Calculus Section III: Multiple Variable and Integral Calculus

Ivan Savic

1 Functions of Several Variables

$f: A \rightarrow B$
where:
A: \quad set of elements for which f is defined (its domain)
B : set in which f takes its values (target or target space) image or range
often this is expressed as:
$f: R^{n} \rightarrow R^{m}$
where:
$R^{n}: n$ dimensional set of real numbers, where n is the number of independent variables
$R^{m}: m$ dimensional set of real numbers, where m is the number of dependent variables

Example 1 production function:
input bundle: x_{1}, x_{2}, x_{3} output bundle: q_{1}, q_{2}
the output function is given by the following notations:
$q=\left(q_{1}, q_{2}\right)=\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right) \equiv F\left(x_{1}, x_{2}, x_{3}\right)\right.$
$F=\left(f_{1}, f_{2}\right)$
$F: R^{3} \rightarrow R^{2}$

Example 2 investment function:

$$
z=A\left(1+\frac{r}{n}\right)^{n t}
$$

dependant variable:
z - return on investment
independent variables:
A - initial investment
r - rate or return
n - compounded n times a year
t - number or years till maturity
Thus this function can be expressed as:
$F: R^{4} \rightarrow R^{1}$

Example 3 voter utility mapping:
let there be:
m - voters, and
k - candidates
each voter has a preference set over the candidates, $x^{i}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ so that:
$x=\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{k}^{1} ; x_{1}^{2}, x_{2}^{2}, \ldots, x_{k}^{2} ; \ldots ; x_{1}^{m}, x_{2}^{m}, \ldots, x_{k}^{m}\right) \in R^{k m}$
$U: R^{k m} \rightarrow R^{m}$

2 Types of Functions

2.1 Linear functions (transformations)

$f: R^{K} \rightarrow R^{M}$
where:

$$
\begin{aligned}
& f(x+y)=f(x)+f(y), \text { and } \\
& f(r x)=r f(x)
\end{aligned}
$$

Let $f: R^{K} \rightarrow R^{1}$ be a linear function, then there exists a vector $a \in R^{K}$ such that $f(x)=a x$ for all $x \in R^{K}$
i.e.
$f(x)=a \cdot x=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{k} x_{k}=\left(\begin{array}{lll}a_{1} & \ldots & a_{k}\end{array}\right)\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right)$
Let $f: R^{K} \rightarrow R^{M}$ be a linear function, then there exists a $m x k$ matrix A s.t. $f(x)=A x$ for all $x \in R^{K}$

$$
f(x)=A \cdot x=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m k}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

2.2 Quadratic forms

A quadratic form on R^{k} is a real-valued function of the form:

$$
q\left(x_{1}, \ldots, x_{k}\right)=\sum_{i, j=1}^{k} a_{i j} x_{i} x_{j}=\left(\begin{array}{lll}
x_{1} & \ldots & x_{k}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m k}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)
$$

Example 4

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \\
& Q\left(x_{1}, x_{2}, x_{3}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{22} x_{2}^{2}+a_{23} x_{2} x_{3}+a_{33} x_{3}^{2}
\end{aligned}
$$

2.3 Polynomials

A function $f: R^{K} \rightarrow R^{1}$ is a monomial if it can be written as

$$
f\left(x_{1}, \ldots, x_{k}\right)=c \cdot x_{1}^{a_{1}} \cdot x_{2}^{a_{2}} \cdots x_{k}^{a k}
$$

A function $f: R^{K} \rightarrow R^{1}$ is a polynomial if f is a finiter sum of monomials on R^{k}. The higest degree which occurs among these monomials is called the degree of the plynomial. A function $f: R^{K} \rightarrow R^{M}$ is called a polynomial if each of its component functions is a rea-valued polynomial.

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=-4 x_{1}^{2} x_{2} \\
& f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2}+4 x_{2} x_{3}^{3}
\end{aligned}
$$

3 Partial Derivatives

When taking a partial derivative with respect to one independent variable you follow the same rules as taking a linear derivative, you simply treat all other independent variables in the function as if they were constants:

Example $5 \frac{\partial}{\partial x}\left(3 x^{2} y^{3}\right)=2 x \cdot 3 y^{3}=6 x y^{3}$

3.1 Notation:

3.1.1 First-order partial derivatives:

$$
\frac{\partial f}{\partial x_{i}}=f_{i}=f_{x_{i}}=D_{i} f=\partial_{x_{i}} f
$$

3.1.2 Second-order partial derivatives:

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}=f_{i i}=f_{x_{i} x_{i}}=D_{i i} f=\partial_{x_{i} x_{i}} f
$$

3.1.3 Second-order mixed derivatives:

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=f_{i j}=f_{x_{i} x_{j}}=D_{i j} f=\partial_{x_{i} x j} f
$$

3.1.4 Higher-order partial and mixed derivatives:

$$
\frac{\partial^{i+j+k} f}{\partial x^{i} \partial y^{j} \partial z^{k}}=f^{(i, j, k)}
$$

4 Antiderivatives and Integration

$$
\begin{array}{lc}
\text { Antiderivative: } & F: F^{\prime}=f \\
\text { Indefinite integral: } & F(x)=\int f d x
\end{array}
$$

4.1 Some examples and properties:

1. $\int a f(x) d x=a \int f(x) d x \quad$ constant factor rule of integration
2. $\int(f+g) d x=\int f d x+\int g d x \quad$ sum rule of integration
3. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad(n \neq-1) \quad$ counterpart to basic derivative
4. $\int \frac{1}{x} d x=\ln x+C$
5. $\int e^{x} d x=e^{x}+C$
6. $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+C$
7. $\int(f(x))^{n} f^{\prime}(x) d x=\frac{1}{n+1}(f(x))^{n+1}+C . \quad(n \neq-1)$
8. $\int \frac{1}{f(x)} f^{\prime}(x) d x=\ln f(x)+C$
$\int\left(4 x^{2}+x^{\frac{1}{2}}-\frac{3}{x}\right) d x=\frac{4 x^{3}}{3}+\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-3 \ln x+C=\frac{4}{3} x^{3}+\frac{2}{3} x^{\frac{3}{2}}-3 \ln x+C$

4.2 Techniques

4.2.1 Linearity of integration:

linearity is a fundamental property of the integral that follows from the sum rule in integration and the constant factor rule in integration

$$
\int a f(x)+b g(x) d x=\int a f(x) d x+\int b g(x) d x=a \int f(x) d x+b \int g(x) d x
$$

4.2.2 Integration by substitution

This is the counterpart of the chain rule.

4.2.3 Integration by parts

This is the counterpart of the product rule: $(u \cdot v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\int u d v=u v-\int v d u$
Example $6 \int \ln (x) d x$
Let:

$$
\begin{aligned}
& u=\ln (x) \\
& d u=\frac{1}{x} d x \\
& v=x \\
& d v=1 \cdot d x
\end{aligned}
$$

Then:

$$
\begin{aligned}
\int \ln (x) d x & =x \ln (x)-\int x\left(\frac{1}{x}\right) d x \\
& =x \ln (x)-\int 1 d x \\
& =x \ln (x)-x+C
\end{aligned}
$$

Example $7 \int x e^{2 x} d x$
Let:

$$
\begin{aligned}
& u=x \\
& d u=d x \\
& v=\frac{1}{2} e^{2 x} \\
& d v=e^{2 x} d x
\end{aligned}
$$

Then:

$$
\begin{aligned}
\int x e^{2 x} d x & =x \cdot \frac{1}{2} e^{2 x}-\int \frac{1}{2} e^{2 x} d x \\
& =\frac{x e^{2 x}}{2 x}-\frac{1}{2} \int e^{2 x} d x \\
& =\frac{x e^{2 x}}{2}-\frac{1}{2}\left(\frac{1}{2} e^{2 x}\right)+C \\
& =\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4}+C \\
& =\frac{2 x e^{2 x}-e^{2 x}}{4}+C \\
& =\frac{e^{2 x}(2 x-1)}{4}+C
\end{aligned}
$$

4.3 Fundamental theorem of Calculus

definite integral:
$\int_{a}^{b} f(x) d x=F(b)-F(a), \quad$ where $\quad F^{\prime}=f$
To calculate an are under a cure in the interval $[a, b]$ divide the interval into N equal subintervals

$$
\text { each } \Delta=\frac{(b-a)}{N}
$$

with endpoints: $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$
$x_{0}=a$
$x_{1}=a+\Delta$
$x_{2}=a+2 \Delta$
!
$x_{n}=a+N \Delta=b$
summing up these segments we get the Riemann sum:

$$
f\left(x_{1}\right)\left(x_{1}-x_{0}\right)+f\left(x_{2}\right)\left(x_{2}-x_{1}\right)+\ldots+f\left(x_{n}\right)\left(x_{n}-x_{n-1}\right)=\sum_{i-1}^{N} f\left(x_{i}\right) \Delta
$$

Definition 8 The fundamental theorem states that interating this process using smaller and smaller subintervals, in the limit we obtain the definite integral $\int_{a}^{b} f(x) d x:$

$$
\lim _{\Delta \rightarrow 0} \sum_{i-1}^{N} f\left(x_{i}\right) \Delta=\int_{a}^{b} f(x) d x
$$

