
Linear Algebra
James Je Heon Kim
(jjk91@columbia.edu)

If you are unfamiliar with linear or matrix algebra, you will �nd that it is
very di¤erent from basic algebra or calculus. For the duration of this session,
we will be focusing on de�nitions of such concepts as linear equations, matrices,
determinants, vector spaces, inner products, linear transformations, eigenvalues
and eigenvectors, and their applications to interesting mathematical problems.

Texts:
Linear Algebra and Its Applications (3rd Edition) Addison Wesley c2003,

by David C. Lay (DCL)

Module 1
Properties of Matrices
System of Linear Equation
DCL (Recommended):
1.1.16, 22, 30
1.6.8, 14, 15
1.7.1, 3, 5, 11
1.8.1, 3, 15, 21

Module 2
Linear Independence
Inverse of Matrix Linear Systems and Inverses
Determinants
DCL(Recommended):
2.1.3, 5, 7, 10, 15, 16, 19, 25
3.1.1, 9, 11, 19, 21
3.2.3, 9, 10

Module 3
Eigenvalues/Eigenvectors
Cramer�s Rule
Orthogonality(?)
DCL(Recommended):
5.1.3, 4, 5, 7, 8
5.2.7, 9
5.3.3, 11, 13
6.1.3, 5, 7
6.2.5, 7
6.3.3, 9, 11
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1 Linear Algebra: Module 1

1.1 Module Topics:1

System of Linear Equations
Method of Substitution
Gaussian Elimination

Gauss-Jordan Elimination
Matrix Methods

1.1.1 Linear Equation

a1x1 + a2x2 + :::+ anxn = b

4x1 � 5x2 + 2 = x1 ! rearranged!

x2 = 2(
p
6� x1) + x3 ! rearranged!

1.1.2 Systems of Linear Equations

Collection of one or more linear equations involving Collection of one or more
linear equations involving same variables �say x1; :::; xn. An example is

x1 � 2x2 + x3 = 0
2x2 � 8x3 = 8

�4x1 + 5x2 + 9x3 = �9

More generally, we might have a system of m equations in n unknowns

a11x1 + a12x2 + :::+ a1nxn = b1
a21x1 + a22x2 + :::+ a2nxn = b2

.

.

.
am1x1 + am2x2 + :::+ amnxn = bm

1Examples for this workshop were drawn from Lay (2003) Linear Algebra and Its Applica-
tions, Leon(2002) Linear Algebra with Applications (6th Edition), and Harvard University�s
Political Science Math (P)refresher.

2



The set of all possible solutions is called the solution set of the linear system.
Two linear systems are called equivalent if they have the same solution sets.
Finding the solution set of a system of two linear equations in two variables

is easy because it amounts to �nding the intersection of two lines.

x1 + x2 = 10 x1 � 2x2 = �3 x1 + x2 = 3
�x1 + x2 = 0 2x1 � 4x2 = 8 � 2x1 � 2x2 = �6

If there are three equations in three variables, each equation would de�ne a
plane in a 3 dimensional space. Same reasoning applies. If there are more than
3 variables, the intersection of hyperplanes would determine the solution set.

1.1.3 Strategies for Solving a System

In order to solve the system of linear equations, we can utilize all or one of the
following three strategies:
1. Substitution
2. Elimination (of variables)
3. Matrix Methods

Method of Substitution Steps:
1. Solve one equation for one variable, say x1, in terms of the other

variables in the equation
2. Substitute the expression for x1 into the other m�1equations, result-

ing in a new system of m� 1 equations in n� 1unknowns.
3. Repeat steps 1 & 2 until one equation in one unknown, say xn. We

now have a value for xn.
4. Backward substitution: substitute xn into previous equation(s). Re-

peat using the successive expressions of each variable in terms of the other
variables to �nd the values of all xi�s.

Using substitution, solve:

x1 � 2x2 = �1
�x1 + 3x2 = 3
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Using substitution, solve:

x1 � 2x2 + x3 = 0
2x2 � 8x3 = 8

�4x1 + 5x2 + 9x3 = �9

Method of Elimination a) Elementary Row Operations
Elementary row operations are used to transform the equations of a linear

system, while maintaining an equivalent linear system �equivalent in the sense
that the same values of xj solve both the original and transformed systems.
These operations are

1. (Replacement) Add one row to a multiple of another row.
2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Take Example 2, for instance, we can:
Add the 1st row to the 2nd row of equation to get:
x1 � 2x2 = �1
x2 = 2
Then use backward substitution to get
x1 = 3
x2 = 2

We can apply the similar procedure to solve for Example 3

x1 � 2x2 + x3 = 0
2x2 � 8x3 = 8

�4x1 + 5x2 + 9x3 = �9

(i) To do so, add 4 times 1st row to the 3rd row of equation. To get a
new 3rd row of equation.

(ii) Now, multiply equation 2 by 1
2 in order to obtain 1 as the coe¢ cient

for x2. (This calculation will simplify the arithmetic for the next step.)
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(iii) Use the x2 in equation 2 to eliminate the �3x2 in equation 3 in
order to obtain:

(iv) The new system has a triangular form:

We can use backward substitution to �nd the solution set.

Check to see if (29, 16, 3) is a solution of the original system.

b) Gaussian Elimination
Method by which we start with some linear system of m equations in n

unknowns and use the elementary equation operations to eliminate variables
until we arrive at an equivalent system of the form:

a011x1 + a
0
12x2 + a

0
13x3 + :::+ a

0
1nxn = b01

a022x2 + a
0
23x3 + :::+ a

0
2nxn = b

0
2

a033x3 + :::+ a
0
3nxn = b

0
3

: :
: :
: :

a0mnxn = b
0
m

The bold faced coe¢ cients are referred to as pivots.

(Essentially similar to the method shown above)

c) Gauss-Jordan Elimination
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Takes the Gaussian elimination method one step further. Once the linear
system is in the reduced form shown in the preceding section, elementary row
operations and Gaussian eliminations are used to

(i) Change the coe¢ cient of the pivot term in each equation to 1
and

(ii) Eliminate all terms above each pivot in its column,

resulting in a reduced, equivalent system. For a system of m equations in n
unknowns, a typical reduced system would be:

x1 = b�1
x2 = b�2

x3 = b�3
. :

. :
. :

xn = b
�
m

d) Matrix Method
Matrices provide an easy and e¢ cient way to represent linear systems such

as:

a11x1 + a12x2 + :::+ a1nxn = b1
a21x1 + a22x2 + :::+ a2nxn = b2

.

.

.
am1x1 + am2x2 + :::+ amnxn = bm

The m� n coe¢ cient matrix A is an array of mn real numbers arranged
in m rows by n columns.

A =

0BB@
a11 a12 ::: a1n
a21 : a2n
: : :
am1 am2 ::: amn

1CCA

The RHS of the linear system is represented by the vector b =

0BB@
b1
b2
:
bm

1CCA
Augmented matrix: when we append b to the coe¢ cient matrix A; we get

the augmented matrix Â = [Ajb]
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Â =

0BB@
a11 a12 ::: a1n
a21 : a2n
: : :
am1 am2 ::: amn

b1
b2
:
bm

1CCA

The rules of elementary row operations apply here.

Gaussian elimination of the augmented matrix results in a row echelon
form.

0BB@
a11 a12 ::: a1n b1
0 a22 a23 a2n b2
: 0 : :
0 0 0 amn bm

1CCA

Note:
(i) All nonzero rows are above any rows of all zeros.
(ii) Each leading entry of a row is in a column to the right of the

leading entry of the row above it.
(iii) All entries in a column below a leading entry are zeros.

Reduced row echelon form
Satis�es the following additional conditions

(iv) The leading entry in each nonzero row is 1.
(v) Each leading 1 is the only nonzero entry in its column.

0BB@
a11 0 0 0 b1
0 a22 0 0 b2
: 0 ::: :
0 0 0 amn bm

1CCA

In essence, this is the matrix equivalent of a linear system after Gauss-Jordan
elimination.

Exercise 1 Solve the system using matrix method:
x1 + x2 = 1
x1 � x2 = 3
�x1 + 2x2 = �2
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Exercise 2 Solve the system using matrix method
�x1 + x2 � x3 + 3x4 = 0
3x1 + x2 � x3 � x4 = 0
2x1 � x2 � x3 � x4 = 0

Exercise 3 In the downtown section of a certain city, two sets of one way
streets intersect as shown below. The average hourly volume tra¢ c entering and
leaving this section during rush hour is given in the diagram. Determine the
amount of tra¢ c between each of the four intersections.

Rank, Uniqueness and Consistency As the exercises suggest, there are
two fundamental questions that we may want to address when we are solving
for a system of linear equations

1) Is the system consistent? (Does a solution exist?)
2) If a solution exists, is it unique? (Is there one and only one

solution?)

We can determine whether one in�nite, or no solutions exist if we know (1)
the number of equations m, (2) the number of unknowns n, and (3) the rank of
the matrix representing the linear system.

Rank: number of nonzero rows in its row echelon form.
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Example 4

0@ 1 2 3
0 4 5
0 0 6

1A Rank = 3

Example 5

0@ 1 2 3
0 4 5
0 0 0

1A Rank = 2

Example 6

0BB@
1 2 3 b1
0 4 5 b2
0 0 1 b3
0 0 0 b4

1CCA ; bj 6= 0 Rank = 4

Let A be the coe¢ cient matrix and Â = [Ajb] be the augmented matrix.
Then,

1. rank A �rank Â
Augmenting A with b can never result in more zero rows than originally
in A itself. Suppose row i in A is all zeros and that bi is non-zero. Aug-
menting A with b will yield a non-zero row i in Â:

2. rank A � rows A
By de�nition of a rank.3

3. rank A � columns A
Suppose there are more rows than columns (otherwise the previous rule
applies). Each column can contain at most one pivot. By pivoting, all
other entries in a column below the pivot are zeroed. Hence, there will
only be as many non-zero rows as pivots, which will equal the number of
columns.

Existence of solutions:

1. Exactly one solution

rank A = rank Â = rows A = columns A

Necessary condition for a system to have a unique solution: that there be
exactly as many equations as unknowns.

2. In�nite solutions

rank A = rank; and columns A > rank A

If a system has a solution and has more unknowns than equations, then
it has in�nitely many solutions.
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3. No solution

rank A < rank Â

Then there is a zero-row i in A�s reduced echelon that corresponds to a
non-zero row i in Â�s reduced echelon. Row i of the translates to the
equation:

0xi1 + 0xi2 + :::+ 0xin = bi

Where bi 6= 0: Hence, the system has no solution.

Exercise 7 x1 + 2x2 + x3 = 1
2x1 + 4x2 + 2x3 = 3

Exercise 8 x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2

2 Linear Algebra: Module 2

2.1 Module Topics:2

Linear Independence
Matrix Algebra

Inverse
Determinants
Cramer�s Rule

Eigenvalues & Eigenvectors

2.1.1 Linear Independence

Let v1; v2; ::::; vn be a set of n vectors each of which is of order m. Then the set
of vectors is linearly dependent if there exist scalars a1; a2; :::; an at least one of
which is not 0 such that

a1v1 + a2v2 + a3v3 + :::+ anvn = 0

Or
2Examples for this workshop were drawn from Lay (2003) Linear Algebra and Its Applica-

tions, Leon(2002) Linear Algebra with Applications (6th Edition), and Harvard University�s
Political Science Math (P)refresher.
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V a = 0

Example 9 Is there linear dependence?

v1 =

0@ 1
2
3

1A v2 =

0@ 4
5
6

1A v3 =

0@ 2
1
0

1A
Hint: We can try to augment these vectors into a matrix and solve for a

reduced row echelon form and see if we can �nd some relationship between the
rows. If we can determine some functional linear relationship between these
vectors, we can say that there is linear dependence.

2.1.2 Matrix Algebra

Matrix: A matrix is an array of mn real numbers arranged in m rows by n
column.

A =

0BB@
a11 a12 ::: a1n
a21 a22 a2n
: :
am1 am2 ::: amn

1CCA

Matrix addition (or subtraction): Let A and B be two m� n matrices.
Then

A+B =

0BB@
a11 + b11 a12 + b12 ::: a1n + b1n
a21 + b21 a22 + b22 ::: a2n + b2n

:
am1 + bm1 am2 + bm2 :::: amn + bmn

1CCA
Note: A and B must be the same size!

Example 10
�
1
2

�
+

�
2
4

�
=

Example 11
�
3 6 5 6

�
�
�
2 4 5 6

�
=

Example 12
�
2 4
3 1

�
�
�
4 5
2 3

�
=

Scalar Multiplication: Given the scalar s, the scalar multiplication of sA
is
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sA = s

0BB@
a11 a12 ::: a1n
a21 a22 a2n
: :
am1 am2 ::: amn

1CCA =

0BB@
sa11 sa12 ::: sa1n
sa21 sa22 sa2n
: :

sam1 sam2 ::: samn

1CCA
Matrix multiplication: If A is an m� n matrix and B is a k � n matrix,

then their product C = AB is an m� n matrix where

cij = ai1b1j + ai2b2j + :::+ aikbkj

So0@ 3 �2
2 4
1 3

1A� � �2 1 3
4 1 6

�
=

0@ �14 1 �3
12 6 30
10 4 21

1A

If A =
�
3 4
1 2

�
and B =

0@ 1 2
4 5
3 6

1A then, BA =?

Note: the number of columns of the �rst matrix must equal the number of
rows of the second matrix. The size of the matrices (including the resulting
product) must be:

(m� k)(k � n) = (m� n)

Using matrix multiplication, we can now write the linear equation.

Let A be a m� n coe¢ cient matrix

0BB@
a11 a12 ::: a1n
a21 a22 a2n
: :
am1 am2 ::: amn

1CCA

x be a m� 1 vector array of unknowns

0BB@
x1
x2
:
xm

1CCA

b be a m� 1 vector array of constants

0BB@
b1
b2
:
bm

1CCA

Then,
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Ax = b
a11x1 + a12x2 + :::+ a1nxm = b1
a21x1 + a22x2 + :::+ a2nxm = b2

:
:

am1x1 + am2x2 + :::+ amnxm = bm

2.1.3 Law of Matrix Algebra

1. Associative

(A+B) + C = A+ (B + C)

(AB)C = A(BC)

2. Commutative

A+B = B +A

Question: Is multiplication of matrices commutative? AB 6= BA or AB =
BA?Can you think of an example that can show whether one or the other?

3. Distributive

A(B + C) = AB +AC

(A+B)C = AC +BC

Exercise 13 If A =
�
1 2
3 4

�
and B =

�
2 1
�3 2

�
and C =

�
1 0
2 1

�
Solve
a) A(BC)
b) (AB)C
c) A(B + C)
d) AB +AC

If A =
�
1 1
1 1

�
then, A2 =? A3 =? An =?

1. Transpose

Transpose of the m � n matrix A is the n � m matrix AT obtained by
interchanging the rows and columns of A.

The following rules apply for transposed matrices
a) (A+B)T = AT +BT

b) (AT )T = A
c).(sA)T = sAT
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Exercise 14 A =

0@ 1 2 1
3 3 5
2 4 1

1A B =

0@ 1 0 2
2 1 1
5 4 1

1A Solve

for BTAT and (AB)T

d) (AB)T = BTAT

2.1.4 The Inverse of a Matrix

Identity Matrix: The n� n identity matrix In is the matrix whose diagonal
elements are 1 and all o¤-diagonal elements are 0. So

In =

0BB@
a11 a12 ::: a1n
a21 a22 a2n
: :
am1 am2 ::: amn

1CCA where all diagonal

a11 = a22 = a33 = ::: = amn = 1 and all other o¤-diagonal elements are 0.

Inverse Matrix: n� n matrix A is nonsingular or invertible if there exists
an n� n matrix A such that

AA�1 = A�1A = In

A�1 is the inverse of A. If there is no such A�1; then A is singular or non-
invertible.

Invertible:

Let A =
�
a b
c d

�
(2:1)

If ad� bc 6= 0, then A is invertible (or nonsingular)

and A�1 = 1
ad�bc

�
d �b
�c a

�

Properties of Inverse

1. If the inverse exists, it is unique

2. A nonsingular ! A�1 nonsingular (A�1)�1 = A

3. A and B nonsingular ! AB nonsingular (AB)�1 = B�1A�1
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4. A nonsingular ! (AT )�1 = (A�1)T

Exercise 15 Find A�1 if

A =

0@ 1 4 3
�1 �2 0
2 2 3

1A�1

=

0@ � 1
2 � 1

2
1
2

1
4 � 1

4 � 1
4

1
6

1
2

1
6

1A

Determinants
If A = (a) is a 1� 1 matrix, then A will have a multiplicative inverse if and

only if a 6= 0: Thus, if we de�ne,

det(A) = a

then A will be nonsingular if and only if det(A) 6= 0: Hence, the determinant
will equal zero when the inverse does not exist. Since the inverse of a, 1a , does
not exist when a = 0, we let the determinant of a be a:

2� 2 Matrix

Let A =
�
a11 a12
a21 a22

�
In order to �nd its determinant,

1. Multiply the second row of A by a11

2. Subtract a21 times the �rst row from the new second row

There are two alternatives to this method:
a) Take the �rst upper left hand corner element and eliminate its correspond-

ing row and column elements; then multiply with the remaining element(s). Do
the same for all other �rst row elements alternating subtraction and addition.

b) Simply multiply the diagonal elemtns together and subtract the product
of the upper left hand element in the matrix to that of the other.

The determinant is of the form: a11a22 � a12a21 6= 0

We say that A is nonsingular only if a11a22�a12a21 6= 0:We then de�ne the
determinant of a 2� 2 matrix A as
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���� a11 a12
a21 a22

���� = a11a22 � a12a21 = a11ja22j � a12ja21j

Extending this to a 3� 3 matrix we get������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������ = a11
���� a22 a23
a32 a33

����� a12 ���� a21 a23
a31 a33

����+ a13 ���� a21 a22
a31 a32

����

For n � 2, the determinant of an n� n matrix A = [aij ] is given by

detA = a11 detA11�a12 detA12+:::+(�1)1+na1n detA1n =
nX
j=1

(�1)1+ja1j detA1j

For a triangular or diagonal matrices, the determinant is just the product of
the diagonal terms.

Example: R =

0@ r11 r12 r13
0 r22 r23
0 0 r33

1A

Then jRj = r11
���� r22 r23
0 r33

���� = r11r22r33

Exercise 16

������
1 2 0
3 �1 2
2 0 1

������
Exercise 17

������
2 4 6
5 6 7
7 6 10

������
Shortcut for a 3� 3 matrix:������

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
= (a11a22a33 + a12a23a31 + a21a32a13)� (a13a22a31 + a12a21a33 + a23a32a11)
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Properties of determinants
1. jAj = jAT j
2. If B results from A by interchanging two rows, thenjBj = j �Aj
3. If two rows of A are equal, then jAj = 0
4. If a row of A consists of all zeros, then jAj = 0
5. If B is obtained by multiplying a row of A by a scalar s, then jBj = jsAj
6. If B is obtained from A by adding to the ith row of A the jth row (i 6= j)

multiplied by a scalar s, then jBj = jAj
7. If no row interchanges and no scalar multplicatinos of a single row are

used to compute the row echelon form R from the n � n coe¢ cient matrix A,
then jAj = jRj
8. A square matrix is nonsingular if and only if its determinent is not zero
9. jABj = jAj � jBj
10. If A is nonsingular, then jAj 6= 0 and jA�1j = 1

jAj

Knowing the determinant is useful. For instance, we can calculate the matrix
inverse if we know its determinant:

A�1 = 1
jAjadj(A) where adj(A) [adjoint of A] is a n�n matrix whose (i,j)th

entry is Cji:

So, if we see equation 2.1,

adjA =

�
a22 �a12
�a21 a11

�

For a 3� 3 matrix, the adjoint is the transpose of the cofactors

If B =

0@ 2 1 2
3 2 2
1 2 3

1A adj(B) =

Using above de�nition of an inverse, calculate B�10@ 2 1 2
3 2 2
1 2 3

1A�1

=
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2.1.5 Cramer�s Rule

Let A be a n � n nonsingular matrix and let b 2 Rn: Let Ai be the matrix
obtained by replacing the ith column of A by b. If x is the unique aolution to
Ax = b; then

xi =
det(Ai)
det(A) for i = 1; 2; :::; n

Use Cramer�s Rule to solve
x1 + 2x2 + x3 = 5
2x1 + 2x2 + x3 = 6
x1 + 2x2 + 3x3 = 9

Note: Cramer�s rule gives us a convenient method for writing the solution
to a n � n system of linear equations in terms of determinants. However, we
must evaluate n+1 determinents of order n if we wish to use Cramer�s Rule.
Evaluating even two of these determinants generally involves more computation
than solving the system using Gaussian elimination technique.

2.1.6 Eigenvalues & Eigenvectors

Consider the following:

Given a k � k matrix A, can we �nd a scalar � and a nonzero vector x such
that Ax = �x?

The answer to this question is a "yes". In fact, there exists k (possibly
nondistinct) values for � and in�ntely many vectors x satisfying this condition.

This is known as the eigenvalue/eigenvector problem.
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How do we calculate them?

2.1.7 Some useful application of linear algebra: Linear Regression

Although linear algebra may seem impractical for �rst time users, it is a very
useful tool for understanding the theoretical basis of linear regression. To il-
lustrate, if we have a collection of data where the dependent variable is y and
explanatory variables are series of X�s, we can represent them using matrix
notations as:

y =

0BB@
y1
y2
:
yn

1CCA X =

0BB@
x11 x12 ::: x1k
x21 x22 :
: : :
xn1 xn2 ::: xnk

1CCA

If we wish to represent the relationship between these two variables y and X
using linear regression, they are:

y = X� + "

where � represents the coreponding coe¢ cient vector based on the data y
and X, and " is the random error term.

The most popular method of estimating � is by using the least squares
method where we seek to minimize the sum of the squared elements of ": That
is, we seek to minimize

nX
i=1

"2i = "
T " = (y �X�)T (y �X�)
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One way to do this is to �nd the derivative of the above equation with respect
to � and then set it equal to zero and solve for �:

This yields:

XTX� = XT y

If we minimize this term, we can obtain the coe¢ cient estimate
^

�

^

� = (XTX)�1XT y

So we can actually try this with real data to see if it works.

Let y be the price in thousands of dollars
Let x1 be the lot size (in hundreds of square yards).
Let x2 be the number of bedrooms

y =

0@ 122
115
145

1A X =

0@ 10 4
12 3
14 5

1A
Find the linear relationship between y and X.
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