ∈ T for

which β0(τ) = 0, conditionally in probability.

By Slusky’s Lemma and the continuous mapping Theorem,

(W∗n(τ,b0(τ)),U∗n(τ,b0(τ)))
d→ (W(τ,b0(τ)),U(τ,b0(τ)))

conditionally in probability. Using similar arguments to those at the end of the proof of

Lemma 2 in McKeague and Qian (2015), along with the continuous mapping theorem, we
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have D∗n(τ,b0(τ))
d→ D(τ,b0(τ)), D∗n(τ,b0(τ))→D(τ,b0(τ)) and

V∗n(τ,b0(τ)) = D∗n(τ,b0(τ))TW∗n(τ,b0(τ))D∗n(τ,b0(τ))
d→ D(τ,b0(τ))TW(τ,b0(τ))D(τ,b0(τ))

for all τ ∈ T for which β0(τ) = 0 conditionally in probability, This together with (S.17)

implies the result.

S.4. Additional Simulation Results

Our proposed test statistic can be viewed as a maximum-type test statistic across p co-

variates. Similar to the discussion as in Chatterjee and Lahiri (2015) for mean regres-

sion, we may also consider an alternative statistic based on the sum of squared t-statistics,∑p
k=1 θ̂

2
k(τ)/σ̂2

k(τ). We conduct an additional simulation study to compare the performance

of the bootstrap tests based on the maximum-type and the sum-type test statistics. The data

are generated from the model: Y = XTβ + ε, where β = (β1, . . . , βp), ε ∼ N(0, 1), and

the covariate vector X = (X1, . . . , Xp)
T is from the multivariate normal distribution with

mean zero, variance one and an exchangeable correlation of 0.5, truncated at -2 and 2. For

power analysis, we set β in two different ways corresponding to sparse and dense signals

respectively:

• (sparse): β1 = b, and βj = 0 for j = 2, . . . , p;

• (dense): βj = b/p, j = 1, . . . , p.

Figure 1 plots the power curves of the bootstrap tests based on the maximum-type and

sum-type test statistics for p = 10 and p = 100 in models with sparse and dense signals

separately. We set the sample size as n = 200, and the nominal level as 0.05. The Type I er-

rors from the bootstrap method for the sum-type statistic tend to be smaller than the nominal

level. For fair comparison, we choose λn in the bootstrap procedure for the maximum-type

statistic such that the resulting Type I errors are comparable to those of the sum-type test.

The results in Figure 1 suggest that the maximum-type test is more powerful for detecting

sparse signals, and the sum-type test has more power for detecting dense alternatives. This

observation agrees with the findings in mean regression (Cai et al., 2014; Gregory et al.,

2015; Chen and Qin, 2010; Fan et al., 2015).
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Figure 1: Power curves of the maximum-type and sum-type tests in models with sparse and
dense signals.
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