
3 Vorticity, Circulation and Potential Vorticity.

3.1 Definitions

• Vorticity is a measure of the local spin of a fluid element given by

~ω = ∇× ~v (1)

So, if the flow is two dimensional the vorticity will be a vector in the direction
perpendicular to the flow.

• Divergence is the divergence of the velocity field given by

D = ∇.~v (2)

• Circulation around a loop is the integral of the tangential velocity around the loop

Γ =

∮

~v.d~l (3)

For example, consider the isolated vortex patch in Fig. 1. The circulation around
the closed curve C is given by

Γ =

∮

c

~v.d~l =

∫∫

(∇× ~v).d~s =

∫∫

~ω.d~s =

∫∫

A

ads = aA (4)

where we have made use of Stokes’ theorem. The circulation around the loop can
also be approximated as the mean tangential velocity times the length of the loop
and the length of the loop will be proportional to it’s characteristic length scale r e.g.
if the loop were a circle L = 2πr. It therefore follows that the tangential veloctity
around the loop is proportional to aA/r i.e. it does not decay exponentially with
distance from the vortex patch. So regions of vorticity have a remote influence on
the flow in analogy with electrostratics or gravitational fields. The circulation is
defined to be positive for anti-clockwise integration around a loop.

Figure 1: An isolated vortex patch of vorticity a pointing in the direction out of the page
will induce a circulation around the loop C with a tangential velocity that’s proportional to the
inverse of the characteristic length scale of the loop (r).
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3.2 Vorticity and circulation in a rotating reference frame

• Absolute vorticity ( ~ωa) = vorticity as viewed in an inertial reference frame.

• Relative vorticity (~ζ) = vorticity as viewed in the rotating reference frame of the
Earth.

• Planetary vorticity ( ~ωp) = vorticity associated with the rotation of the Earth.

~ωa = ~ζ + ~ωp (5)

where ~ωa = ∇ × ~vI , ~ζ = ∇ × ~vR and ~ωp = 2~Ω. Often we are concerned with horizontal
motion on the Earth’s surface which we may consider using a tangent plane approximation
or spherical coordinates. In such a situation the relative vorticity is a vector pointing in
the radial direction and the component of the planetary vorticity that is important is the
component pointing in the radial direction which can be shown to be equal to f = 2Ωsinφ.
So, when examining horizontal motion on the Earth’s surface we have

~ωa = ~ζ + f (6)

where the relative vorticity in cartesian or spherical coordinates in this situation is as
follows:

~ζ =

(

∂v

∂x
−

∂u

∂y

)

k̂ or ~ζ =

(

1

a

∂v

∂λ
−

1

acosφ

∂(ucosφ)

∂φ

)

r̂. (7)

The absolute circulation is related to the relative circulation by

Γa = Γr + 2ΩAn (8)

where An is the component of the area of the loop considered that is perpendicular to the
rotation axis of the Earth.

3.2.1 Scalings

The relative vorticity for horizontal flow scales as U/L whereas the planetary vorticity
scales as f . Therefore another way of defining the Rossby number is by the ratio of the
relative to planetary vorticities.

3.2.2 Conventions

• In the Northern Hemisphere

High pressure systems (anticyclones): Γ < 0, ζ < 0, Clockwise flow.

Low pressure systems (cyclones): Γ > 0, ζ > 0, Anti-clockwise flow.

• In the Southern Hemisphere

High pressure systems (anticyclones): Γ > 0, ζ > 0, Anticlockwise flow.

Low pressure systems (cyclones): Γ < 0, ζ < 0, Clockwise flow.
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Figure 2: Schematic illustrating the induction of a circulation around a loop associated with
the planetary vorticity.

3.3 Kelvin’s circulation theorem

In the following section, Kelvin’s circulation theorem will be derived. This theorem pro-
vides a constraint on the rate of change of circulation. Consider the circulation around a
closed loop C. Consider the loop to be made up of fluid elements such that the time rate
of change of the circulation around the loop is the material derivative of the circulation
around the loop given by

DΓ

Dt
=

D

Dt

∮

C

~v.d~l =

∮

C

D~v

Dt
.d~l +

∮

C

~v.
Dd~l

Dt
(9)

The second term can be re-written using the material derivative of line elements as follows

∮

C

~v.
Dd~l

Dt
=

∮

C

~v.(d~l.∇~v) =

∮

C

d~l.∇(
1

2
|~v|2) = 0 (10)

This term goes to zero as it is the integral around a closed curve of the gradient
of a quantity around that curve. We can then make use of our momentum equation
(neglecting viscosity and including friction) to obtain an expression for the rate of change
of the relative circulation

DΓ

Dt
=

∮

C

(−2~Ω × ~v).d~l −

∮

C

∇p

ρ
.d~l +

∮

C

~Ff .d~l (11)

where ~Ff is the frictional force per unit mass. There are therefore three terms that can
act to alter the circulation, each of these will now be examined in more detail.

• The Coriolis term: Consider the circulation around the curve C in a divergent
flow as depicted Fig. 2. It is clear that the coriolis force acting on the flow field acts
to induce a circulation around the curve C.

3



Figure 3: An extremely baroclinic situation in pressure coordinates. Two fluids of different
densities ρ1 and ρ2 are side by side (ρ1 < ρ2). The baroclinic term generates a circulation which
causes the denser fluid to slump under the lighter one until eventually an equilibrium is reached
with the lighter fluid layered on top of the denser fluid and the baroclinic term =0.

• The baroclinic term
∮

C

∇p

ρ
.d~l: This term can be re-written in a more useful form

using stoke’s theorem and a vector identity as follows

−

∮

C

∇p

ρ
.d~l = −

∫∫

A

∇×

(

∇p

ρ

)

.d~s =

∫∫

A

(∇ρ ×∇p)

ρ2
d~s (12)

From this it can be seen that this term will be zero if the surfaces of constant
pressure are also surfaces of constant density. A fluid is Barotropic if the density
depends only on pressure i.e. ρ = ρ(p). This implies that temperature does not
vary on a pressure surface. In a barotropic fluid temperature does not vary on a
pressure surface and therefore through thermal wind the geostrophic wind does not
vary with height. In contrast a fluid is Baroclinic if the term ∇ρ × ∇p 6= 0, for
example if temperature varies on a pressure surface then ρ = ρ(p, T ) and the fluid
is baroclinic. In a baroclinic fluid the geostrophic wind will vary with height and
there will be baroclinic generation of vorticity.

For example, consider the extremely baroclinic situation depicted in Fig. 3. We
are considering here a situation with pressure decreasing with height and two fluids
side by side of different densities ρ1 and ρ2 with ρ1 > ρ2. ∇ρ × ∇p is non-zero
and it can be seen that it would act to induce a positive circulation. As a result
of this circulation the denser fluid slumps under the lighter fluid until eventually
equilibrium is reached with the lighter fluid layered on top of the denser fluid.

This baroclinic term can also be written in terms of temperature and potential
temperature

−

∫∫

∇×
∇p

ρ
ds = −

∫∫

(∇lnθ ×∇T )ds (13)

Consider Fig 4 showing the zonal mean temperature and potential temperature in
the troposphere. In the tropics the temperature and potential temperature surfaces
nearly coincide. In contrast in the mid-latitudes it is clear that the temperature
and potential temperature surfaces do not coincide, or similarly there is a horizontal
temperature gradient on pressure surfaces. Therefore, in the midlatitudes there is
a large amount of baroclinic generation of circulation and vorticity responsible for
the cyclonic systems always present at such latitudes.
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Figure 4: Annual mean era-40 climatology of (top) Temperature and (bottom) Potential tem-
perature.

• The friction term - Consider friction to be a linear drag on the velocity with some
timescale τ i.e. ~Ff = −~v

τ
. This gives

DΓ

Dt
=

∮

C

~Ff .dl = −
1

τ

∮

C

~v.d~l =
Γ

τ
(14)

i.e. friction acts to spin-down the circulation.

Equation 11 provides us with Kelvin’s circulation theorem which states that if

the fluid is barotropic on the material curve C and the frictional force on C is zero then

absolute circulation is conserved following the motion of the fluid. Absolute circulation
being given by

Γa = Γ + 2ΩAn (15)

In other words there will be a trade off between the relative and planetary vorticities.
Consider Fig. 5. This shows a material curve that is shifted to higher latitude. As
the curve moves to higher latitude the area normal to the Earth’s rotation axis will
increase and so the circulation associated with the planetary vorticity increases (2ΩAn).
In order to conserve the absolute circulation the relative circulation must decrease (an
anti-cyclonic circulation is induced). Consider the example depicted in Fig. 3. Another
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way of thinking about this is that the velocity field is acting to increase the area of
the loop. The circulation associated with the planetary vorticity (2ΩAn) must therefore
increase and so to conserve absolute circulation the relative vorticity decreases (a clockwise
circulation is induced).

Figure 5: Schematic illustrating the conservation of absolute vorticity in the absence of friction
or baroclinicity. As the loop moves poleward the area normal to the vorticity of the Earth
increases and so the planetary circulation (2ΩAn) increases. In order to conserved absolute
circulation the relative circulation decreases (i.e. an anticyclonic circulation is induced).

3.4 The Vorticity Equation

Kelvin’s circulation theorem provides us with a constraint on the circulation around a
material curve but it doesn’t tell us what’s happening to the circulation at a localised
point. Another important equation is the vorticity equation which gives the rate of change
of vorticity of a fluid element. Consider the momentum equation in the inertial reference
frame in geometric height coordinates.

D~v

Dt
= −

∇p

ρ
+ ~Ff −∇Φ (16)

Make use of the vector identity

~v × (∇× ~v) = ∇(~v.~v)/2. − (~v.∇)~v (17)

and the definition of absolute vorticity (ωa = ∇×~v) and expand out the material derivative
to write momentum balance in the form

∂~v

∂t
+ ~ω × ~v = −

∇p

ρ
+ ~Ff −∇(Φ +

1

2
|v|2) (18)

Taking the curl of this equation gives

∂~ω

∂t
+ ∇× (~ω × ~v) =

(∇ρ ×∇p)

ρ2
+ ∇× ~Ff (19)
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Finally making use of the vector identity

∇× (~ω × ~v) = ~ω∇.~v + (~v.∇)~ω − ~v(∇.~ω) − (~ω.∇)~v (20)

and noting that the divergence of the vorticity is zero, this gives

D~ω

Dt
= (~ω.∇)~v − ~ω(∇.~v) +

∇ρ ×∇p

ρ2
+ ∇× ~Ff (21)

This is the vorticity equation which gives the time rate of change of a fluid element moving
with the flow. So, vorticity can be altered by the baroclinicity (third term) and friction
(fourth term) just like in Eq. 11 for circulation. However, for vorticity there are two
aditional terms on the right hand side. These represent vortex stretching (~ω(∇.~v)) and
vortex tilting ((~ω.∇)~v) and will be now be discussed in more detail.

3.4.1 Vortex stretching and vortex tilting

To understand what the vortex stretching and tilting terms represent it is useful to think in
terms of vortex filaments and vortex tubes (see Pedlosky Chapter 2). A vortex filament
is a line in the fluid that, at each point, is parallel to the vorticity vector at that point
(Fig. 6 (a)). For example, the vortex filaments associated with the Earth’s rotation would
be straight lines parallel to the Earth’s rotation axis. A vortex tube is formed by the
surface consisting of the vortex filaments that pass through a closed curve C (Fig. 6 (b)).
The bounding curve C at any point along the tube will differ in size and orientation. If the
closed curve C is taken to consist of fluid elements then according to Kelvin’s circulation
theorem, in the absence of baroclinicity or friction the circulation around that material
curve C is constant. The vortex stretching and tilting terms arise from the fact that,
although the circulation around the closed curve C is constant, the vorticity is not due
to the tilting and stretching of vortex tubes given that the vorticity is related to the
circulation by Γ =

∫∫

ω.d~s.
The vorticity is divergence free since ~ω = ∇ × ~v so the integral over some arbitrary

volume of the divergence of vorticity is zero.

∫∫∫

V

dV ∇.~ω =

∫∫

A

(~ω.n̂)dA = 0, (22)

using the divergence theorem, where n̂ is the outward normal over the surface of the
volume. By definition the component of vorticity perpendicular to the sides of a vortex
tube is zero. Therefore, considering the vortex tube in Fig. 6 (b) we have

0 =

∫∫

A

~ω.(−n̂A)dA +

∫∫

A′

~ω.n̂A′dA →

∫∫

A

(~ω.n̂A)dA =

∫∫

A′

(~ω.n̂A′)dA (23)

In other words, the vortex strength, or circulation is constant along the length of the
tube. We can now understand the terms ~ω(∇.~v) and (~ω.∇)~v as the stretching and tilting
of vortex tubes. For example consider the situation depicted in Fig. 6 (c) depicting a
vortex tube where the vorticity is oriented completely in the vertical (k̂). The vortex
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Figure 6: Illustrations of (a) a vortex filament, (b) a vortex tube, (c) vortex stretching and (d)
vortex tilting.

stretching and tilting terms give

D~ωa

Dt
= ~ω.∇~v − ~ω∇.~v

= ω
∂

∂z

(

uî + vĵ + wk̂
)

− ωk̂

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

= îω
∂u

∂z
+ ĵω

∂v

∂z
− k̂ω

(

∂u

∂x
+

∂v

∂y

)

(24)

Consider first the example depicted in Fig. 6 (c) where a horizontal divergent velocity
field is present. This gives

Dω

Dt
k̂ = −ωk̂

(

∂u

∂x
+

∂v

∂y

)

(25)

i.e. the divergent velocity field would act to decrease the vertical component of vorticity.
This makes sense if the curve C consists of fluid elements moving with the velocity field
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and the circulation around the curve C is conserved. The divergent velocity field would act
to increase the area enclosed by the curve C which must be counteracted by a decrease
in the vorticity to keep the circulation constant. In constrast if the velocity field was
convergent it would result in an increase in vorticity. The term is given the name vortex
stretching because if an incompressible fluid was being considered, an increase in the
vorticity associated with a decrease in the area enclosed by the material curves C can
only be achieved if the vortex tube is stretched.

Consider the second case depicted in Fig. 6 (d) where a vertical shear in wind in
the x (̂i) direction is present. From 24 this gives Dω/Dt = îω ∂u

∂z
i.e. it would act to

increase the component of vorticity in the x direction. This can be understood by the
wind shear acting to tilt the vortex tube such that the closed curves C and C ′ have a
larger component of their normal vector pointing in the x direction and therefore the
component of vorticity in the x direction is increased.

3.5 Potential Vorticity (PV)

So far we have derived Kelvin’s circulation theorem which demonstrated that in the
absence of friction or baroclinicity the absolute circulation is conserved. This provides us
with a constraint on the circulation around a closed curve but it’s non-local. It doesn’t
tell us what’s happening to an individual fluid element. We would need to know how the
material curve C evolves. The vorticity equation tells us how the vorticity of a localised
point may change but there’s not constraint - the terms on the right hand side of 21 could
be anything.

What we really need to describe the flow is a scalar field that is related to the velocities
that is materially conserved. The theory of Potential Vorticity due to Ertel (1942) provides
us with such a quantity. It provides us with a quantity that is related to vorticity that
is materially conserved. The theorem really combines the vorticity equation and Kelvin’s
circulation theorem.

3.5.1 Case 1: The barotropic case

Kelvin’s circulation theorem was valid for barotropic fluids in the absence of friction

DΓa

Dt
= 0 →

D

Dt

∮

C

~u.d~l =
D

Dt

∫∫

A

~ω.d~s = 0 (26)

Consider now an infinitesimal volume element that is bounded by two isosurfaces of
a materially conserved tracer (χ) as depicted in Fig. 7. Since χ is materially conserved
Dχ/Dt = 0. If we consider Kelvin’s circulation theorem around the infinitesimal fluid
element then we have

D

Dt
~ωa.d~s =

D

Dt
(~ωa.n̂)ds = 0.

The unit vector n̂ normal to the isosurface χ is given by

n̂ =
∇χ

|∇χ|

and the infinitesimal volume δV bounded by the two isosurfaces is δV = δhδS, where δh
is the separation between the isosurfaces. Therefore,

(~ωa.n̂)ds = ~ωa.
∇χ

|∇χ|

δV

δh
. (27)
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Figure 7: A fluid element that is bounded by two isosurfaces of a materially conserved tracer
(χ)

We can then write δh in terms of δχ since δχ = δh|∇χ|. Putting this into 27 gives

(~ωa.n̂)ds = ~ωa.
∇χ

δχ
δV.

So, from Kelvin’s circulation theorem we have

D

Dt

[

(~ωa.∇χ)δV

δχ

]

=
1

δχ

D

Dt
[(~ωa.∇χ)δV ] =

δM

δχ

D

Dt

[

(~ωa.∇χ)

ρ

]

= 0,

since χ is materially conserved therefore δχ is also materially conserved. Also the mass
of the fluid element (δM) is materially conserved. Therefore we have the result that

Dq

Dt
= 0, where q =

~ωa.∇χ

ρ
. (28)

This is a statement of potential vorticity conservation where q is the potential vorticity.
χ may be any materially conserved quantity e.g. θ for adiabatic motion of an ideal gas.

3.5.2 Case 2: The baroclinic case

Kelvin’s circulation theorem only holds for a barotropic atmosphere. But, throughout a
large proportion of the atmosphere (particularly the mid-latitudes) the baroclinic term

∫∫

a

(

∇ρ ×∇p

ρ2

)

.d~s = −

∫∫

A

(∇lnθ ×∇T ).d~s

is non-zero. However, we can make it zero by choosing the correct tracer χ. If we
considered our volume to be between isosurfaces of constant ρ, p, θ or T then the baroclinic
term would go to zero. But, we also require that χ be materially conserved and the only
one of these quantities that is conserved following the motion of an ideal gas is potential
temperature (θ). So, if we choose θ as our materially conserved tracer then we have the
result that

Dq

Dt
where q =

[

~ωa.∇θ

ρ

]

= 0 (29)

This is a general statement of PV conservation which holds even in a baroclinic atmo-
sphere. The potential vorticity is a quantity that is related to the vorticity
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(~ωa) and the stratification (∇θ) that is materially conserved in the absence of
friction or diabatic heating. If friction or diabatic heating were present then they
would be source or sink terms on the right hand side of 29.

Note that in order to derive this we assumed that we were dealing with the motion
of an ideal gas which allowed is to write the baroclinic term in terms of θ and T and
allowed us to assume that θ was a materially conserved tracer. For most purposes in the
atmosphere this is true. But, if for some reason this was not true then potential vorticity
conservation would take on a different form.

3.5.3 Interpretaion of PV

Potential vorticity conservation (29) is the foundation of our theories of atmospheric
dynamics. It allows for the prediction of the time evolution of flows that are in near
geostrophic balance and allows us to understand the propagation and generation of various
different types of atmospheric waves (as we shall see in the following sections). We will
examine PV in different systems: the shallow water model, two-layer quasi-geostrophic
theory and the fully stratified 3D equations. In each of these systems potential vorticity
takes on a slightly different form but the concept is the same. It is a materially conserved
tracer that is related to both the velocities and the stratification. We can therefore assume
it is advected by the mean flow. Therefore if the potential vorticity at a point in time is
know, and the velocity field is also known then we can work out how the PV field will
evolve allowing us to calculate the PV at a point a later time from which an inversion can
give use the new velocity field.

For many purposes in the atmosphere it is the vertical component of vorticity that
dominates.

q =
ωa,z

∂θ
∂z

ρ

From hydrostatic balance we can re-write thes as

Dq

Dt
= 0, q =

(f + ζ)
∂p

∂θ

where ζ =
∂v

∂x
−

∂u

∂y

from which is it clear that PV is given by the absolute vorticity multiplied by a term that
is a measure of the stratification. x nd y are the local cartesian coordinates on a tangent
plane. Strictly speaking the component of vorticity here is not actually the component in
the vertical but it is the component that is perpendicular to isentropic surfaces (surfaces
of constant θ) i.e. the derivatives with respect to x and y would be carried out with θ held
constant. If there are strong horizontal gradients of θ (which by thermal wind balance
indicates string vertical wind shears) then this will differ significantly from the vertical
component of vorticity (vortex tilting is important).

But, if the isentropic slope is small and tilting effects are neglected then the component
of vorticity here is approximately the vertical one. If ∂θ/∂p was constant then temperature
isn’t varying on a pressure surface and we have a barotropic atmosphere. In that case,
following the motion, air parcels would conserve the sum of their relative and planetary
vorticities.

The quantity ∂p/∂θ is known as the thickness. It is the thickness between isentropic
surfaces in pressure coordinates. It can be seen by considering Fig. 8 that potential vor-
ticity conservation takes into account the effects of vortex stretching. We are considering a
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Figure 8: Illustration of potential vorticity conservation. A fluid column is bounded by two
surfaces of potential temperature. As potential temperature is conserved following the motion of
the fluid column it stretches or compresses as the thickness between the potential temperature
surfaces varies. Since the mass of the fluid column is conserved the stretching reduces the surface
area of the column and vice versa. Therefore, via the circulation theorem the vorticity must
increase/decrease if the thickness increases/decreases. Therefore, it is the ratio of the vorticity
to the thickness that is conserved.

cylindrical column bounded by the isentropic surfaces θ1 and θ2. The mass of the column
is materially conserved and since the θ is also materially conserved, as the column moves
from the thin to the thick region it is stretched. As a result the area of the column on the
isentopic surfaces is decreased and therefore the vorticity must increase to conserve the
circulation. It can be seen that PV conservation takes this into account: |∂p/∂θ| increases
and so f + ζ increases to conserve PV. This is really conservation of angular momentum
for fluids. It can be seen to be analogous to the effect that when a ballerina or ice skater
goes from a position with their arms out horizontally to their arms stretched vertically
their vorticity (spin) increases.
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