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1 Functions of Several Variables

f : A! B

where:

A: set of elements for which f is de�ned (its domain)

B: set in which f takes its values (target or target space) image or range

often this is expressed as:

f : Rn ! Rm

where:

Rn: n dimensional set of real numbers, where n is the number of independent
variables

Rm: m dimensional set of real numbers, where m is the number of dependent
variables

Example 1 production function:

input bundle: x1, x2, x3
output bundle: q1, q2

the output function is given by the following notations:
q = (q1; q2) = (f1(x1; x2; x3); f2(x1; x2; x3) � F (x1; x2; x3)
F = (f1; f2)
F : R3 ! R2

Example 2 investment function:
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z = A(1 + r
n )
nt

dependant variable:
z - return on investment

independent variables:
A - initial investment
r - rate or return
n - compounded n times a year
t - number or years till maturity

Thus this function can be expressed as:

F : R4 ! R1

Example 3 voter utility mapping:

let there be:
m - voters, and
k - candidates

each voter has a preference set over the candidates, xi = (x1; x2; :::; xk) so
that:
x = (x11; x

1
2; :::; x

1
k;x

2
1; x

2
2; :::; x

2
k; :::;x

m
1 ; x

m
2 ; :::; x

m
k ) 2 Rkm

U : Rkm ! Rm

2 Types of Functions

2.1 Linear functions (transformations)

f : RK ! RM

where:

f(x+ y) = f(x) + f(y), and

f(rx) = rf(x)

Let f : RK ! R1 be a linear function, then there exists a vector a 2 RK
such that f(x) = ax for all x 2 RK
i.e.

f(x) = a � x = a
1
x
1
+ a

2
x
2
+ :::+ akxk =

�
a1 ::: ak

�0B@ x1
...
xk

1CA
Let f : RK ! RM be a linear function, then there exists a m x k matrix A

s.t. f(x) = Ax for all x 2 RK
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f(x) = A � x =

0B@ a11 � � � a1k
...

. . .
...

am1 � � � amk

1CA
0B@ x1

...
xk

1CA

2.2 Quadratic forms

A quadratic form on Rk is a real-valued function of the form:

q(x1 ; :::; xk) =
Pk

i;j=1 aijxixj =
�
x1 ::: xk

�0B@ a11 � � � a1k
...

. . .
...

am1 � � � amk

1CA
0B@ x1

...
xk

1CA
Example 4

Q(x1; x2) = a11x
2
1 + a12x1x2 + a22x

2
2

Q(x1; x2; x3) = a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3

2.3 Polynomials

A function f : RK ! R1 is a monomial if it can be written as

f(x1 ; :::; xk) = c � xa11 � xa22 � � � � � xakk

A function f : RK ! R1 is a polynomial if f is a �niter sum of monomials
on Rk. The higest degree which occurs among these monomials is called the
degree of the plynomial. A function f : RK ! RM is called a polynomial if
each of its component functions is a rea-valued polynomial.

f(x1; x2) = �4x21x2
f(x1; x2; x3) = 3x

2
1x2 + 4x2x

3
3

3 Partial Derivatives

When taking a partial derivative with respect to one independent variable you
follow the same rules as taking a linear derivative, you simply treat all other
independent variables in the function as if they were constants:

Example 5 @
@x (3x

2y3) = 2x � 3y3 = 6xy3

3.1 Notation:

3.1.1 First-order partial derivatives:
@f
@xi

= fi = fxi = Dif = @xif
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3.1.2 Second-order partial derivatives:

@2f
@x2i

= fii = fxixi = Diif = @xixif

3.1.3 Second-order mixed derivatives:
@2f

@xi@xj
= fij = fxixj = Dijf = @xixjf

3.1.4 Higher-order partial and mixed derivatives:

@i+j+kf
@xi@yj@zk

= f (i;j;k)

4 Antiderivatives and Integration

Antiderivative: F : F 0 = f

Inde�nite integral: F (x) =
R
fdx

4.1 Some examples and properties:

1.
R
af(x)dx = a

R
f(x)dx constant factor rule of integration

2.
R
(f + g)dx =

R
fdx+

R
gdx sum rule of integration

3.
R
xndx = xn+1

n+1 + C, (n 6= �1) counterpart to basic derivative

4.
R
1
xdx = lnx+ C

5.
R
exdx = ex + C

6.
R
ef(x)f 0(x)dx = ef(x) + C

7.
R
(f(x))nf 0(x)dx = 1

n+1 (f(x))
n+1 + C. (n 6= �1)

8.
R

1
f(x)f

0(x)dx = ln f(x) + C

R
(4x2 + x

1
2 � 3

x )dx =
4x3

3 + x
3
2
3
2

� 3 lnx+ C = 4
3x

3 + 2
3x

3
2 � 3 lnx+ C

4.2 Techniques

4.2.1 Linearity of integration:

linearity is a fundamental property of the integral that follows from the sum
rule in integration and the constant factor rule in integrationR

af(x) + bg(x)dx =
R
af(x)dx+

R
bg(x)dx = a

R
f(x)dx+ b

R
g(x)dx
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4.2.2 Integration by substitution

This is the counterpart of the chain rule.

4.2.3 Integration by parts

This is the counterpart of the product rule: (u � v)0 = u0v + uv0R
udv = uv �

R
vdu

Example 6
R
ln(x)dx

Let:

u = ln(x);
du = 1

xdx;
v = x;
dv = 1�dx

Then:R
ln(x)dx = x ln(x)�

R
x( 1x )dx

= x ln(x)�
R
1dx

= x ln(x)� x+ C

Example 7
R
xe2xdx

Let:

u = x;
du = dx;
v = 1

2e
2x;

dv = e2xdx
Then:R
xe2xdx = x � 12e

2x �
R
1
2e
2xdx

= xe2x

2 � 1
2

R
e2xdx

= xe2x

2 � 1
2 (
1
2e
2x) + C

= xe2x

2 � e2x

4 + C

= 2xe2x�e2x
4 + C

= e2x(2x�1)
4 + C
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4.3 Fundamental theorem of Calculus

de�nite integral:R b
a
f(x)dx = F (b)� F (a), where F 0 = f

To calculate an are under a cure in the interval [a; b] divide the interval into
N equal subintervals

each � = (b�a)
N

with endpoints: x0; x1; x2; :::; xn
x0 = a
x1 = a+�
x2 = a+ 2�
...
xn = a+N� = b

summing up these segments we get the Riemann sum:

f(x1)(x1 � x0) + f(x2)(x2 � x1) + :::+ f(xn)(xn � xn�1) =
PN

i�1 f(xi)�

De�nition 8 The fundamental theorem states that interating this process
using smaller and smaller subintervals, in the limit we obtain the de�nite integralR b
a
f(x)dx :

lim�!0

PN
i�1 f(xi)� =

R b
a
f(x)dx
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