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Abstract

The prominent Top Trading Cycles (TTC) mechanism has attractive prop-

erties for school choice, as it is strategy-proof, Pareto efficient, and allows

school boards to guide the assignment by specifying priorities. However, the

common combinatorial description of TTC does little to explain the relation-

ship between student priorities and their eventual assignment. This creates

difficulties in transparently communicating TTC to parents and in guiding

policy choices of school boards.

We show that the TTC assignment can be described by n2 admission thresh-

olds, where n is the number of schools. These thresholds can be observed after

mechanism is run, and can serve as non-personalized prices that allow parents

to verify their assignment.

In a continuum model these thresholds can be computed directly from the

distribution of preferences and priorities, providing a framework that can be

used to evaluate policy choices. We provide closed form solutions for the as-

signment under a family of distributions, and derive comparative statics. As

an application of the model we solve for the welfare maximizing investment in

school quality, and find that a more egalitarian investment can be more efficient

because it promotes more efficient sorting by students.
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1 Introduction

Since Abdulkadiroğlu and Sönmez (2003) formulated school choice as an assignment

problem, many school districts have redesigned their school assignment mechanisms

to give students more choice over their school assignment. Abdulkadiroglu and Son-

mez propose two mechanisms that are strategyproof for students and allow the school

district to set a priority structure: the Deferred Acceptance (DA) mechanism (Gale

and Shapley, 1962); and the Top Trading Cycles (TTC) mechanism (Shapley and

Scarf (1974), attributed to David Gale). The mechanisms differ in that DA is stable

but not necessarily efficient, and TTC is Pareto efficient for students but not neces-

sarily stable. In many districts schools do not screen students and there is no need

to sacrifice efficiency to guarantee stability1. Despite this, almost every district that

redesigned their school choice mechanism chose to implement the DA mechanism

(Pathak and Sönmez, 2013; IIPSC, 2017), instead of the more efficient TTC.2

One of the main barriers to using TTC in practice is the difficulty designers had

in communicating it to parents and school boards.3 The standard explanation of

TTC is an algorithmic description in terms of sequentially clearing trade cycles, from

which it is not directly apparent how priorities and preferences determine assignment.

This makes it difficult for school boards to evaluate the effects of policy decisions on

the TTC assignment and resulting welfare. It is also difficult for students to verify

they were correctly assigned and be convinced that the mechanism is strategyproof.

1There is no strategic concern that blocking pairs will match to each other outside the mechanism.
This is because of two differences between school choice and two-sided settings like the medical
match. First, in Boston and other districts schools cannot directly admit students without approval.
Second, priorities are often determined by school zone, sibling status and lotteries, and are not
controlled by the school, and so schools do not necessarily prefer students with higher priority. A
notable exception is the NYC high school admissions system, see Abdulkadiroğlu, Pathak, and Roth
(2009).

2To the authors’ knowledge, the only instances of implementation of TTC in school choice systems
are in the San Francisco school district (Abdulkadiroglu et al. 2017) and previously in the New
Orleans Recovery School District (Abdulkadiroglu et al. 2017).

3Pathak (2016) writes that:

“I believe that the difficulty of explaining TTC, together with the precedent set
by New York and Boston’s choice of DA, are more likely explanations for why TTC is
not used in more districts, rather than the fact that it allows for justified envy, while
DA does not.”

In addition, Boston and NYC were early school redesigns that set a precedent in favor of DA. More
details can be found in the discussion in Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005) and in
Pathak (2016), Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017).
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We explain the TTC assignment using n2 cutoffs {pcb}. These cutoffs parallel prices

in competitive equilibrium, where students’ priorities serve the role of endowments.

Students can use priority at a school b to gain assignment for school c if their priority

at school b is above the threshold pcb. Publicly publishing the cutoffs {pcb} lets each

student verify that she is assigned to her most preferred school for which she has

sufficient priority.4 To help convey to students that TTC is strategyproof, we present

cutoffs {pcb} that do not change with the preferences of any individual student.

To understand the mapping from the economy to the cutoffs and TTC assignment,

we formulate TTC in a continuum model. We show that the TTC assignment in the

continuum can be directly calculated by solving a system of equations, and give

closed form solutions for parameterized economies. This framework allows us to

derive comparative statics, and evaluate welfare under various policy choices. We

validate our continuum TTC model by demonstrating that it produces cutoffs for

discrete economies that describe the discrete TTC assignment.

The continuum TTC model allows us to calculate welfare. For example, the cutoff

representation yields budget sets for each student, providing a tractable expression

for welfare under random utility models. The model also provides comparative statics

for assignment and welfare with respect to changes in school attributes and student

preferences. For example, consider investment in a school’s quality that increases the

utility for students who attend that school. Such an investment would change student

preferences and therefore the TTC assignment. We decompose the marginal effect of

such investment on welfare into the direct increase in utility of students assigned to

the school, and the indirect effect that arises from changes in the assignment.

As an application of our model, we study optimal investment in school quality

when all students prefer higher quality school but have unobserved taste shocks.

We solve for the optimal investment under TTC for a parametric setting, and find

that the optimal investment is equitable in the sense of making all schools equally

over-demanded. A more equitable investment is more efficient because it allows

students more choice, yielding better sorting on horizontal dimensions and therefore

4This threshold representation allows us to give the following non-combinatorial description of
TTC. For each school b, each student receives b-tokens according to their priority at school b, where
students with higher b-priority receive more b-tokens. The TTC algorithm publishes prices {pcb}.
Students can purchase a single school using a single kind of token, and the required number of
b-tokens to purchase school c is pcb. Note that {pcb} can be obtained by running TTC and setting pcb
to be the number of b-tokens of the lowest b-priority student that traded into c using priority at b.
We thank Chiara Margaria, Laura Doval and Larry Samuelson for suggesting this explanation.

3



higher welfare. This holds even if the schools are not symmetric, as the benefits from

more efficient sorting can outweigh benefits from targeting schools with more efficient

investment opportunities.

Second, we explore the design of priorities for TTC. The priority structure under

TTC is “bossy” in the sense that a change in the relative priority among top priority

students can change the cutoffs and the assignment of low priority students, without

changing the assignment of any high priority student. Such changes to the relative

priority among top students cannot be detected by supply-demand equations as in

Azevedo and Leshno (2016), and therefore it is not possible to determine the TTC

thresholds directly through a supply-demand equation. We characterize the range

of possible assignments generated by TTC after changes to relative priority of high-

priority students, and show that a small change to the priorities will only change the

assignment of a few students.

A third application of our model is to provide comparisons between mechanisms in

terms of assignments and welfare. We solve for welfare under TTC and DA in a par-

ticular setting and quantify how much welfare is sacrificed to guarantee stability. We

compare TTC and DA across different school choice environments and corroborate a

conjecture by Pathak (2016) that the difference between the mechanisms is smaller

when students have a preference for and priority at their neighborhood school. We

also compare TTC to the Clinch and Trade mechanism by Morrill (2015b) in large

economies and find that it is possible for TTC to produce fewer blocking pairs than

the Clinch and Trade mechanism.

A key idea that allows us to define TTC in the continuum is that the TTC

algorithm can be characterized by its aggregate behavior over many cycles. Any

collection of cycles must maintain trade balance, that is, the number of students

assigned to each school is equal to the number of students who claimed or traded

a seat at that school. In the continuum this necessary condition yields a system of

equations that fully characterizes TTC. These equations also provide a recipe for

calculating the TTC assignment.

A few technical aspects of the analysis may be of interest. First, we note that the

trade balance equations circumvent many of the measure theoretic complications in

defining TTC in the continuum. Second, a connection to Markov chain theory allows

us to show that a solution to the marginal trade balance equations always exists, and

to characterize the possible trades.
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1.1 Related Literature

Abdulkadiroğlu and Sönmez (2003) first introduced school choice as a mechanism

design problem and suggested the TTC mechanism as a solution with several desirable

properties. Since then, TTC has been considered for use in a number of school

choice systems. Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005) discuss how the

city of Boston debated between using DA or TTC for their school choice systems

and ultimately chose DA. Abdulkadiroğlu, Pathak, and Roth (2009) compare the

outcomes of DA and TTC for the NYC public school system, and show that TTC

gives higher student welfare. Kesten (2006) also studies the relationship between DA

and TTC, and shows that they are equivalent mechanisms if and only if the priority

structure is acyclic.

Our work contributes to the literature on threshold representations, which has

been instrumental for empirical work on DA and variants of DA. Abdulkadiroglu,

Angrist, Narita, and Pathak (Forthcoming) use admission thresholds to construct

propensity score estimates. Agarwal and Somaini (2014); Kapor, Neilson, and Zim-

merman (2016) structurally estimate preferences from rank lists submitted to non-

strategyproof variants of DA. Both build on the threshold representation of Azevedo

and Leshno (2016). We hope that our threshold representation of TTC will be simi-

larly useful for future empirical work on TTC.

Our finding that the TTC assignment can be represented in terms of cutoffs

parallels the role of prices in competitive markets. Dur and Morrill (2016) show that

the outcome of TTC can be expressed as the outcome of a competitive market where

there is a price for each priority position at each school, and agents may buy and sell

exactly one priority position. Their characterization provides a connection between

TTC and competitive markets, but requires a price for each rank at each school and

does not provide a method for directly calculating these prices without running TTC.

He, Miralles, Pycia, Yan, et al. (2015) propose an alternative pseudo-market approach

for discrete assignment problems that extends Hylland and Zeckhauser (1979) and

also uses admission thresholds. Miralles and Pycia (2014) show a second welfare

theorem for discrete goods, namely that any Pareto efficient assignment of discrete

goods without transfers can be decentralized through prices and endowments, but

requires an arbitrary endowment structure.

Our approach builds on existing axiomatic characterizations of TTC, and may

extend to the class of Pareto efficient and strategyproofness mechanisms. Abdulka-
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diroglu, Che, Pathak, Roth, and Tercieux (2017) show that TTC minimizes the num-

ber of blocking pairs subject to strategyproofness and Pareto efficiency. Additional

axiomatic characterizations of TTC were given by Dur (2012) and Morrill (2013,

2015a). These characterizations explore the properties of TTC, but do not provide

another method for calculating the TTC outcome or evaluating welfare. Ma (1994),

Pápai (2000) and Pycia and Ünver (2015) give characterizations of more general

classes of Pareto efficient and strategy-proof mechanisms in terms of clearing trade

cycles. While our analysis focuses on the TTC mechanism, we believe that our trade

balance approach will be useful in analyzing these general classes of mechanisms.

Several variants of TTC have been suggested in the literature. Morrill (2015b)

introduces the Clinch and Trade mechanism, which differs from TTC in that it iden-

tifies students who are guaranteed admission to their first choice and assigns them

immediately without implementing a trade. Hakimov and Kesten (2014) introduce

Equitable TTC, a variation on TTC that aims to reduce inequity. In Section 4.2 we

use our model to analyze such variants of TTC and compare their assignments. Other

variants of TTC can also arise from the choice of tie-breaking rules. Ehlers (2014)

shows that any fixed tie-breaking rule satisfies weak efficiency, and Alcalde-Unzu and

Molis (2011), Jaramillo and Manjunath (2012) and Saban and Sethuraman (2013)

give specific variants of TTC that are strategy-proof and efficient. The continuum

model allows us to characterize the possible outcomes from different tie-breaking

rules.

Several papers also study TTC in large markets. Che and Tercieux (2015a,b)

study the properties of TTC in a large market where the number of items grows as

the market gets large. Hatfield, Kojima, and Narita (2016) study the incentives for

schools to improve their quality under TTC and find that a school may be assigned

some less preferred students when it improves its quality.

This paper contributes to a growing literature that uses continuum models in

market design (Avery and Levin, 2010; Abdulkadiroğlu, Che, and Yasuda, 2015;

Ashlagi and Shi, 2015; Che, Kim, and Kojima, 2013; Azevedo and Hatfield, 2015).

Our description of the continuum economy uses the setup of Azevedo and Leshno

(2016), who characterize stable matchings in terms of cutoffs that satisfy a supply

and demand equation. Our results from Section 4.2 imply that the TTC cutoffs

depend on the entire distribution and cannot be computed from simple supply and

demand equations.
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1.2 Organization of the Paper

Section 2 provides the standard description of the TTC mechanism in the discrete

model and presents our cutoff characterization. Section 3 presents the continuum

TTC model and provides our main results that allow for direct calculation of the TTC

cutoffs. Section 4 explores several applications: quantifying the effects of improving

school quality under school choice and solving for optimal investment, showing the

“bossiness” of the TTC priorities, and comparing TTC with other mechanisms. Sec-

tion A provides the intuition for the continuum TTC model. Omitted proofs can be

found in the appendix.

2 TTC in School Choice

2.1 The Discrete TTC Model

In this section, we describe the standard model for the TTC mechanism in the school

choice literature, and outline some of the properties of TTC in this setting.

Let S be a finite set of students, and let C be a finite set of schools. Each school

c ∈ C has a finite capacity qc > 0. Each student s ∈ S has a strict preference ordering

�s over schools. Let Chs (C) = arg max�s {C} denote s’s most preferred school out

of the set C. Each school c ∈ C has a strict priority ordering �c over students.

To simplify notation, we assume that all students and schools are acceptable, and

that there are more students than available seats at schools.5 It will be convenient

to represent the priority of student s at school c by the student’s percentile rank

rsc = |{s′ | s �c s′}| / |S| in the school’s priority ordering. Note that for any two

students s, s′ and school c we have that s �c s′ ⇐⇒ rsc > rs
′
c and that 0 ≤ rsc < 1.

A feasible assignment is µ : S → C ∪ {∅} where |µ−1(c)| ≤ qc for every c ∈ C.
If µ(s) = c we say that s is assigned to c, and we use µ(s) = ∅ to denote that the

student s is unassigned. As there is no ambiguity, we let µ(c) denote the set µ−1(c)

for c ∈ C ∪ {∅}. A discrete economy is E = (C,S,�S ,�C, q), where C is the set

of schools, S is the set of students, q = {qc}c∈C is the capacity of each school, and

�S= {�s}s∈S , �C= {�c}c∈C.
5This is without loss of generality, as we can introduce auxiliary students and schools that

represent being unmatched.
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The discrete Top Trading Cycles algorithm (TTC) calculates an assignment µdTTC .

The algorithm runs in discrete steps as follows.

Algorithm 1 (Top Trading Cycles). Initialize unassigned students S = S, available

schools C = C, capacities {qc}c∈C .

While there are still unassigned students and available schools:

• Each available school c ∈ C tentatively offers a seat by pointing to its highest

priority remaining student.

• Each student s ∈ S that was tentatively offered a seat points to her most pre-

ferred remaining school.

• Select at least one trading cycle, that is, a list of students s1, . . . , s`, s`+1 = s1

such that si points to the school pointing to si+1 for all i, or equivalently si+1

was offered a seat at si’s most preferred school. Assign all students in the cycles

to the school they point to.6

• Remove the assigned students from S, reduce the capacity of the schools they

are assigned to by 1, and remove schools with no remaining capacity from C.

TTC satisfies a number of desirable properties. An assignment µ is Pareto efficient

for students if no group of students can improve by swapping their allocations, and no

individual student can improve by swapping her assignment for an unassigned object.

A mechanism is Pareto efficient for students if it always produces an assignment

that is Pareto efficient for students. A mechanism is strategy-proof for students if

reporting preferences truthfully is a dominant strategy. It is well known that TTC,

as used in the school choice setting, is both Pareto efficient and strategy-proof for

students (Abdulkadiroğlu and Sönmez, 2003). Moreover, when type-specific quotas

must be imposed, TTC can be easily modified to meet quotas while still maintaining

constrained Pareto efficiency and strategy-proofness (Abdulkadiroğlu and Sönmez,

2003).

2.2 Cutoff Characterization

Our first main contribution is that the TTC assignment can be described in terms of

n2 cutoffs {pcb}, one for each pair of schools.

6Such a trading cycle must exist, since every vertex in the pointing graph with vertex set S ∪C
has out-degree 1.
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Theorem 1. The TTC assignment is given by

µdTTC(s) = max
�s
{c | rsb ≥ pcb for some b} ,

where pcb is the percentile in school b’s ranking of the worst ranked student at school b

that traded a seat at school b for a seat at school c. If no such student exists, pcb = 1.

Cutoffs serve a parallel role to prices, with each student’s priority at each school

serving the role of endowments. The cutoffs p = {pcb}b,c combine with each student

s’s priorities rs to give s a budget set B (s,p) = {c | rsb ≥ pcb for some b} of schools

she can attend. TTC assigns each student to her favorite school in her budget set.

Theorem 1 provides an intuitive way for students to verify that they were correctly

assigned by the TTC algorithm. The cutoff pcb can be easily identified after the

mechanism has been run. Instead of only communicating the assignment of each

student, the mechanism can make the cutoffs publicly known. Students can calculate

their budget set from their privately known priorities and the publicly given cutoffs,

allowing them to verify that they were indeed assigned to their most preferred school

in their budget set. In particular, if a student does not receive a seat at a desired

school c, it is because she does not have sufficiently high priority at any school, and

so c is not in her budget set. We illustrate these ideas in Example 1.

Example 1. Consider a simple economy where there are two schools each with

capacity q = 120, and a total of 300 students, 2/3 of whom prefer school 1. Figure 1(a)

illustrates the preferences and priorities of each of the students.7 A student’s priority

determines a location in the square, with the horizontal axis indicating priority at

school 1 and the vertical axis indicating priority at school 2.

The cutoffs p and resulting budget sets B (s,p) for each student are illustrated

in Figure 1(b); the shaded areas show budget sets as a function of student priority.

For example, a student has the budget set {1, 2} if she has sufficiently high priority

at either school 1 or school 2. Note that students’ preferences are not indicated in

Figure 1(b) as each student’s budget set is independent of her preferences. Figure

1(c) depicts the students’ assignments, which depend on their preferences. The plot

has two squares: the left square gives the assignment of students who prefer school

7Student priorities were selected such that there is little correlation between student priority at
either school and between student priorities and preferences.
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1; and the right square gives the assignment of students who prefer school 2. The

assignment of each student is simply her favorite school in her budget set.

(a) An economy E with 300 students. (b) Budget sets for the economy E.

𝜃 ∶ 2 ≻𝜃 1

1,2

2

𝜙

𝜃 ∶ 1 ≻𝜃 2

1,2

2

𝜙

(c) TTC assignment for the economy E.

Figure 1: The TTC budget sets and assignment for the economy E in Example 1. All students find
both schools acceptable, and students are labeled by their preferred school. Students’ priority ranks
at school 1 are given by the horizontal axis and priority ranks at school 2 by the vertical axis. The
budget sets along the axis for school c list Bc (s,p), the schools that enter a student’s budget set
because of her rank at school c.

Figure 1 shows the role of priorities in determining the TTC assignment in Example

1. Students with higher priority have a larger budget set of school from which they

can choose. A student can choose her desired school if her priority for some school

is sufficiently high. Priority for each school is considered separately, and priority

from multiple schools cannot be combined. For example, a student who has top

priority for one school and bottom priority at the other school is assigned to her top
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choice, but a student who has the median priority at both schools will not be

assigned to school 1.

Remark. This example also shows that the TTC assignment cannot be expressed

in terms of one cutoff for each school, as the assignment in Example 1 cannot be

described by fewer than 3 cutoffs.

2.3 The Structure of TTC Budget Sets

The cutoff structure for TTC allows us to provide some insight into the structure of

the assignment. For each student s, let Bb (s,p) = {c | rsb ≥ pcb} denote the set of

schools that enter student s’s budget set because of her priority at school b. B1 (s,p)

and B2 (s,p) are depicted along the x and y axes of Figure 1. Note that Bb (s,p)

depends only on the n cutoffs pb = {pcb}c∈C. A student’s budget set is the union

B (s,p) = ∪bBb (s,p). The following proposition shows that budget sets Bb (s,p)

can be given by cutoffs pb that share the same ordering over schools for every b. We

let C(c) = {c, c+ 1, . . . , n} denote the set of schools that have a higher index than c.

Proposition 1. There exist cutoffs {pcb} and a relabeling of school indices such that

the cutoffs p describe the TTC assignment,

µdTTC(s) = max
�s
{c | rsb ≥ pcb for some b} ,

and for any school b the cutoffs are ordered,8

p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = pnb .

Therefore, the set of schools Bb (s,p) student s can afford via her priority at school

b is either the empty set φ or

Bb (s,p) = C(c) = {c, c+ 1, . . . , n}

for some c ≤ b. Moreover, each student’s budget set B (s,p) = ∪bBb (s,p) is either

B (s,p) = φ or B (s,p) = C(c) for some c.

8The cutoffs p defined in Theorem 1 do not necessarily satisfy this condition. However, the run
of TTC produces the following relabeling of schools and cutoffs p̃ that give the same assignment
and satisfy the condition: the schools are relabeled in the order in which they reach capacity under
TTC, and the cutoffs p̃ are given by p̃cb = mina≤c p

a
b .
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The cutoff ordering proved in Proposition 1 implies that budget sets of different

students are nested, and therefore that the TTC assignment is Pareto efficient. The

cutoff ordering is a stronger property than Pareto efficiency, and is not implied by the

Pareto efficiency of TTC. For example, serial dictatorship with a randomly drawn

ordering will give a Pareto efficient assignment, but there is no relationship between

a student’s priorities and her assignment.

Proposition 1 allows us to give a simple illustration for the TTC assignment when

there are n ≥ 3 schools. For each school b, we can illustrate the set of schools Bb (s,p)

that enter a student’s budget set because of her priority at school b as in Figure 2

(under the assumption that schools are labeled in the correct order). This generalizes

the illustration along each axis in Figure 1, and can be used for any number of schools.

It is possible that pcb = 1, meaning that students cannot use their priority at school

b to trade into school c.

Figure 2: The schools Bb (s,p) that enter a student’s budget set because of her rank at school b.
Students may use their rank at school b to obtain a budget set of C(1), C(2), . . . , C(b), φ. The cutoffs
pcb are weakly decreasing in c, and are equal for all c ≥ b (i.e. pbb = pb+1

b = · · · = pnb ).

2.4 Limitations

Although the cutoff structure is helpful in understanding the structure of the TTC

assignment, there are several limitations to the cutoffs computed in Theorem 1 and

Proposition 1. First, while the cutoffs can be determined by running the TTC algo-

rithm, Theorem 1 does not provide a direct method for calculating the cutoffs from

the economy primitives. In particular, it does not explain how the TTC assignment

changes with changes in school priorities or student preferences. Second, the budget

set B (s,p) given by the cutoffs derived in Theorem 1 does not correspond to the

set of schools that student s can be assigned to by reporting some preferences.9,10

9More precisely, given economy E and student s, let economy E′ be generated by changing the
preferences ordering of s from �s to �′. Let µdTTC (s | E) and µdTTC (s | E′) be the assignment of
s under the two economies, and let p be the cutoffs derived by Theorem 1 for economy E. Theorem
1 shows that µdTTC (s | E) = max�s B (s,p) but it may be µdTTC (s|E′) 6= max�′ B (s,p).

10For example, let E be an economy with three schools C = {1, 2, 3}, each with capacity 1. There
are three students s1, s2, s3 such that the top preference of s1, s2 is school 1, the top preference of
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We therefore introduce the continuum model for TTC which allows us to directly

calculate the cutoffs, allowing for comparative statics. These cutoffs will also corre-

spond to refined budget sets which provide the sets of schools that students could be

assigned to by unilaterally changing their preferences.

3 Continuum Model and Main Results

3.1 Model

We model the school choice problem with a continuum of students and finitely many

schools, as in Azevedo and Leshno (2016). There is a finite set of schools denoted

by C = {1, . . . , n}, and each school c ∈ C has the capacity to admit a mass qc > 0 of

students. A student θ ∈ Θ is given by θ =
(
�θ, rθ

)
. We let �θ denote the student’s

strict preferences over schools, and let Chθ (C) = max
�θ

(C) denote θ’s most preferred

school out of the set C. The priorities of schools over students are captured by the

vector rθ ∈ [0, 1]C . We say that rθb is the rank of student θ at school b. Schools prefer

students with higher ranks, that is θ �b θ′ if and only if rθb > rθ
′

b .

Definition 1. A continuum economy is given by E = (C,Θ, η, q) where q = {qc}c∈C
is the vector of capacities of each school, and η is a measure over Θ.

We make some assumptions for the sake of tractability. First, we assume that all

students and schools are acceptable. Second, we assume there is an excess of students,

that is,
∑

c∈C qc < η (Θ). Finally, we make the following technical assumption that

ensures that the run of TTC in the continuum economy is sufficiently smooth and

allows us to avoid some measurability issues. 11

s3 is school 3, and student si has top priority at school i. Theorem 1 gives the budget set {1} for
student s1, as p1 =

(
2
3 , 1, 1

)
, p2 =

(
1, 23 , 1

)
and p3 =

(
1, 1, 23

)
, since the only trades are of seats at

c for seats at the same school c. However, if s1 reports the preference 2 � 1 � 3 she will be assigned
to school 2, so an appropriate definition of budget sets should include school 2 in the budget set for
student s1. Also note that no matter what preference student s1 reports, she will not be assigned
to school 3, so an appropriate definition of budget sets should not include school 3 in the budget
set for student s1.

11We can incorporate an economy where two schools have perfectly aligned priories by considering
them as a combined single school in the trade balance equations. The capacity constraints still
consider the capacity of each school separately.
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Assumption 1. The measure η admits a density ν. That is for any measurable

subset of students A ⊆ Θ

η(A) =

∫
A

ν(θ)dθ.

Furthermore, ν is piecewise Lipschitz continuous everywhere except on a finite grid,12

bounded from above, and bounded from below away from zero on its support.13

Assumption 1 is general enough to allow embeddings of discrete economies, and

is satisfied by all the economies considered throughout the paper. However, it is not

without loss of generality, e.g. it is violated when all schools share the same priorities

over students.

An immediate consequence of Assumption 1 is that a school’s indifference curves

are of η-measure 0. That is, for any c ∈ C, x ∈ [0, 1] we have that η({θ | rθb = x}) =

0. This is analogous to schools having strict preferences in the standard discrete

model. Given this assumption, as rθb carries only ordinal information, we may assume

each student’s rank is normalized to be equal to her percentile rank in the school’s

preferences, i.e. for any b ∈ C, x ∈ [0, 1] we have that η({θ | rθb ≤ x}) = x.

It is convenient to describe the distribution η by the corresponding marginal

distributions. Specifically, for each point x ∈ [0, 1]n and subset of schools C ⊆ C, let

H
c|C
b (x) be the marginal density of students who are top ranked at school b among

all students whose rank at every school a is no better than xa, and whose top choice

among the set of schools C is c.14 We omit the dependence on C when the relevant

set of schools is clear from context, and write Hc
b (x). The marginal densities H

c|C
b (x)

uniquely determine the distribution η.

As in the discrete model, an assignment is a mapping µ : Θ → C ∪ {∅} specify-

ing the assignment of each student. With slight abuse of notation, we let µ (c) =

{θ | µ (θ) = c} denote the set of student assigned to school c. An assignment µ is

feasible if it respects capacities, i.e. for each school c ∈ C we have η (µ(c)) ≤ qc. Two

allocations µ and µ′ are equivalent if they differ only on a set of students of zero

measure, i.e. η ({θ | µ (θ) 6= µ′ (θ)}) = 0.

12A grid G ⊂ Θ is given byG =
{
θ | ∃c s.t. rθc ∈ D

}
, where D = {d1, . . . , dL} ⊂ [0, 1] is a finite

set of grid points. Equivalently, ν is Lipschitz continuous on the union of open hypercubes Θ \G.
13That is, there exists M > m > 0 such that for every θ ∈ Θ either ν(θ) = 0 or m ≤ ν(θ) ≤M .

14Formally H
c|C
b (x)

def
= lim

ε→0

1

ε
η
({
θ ∈ Θ | rθ ∈ [x− ε · eb,x) and Chθ (C) = c

})
,where eb is the

unit vector in the direction of coordinate b.
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Remark 1. In school choice, it is common for schools to have coarse priorities, and

to refine these using a tie-breaking rule. Our economy E captures the strict priority

structure that results after applying the tie-breaking rule.

3.2 Main Results

Our main result establishes that in the continuum model the TTC assignment can

be directly calculated from trade balance and capacity equations. This allows us

to explain how the TTC assignment changes with changes in the underlying econ-

omy. It also allows us to derive cutoffs that are independent of a student’s reported

preferences, giving another proof that TTC is strategyproof.

We remark that directly translating the TTC algorithm to the continuum setting

by considering individual trading cycles is challenging, as a direct adaptation of the

algorithm would require the clearing of cycles of zero measure. We circumvent the

technical issues raised by such an approach by formally defining the continuum TTC

assignment in terms of trade balance and capacity equations, which characterize the

TTC algorithm in terms of its aggregate behavior over multiple steps. To verify the

validity of our definition, we show in Subsection 3.3 that continuum TTC can be used

to calculate the discrete TTC outcome. We provide further intuition in Appendix A.

We begin with some definitions. A function γ (t) : [0,∞)→ [0, 1]C is a TTC path

if γ is continuous and piecewise smooth, γc (t) is weakly decreasing for all c, and the

initial condition γ (0) = 1 holds. A function γ̃ (t) : [t0,∞)→ [0, 1]C is a residual TTC

path if it satisfies all the properties of a TTC path except the initial condition, and is

defined only for t ≥ t0 > 0. For a set
{
t(c)
}
c∈C R

C
≥ of times we let t(c

∗) def= minc
[
t(c)
]

denote the minimal time. For a point x ∈ [0, 1]C, let

Dc (x)
def
= η

({
θ | rθ 6< x, Chθ (C) = c

})
denote the mass of students who want c among all students with rank better than

x. We will refer to Dc (x) as the demand for c. Recall that Hc
b (x) is the marginal

density of students who want c who are top ranked at school b among all students

with rank no better than x. Note that Dc (x) and Hc
b (x) depend implicitly on the

set of available schools C.

Definition 2. Let E = (C,Θ, η, q) be an economy. We say that the (residual) TTC
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path γ (t) and positive stopping times
{
t(c)
}
c∈C ∈ R

C
≥ satisfy trade balance and

capacity for the economy E if the following hold.

1. γ (·) satisfies the marginal trade balance equations given by∑
a∈C

γ′a (t)Hc
a (γ (t)) =

∑
a∈C

γ′c (t)Ha
c (γ (t)) (1)

for all t ≤ t(c
∗) = minc

[
t(c)
]

for which the derivatives exist.

2. The minimal stopping time t(c
∗) solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

(2)

and γc∗ (t) is constant for all t ≥ t(c
∗).

3. Define the residual economy Ẽ =
(
C̃,Θ, η̃, q̃

)
by C̃ = C \ {c∗}, q̃c = qc −

Dc
(
γ
(
t(c
∗)
))

and η̃ (A) = η
(
A ∩

{
θ : rθ ≤ γ

(
t(c
∗)
)})

. Define the residual

TTC path γ̃ (·) by restricting γ (·) to t ≥ t(c
∗) and coordinates within C̃. Then

γ̃ and the stopping times
{
t(c)
}
c∈C̃ satisfy trade balance and capacity for Ẽ.

Theorem 2. Let E = (C,Θ, η, q) be an economy. There exist a TTC path γ (·) and

stopping times
{
t(c)
}
c∈C that satisfy trade balance and capacity for E, and the TTC

assignment is given by

µcTTC (θ) = max
�θ

{
c : rθb ≥ pcb for some b

}
,

where the n2 TTC cutoffs {pcb} are given by

pcb = γb
(
t(c)
)
∀b, c.

Moreover, any γ (·) ,
{
t(c)
}
c∈C that satisfy trade balance and capacity yield the same

assignment µcTTC.

In other words, Theorem 2 provides the following a recipe for calculating the TTC

assignment. First, find γ̂ (·) that solves equation 1 for all t. Second, calculate t(c
∗)

from the capacity equations (2) for γ̂ (·). Set γ (t) = γ̂ (t) for t ≤ t(c
∗). To determine
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the remainder of γ (·), apply the same steps to the residual economy Ẽ which has

one less school.15 This recipe is illustrated in Example 2.

Theorem 2 shows that the cutoffs can be directly calculated from the primitives

of the economy. In contrast to the cutoff characterization in the standard model

(Theorem 1), this allows us to understand how the TTC assignment changes with

changes in capacities, preferences or priorities. We remark that the existence of a

smooth curve γ follows from our assumption that η has a density that is piecewise

Lipschitz and bounded, and the existence of t(c) satisfying the capacity equations (2)

follows from our assumptions that there are more students than seats and all students

find all schools acceptable.

The following immediate corollary of Theorem 2 shows that in contrast with the

cutoffs given by the discrete model, the cutoffs given by Theorem 2 always satisfy

the cutoff ordering.

Corollary 1. Let the schools be labeled such that t(1) ≤ t(2) ≤ · · · ≤ t(n). Then the

cutoff ordering in Proposition 1 holds, namely

p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = p

|C|
b for all b.

To illustrate how Theorem 2 can be used to calculate the TTC assignment and un-

derstand how it depends on the parameters of the economy, we consider the following

simple economy. This parameterized economy yields a tractable closed form solution

for the TTC assignment. For other economies the equations may not necessarily yield

tractable expressions, but the same calculations can be be used to numerically solve

for cutoffs for any economy satisfying our smoothness requirements.

Example 2. We demonstrate how to use Theorem 2 to calculate the TTC assignment

for a simple parameterized continuum economy. The economy E has two schools 1, 2

with capacities q1 = q2 = q with q < 1/2. A fraction p > 1/2 of students prefer

school 1, and student priorities are uniformly distributed on [0, 1] independently for

each school and independently of preferences. This economy is described by

H (x1, x2) =

[
px2 (1− p)x2

px1 (1− p)x1

]
,

15Continuity of the TTC path provides an initial condition for γ̃, namely that γ̃c
(
t(c
∗)
)

= γc
(
t(c
∗)
)

for all c.
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where Hc
b (x) is given by the b-row and c-column of the matrix. A particular instance

of this economy with q = 4/10 and p = 2/3 can be viewed as a smoothed continuum

version of the economy in Example 1.

We start by solving for γ from the trade balance equations (1), which simplify to

the differential equation16

γ′2 (t)

γ′1 (t)
=

1− p
p

γ2 (t)

γ1 (t)
.

Since γ (0) = 1, this is equivalent to γ2 (t) = (γ1 (t))
1
p
−1 . Hence for 0 ≤ t ≤

min
{
t(1), t(2)

}
we set

γ (t) =
(

1− t, (1− t)
1
p
−1
)
.

We next compute t(c
∗) = min

{
t(1), t(2)

}
. Observe that because p > 1/2 it must be

that t(1) < t(2). Otherwise, we have that t(2) = min
{
t(1), t(2)

}
and D1

(
γ
(
t(2)
))
≤ q,

implying thatD2
(
γ
(
t(2)
))

= 1−p
p
D1
(
γ
(
t(2)
))
< q. Therefore, we solveD1

(
γ
(
t(1)
))

=

q to get that t(1) = 1−
(
p−q
p

)p
and that

p1
1 = γ1

(
t(1)
)

=

(
1− q

p

)p
, p1

2 = γ2

(
t(1)
)

=

(
1− q

p

)1−p

.

For the remaining cutoffs, we eliminate school 1 and reiterate the same steps for the

residual economy where C ′ = {2} and q′2 = q2 −D2
(
γ
(
t(1)
))

= q (2− 1/p).

For the residual economy equations (1) are trivial, and we set

γ (t) =
(
1− t(1), p1

2 −
(
t− t(1)

))
for t(1) ≤ t ≤ t(2). Solving the capacity equation (2) for t(2) yields that

p2
1 = γ1

(
t(2)
)

=

(
1− q

p

)p
, p2

2 = γ2

(
t(2)
)

= (1− 2q)

(
1− q

p

)−p
.

16The original trade balance equations are

γ′1 (t) pγ2 (t) + γ′2 (t) pγ1 (t) = γ′1 (t) pγ2 (t) + γ′1 (t) (1− p) γ2 (t) ,

γ′1 (t) (1− p) γ2 (t) + γ′2 (t) (1− p) γ1 (t) = γ′2 (t) pγ1 (t) + γ′2 (t) (1− p) γ1 (t) .
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For instance, if we plug in q = 2/5 and p = 2/3 to match the economy in Example

1, the calculation yields the cutoffs p1
1 = p2

1 ≈ .54, p1
2 ≈ .73 and p2

2 ≈ .37, which are

approximately the same cutoffs as those for the discrete economy in Example 1.

Example 2 illustrates how the TTC cutoffs can be directly calculated from the

trade balance equations and capacity equations, without running the TTC algorithm.

Example 2 also shows that it is not possible to solve for the TTC cutoffs only from

supply-demand equations. In particular, the following equations are equivalent to

the condition that for given cutoffs {pcb}b,c∈{1,2}, the demand for each school c is equal

to the available supply qc given by the school’s capacity:

p ·
(
1− p1

1 · p1
2

)
= q1 = q

(1− p) ·
(
1− p1

1 · p1
2

)
+ p1

1

(
p1

2 − p2
2

)
= q2 = q.

Any cutoffs p1
1 = p2

1 = x, p1
2 = (1 − q/p)/x, p2

2 = (1− 2q)x with x ∈ [1− q/p, 1]

solve these equations, but if x 6=
(

1− q
p

)p
then the corresponding assignment is

different from the TTC assignment. Section 4.2 provides further details as to how

the TTC assignment depends on features of the economy that cannot be observed

from supply and demand alone. In particular, the TTC cutoffs depend on the relative

priority among top-priority students, and not all cutoffs that satisfy supply-demand

conditions produce the TTC assignment.

3.3 Consistency with the Discrete TTC Model

In this section we first show that any discrete economy can be translated into a

continuum economy, and that the cutoffs obtained using Theorem 2 on this continuum

economy give the same assignment as discrete TTC. This demonstrates that the

continuum TTC model generalizes the standard discrete TTC model. We then show

that the TTC assignment changes smoothly with changes in the underlying economy.

To represent a discrete economy E =
(
C,S,�C,�S , q

)
by a continuum economy

Φ (E) =
(
C,Θ, η, q

N

)
, we construct a measure η over Θ by placing a mass at (�s, rs)

for each student s. To ensure the measure has a bounded density, we spread the mass

of each student s over a small region Is =
{
θ ∈ Θ |�θ=�s, rθ ∈ [rsc , r

s
c + 1

N
) ∀c ∈ C

}
and identify any point θs ∈ Is with student s. The following proposition shows that

the continuum TTC assigns all θs ∈ Is to the same school, which is the assignment of
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student s in the discrete model. Moreover, we can directly use the continuum cutoffs

for the discrete economy. Further details and a formal definition of the map Φ are in

online Appendix D.4.

Proposition 2. Let E =
(
C,S,�C,�S , q

)
be a discrete economy, and let Φ (E) =(

C,Θ, η, q
N

)
be the corresponding continuum economy. Let p be the cutoffs produced

by Theorem 2 for economy Φ (E). Then the cutoffs p give the TTC assignment for

the discrete economy E, namely,

µdTTC (s | E) = max
�s
{c | rsb ≥ pcb for some b} ,

and for every θs ∈ Is we have that

µdTTC (s | E) = µcTTC (θs |Φ (E)) .

In other words, Φ embeds each discrete economy into a continuum economy that

represents it, and the TTC cutoffs in the continuum embedding give the same assign-

ment as TTC in the discrete model. This shows that the TTC assignment defined in

Theorem 2 provides a strict generalization of the discrete TTC assignment to a larger

class of economies. We provide an example of an embedding of a discrete economy

in Appendix B.

Next, we show that the continuum economy can also be used to approximate suf-

ficiently similar economies. Formally, we show that the TTC allocations for strongly

convergent sequences of economies are also convergent.

Theorem 3. Consider two continuum economies E = (C,Θ, η, q) and Ẽ = (C,Θ, η̃, q),

where the measures η and η̃ have total variation distance ε. Suppose also that both

measures have full support. Then the TTC allocations in these two economies differ

on a set of students of measure O(ε|C|2).

In Section 4.2, we show that changes to the priorities of a set of high priority

students can affect the final assignment of other students in a non-trivial manner.

This raises the question of what the magnitude of these effects are, and whether the

TTC mechanism is robust to small perturbations in student preferences or school

priorities. Our convergence result implies that the effects of perturbations are pro-

portional to the total variation distance of the two economies, and suggests that the

TTC mechanism is fairly robust to small perturbations in preferences.
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3.4 Proper budget sets

The standard definition for a student’s budget set is the set of schools she can be

assigned to by reporting some preference to the mechanism. Specifically, let [E−s;�′]
denote the economy where student s changes her report from �s to �′, and let

B∗ (s | E)
def
=
⋃
�′
µdTTC (s | [E−s;�′])

denote the set of schools that student s can attain by some reported preference,

holding fixed the reports of other students. Note that s cannot misreport her priority.

We observed in Section 2.4 that in the discrete model the budget set B (s,p)

produced by cutoffs p = p (E) generated by Theorem 1 do not necessarily correspond

to the set B∗ (s | E). The analysis in this section can be used to show that the budget

sets B∗ (s | E) correspond to the budget sets B (s,p∗) for appropriate cutoffs p∗.

Proposition 3. Let E = (C,S,�S ,�C, q) be a discrete economy, and let

P (E) =
{
p | pcb = γb

(
t(c)
)

where γ (·) , t(c) satisfy trade balance and capacity for Φ (E)
}

be the set of all cutoffs that can be generated by some TTC path γ (·) and stopping

times
{
t(c)
}
c∈C. Then

B∗ (s | E) =
⋂

p∈P(E)

B (s;p) .

Moreover, there exists p∗ ∈ P (E) such that for every student s

B∗ (s | E) = B (s;p∗) .

Proposition 3 allows us to construct proper budget sets for each agent that de-

termine not only their assignment given their current preferences, but also their

assignment given any other submitted preferences. This particular budget set repre-

sentation of TTC makes it clear that it is strategyproof. In the appendix we prove

Proposition 3 and constructively find p∗.
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4 Applications

4.1 Optimal Investment in School Quality

In this section, we explore how to invest in school quality when students are as-

signed through the TTC mechanism. School financing has been subject to major

reforms, and empirical evidence suggests that increased financing has substantial im-

pact on school quality (Hoxby, 2001; Cellini, Ferreira, and Rothstein, 2010; Jackson,

Johnson, and Persico, 2016; Lafortune, Rothstein, and Schanzenbach, 2016). Under

school choice, changes in school quality will affect student preferences over schools,

and therefore change the assignment of students to schools. This may have a negative

welfare effect, as schools that become popular will be excluded from some students’

budget sets. Under heterogeneous preferences (Hastings, Kane, and Staiger, 2009;

Abdulkadiroğlu, Agarwal, and Pathak, 2015) welfare depends on whether students

can choose a school for which they have an idiosyncratically high preference. Observ-

ing students’ budget sets allows us to track the welfare generated by student choices

along horizontal dimensions.

We first provide more general comparative statics demonstrating how an increase

in school quality affects the TTC assignment. We then examine the question of

optimal investment in school quality under a stylized model. Omitted proofs and

derivations can be found in online Appendix E.1.

Model with quality dependent preferences and comparative statics

We first enrich our model from Section 3 to allow student preferences to depend on

school quality investments. An economy with quality dependent preferences is given

by E = (C,S, η, q), where C = {1, 2, . . . , n} is the set of schools and S is the set of

student types. A student s ∈ S is given by s = (us (· | ·) , rs), where us (c | δ) is the

utility of student s for school c given the quality of each school δ = {δc} and rsc is the

student’s rank at school c. We assume us (c | ·) is differentiable, increasing in δc and

non-increasing in δb for any b 6= c. The measure η over S specifies the distribution of

student types. School capacities are q = {qc}, where
∑
qc < 1.

For a fixed quality δ, let ηδ be the induced distribution over Θ, and let Eδ =

(C,Θ, ηδ, q) denote the induced economy.17 We assume for all δ that ηδ has a Lipschitz

17To make student preferences strict we arbitrarily break ties in favor of schools with lower indices.
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continuous non-negative density νδ that is bounded below on its support and depends

smoothly on δ. For a given δ, let µδ and {pcb (δ)}c∈C denote the TTC assignment and

associated cutoffs. We omit the dependence on δ when it is clear from context.

When there are two schools, we can specify the direction of change of the TTC

cutoffs when we slightly increase δ` for some ` ∈ {1, 2}. We consider changes that

do not change the strict order of school run-out times and without loss of generality

assume that schools are numbered in order of their run-out times.

Proposition 4. Suppose E = (C = {1, 2} ,S, η, q) and δ induces an economy Eδ such

that the TTC cutoffs have a strict runout order p1
2 (δ) > p2

2 (δ). Suppose δ̂ has higher

school 2 quality δ̂2 ≥ δ2, the same quality δ1 = δ̂1, and Eδ̂ has the same runout order,

i.e. p1
2

(
δ̂
)
≥ p2

2

(
δ̂
)

. When we change from δ to δ̂ the cutoffs pcb (·) change as follows:

• p1
1 and p1

2 both decrease, i.e., it becomes easier to trade into school 1; and

• p2
2 increases, i.e. higher 2-priority is required to get into school ` = 2.

Figure 3 illustrates the effect of improving the quality of school ` = 2 when

C = {1, 2} . As in Hatfield, Kojima, and Narita (2016), there may be low 2-rank

students who will gain assignment to school 2 after the quality change because of the

decrease in p2
1. Notice also that small changes in the cutoffs can result in individual

students’ budget sets growing or shrinking by more than one school. In general, if

the TTC cutoffs change slightly then for every pair of schools b 6= c there will be

students whose budget sets switch between C(b) and C(c).

In general, when n ≥ 3, increasing the quality of a school ` can have non-monotone

effects on the cutoffs, and it is not possible to specify the direction of change of

the cutoffs pbc. However, with additional structure we can give more descriptive

comparative statics. For example, consider the logit economy where students’ utilities

for each school c are randomly distributed as a logit with mean δc, independently

of priorities and utilities for other schools. That is, utility for school c is given

by us (c | δ) = δc + εcs with η chosen so εcs are i.i.d. EV shifted to have mean 0

(McFadden, 1973). Schools have uncorrelated uniform priorities over the students.

This model allows us to capture a fixed utility term δc that can be impacted by

investment together with heterogeneous idiosyncratic taste shocks. The following

proposition shows that under the logit economy we have closed form expressions for

the TTC cutoffs. This allows us to describe the comparative statics.

We assume the utility of being unassigned is −∞, so all students find all schools acceptable.
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Figure 3: The effect of an increase in the quality of school 2 on TTC cutoffs and budget sets. Dashed
lines indicate initial TTC cutoffs, and dotted lines indicate TTC cutoffs given increased school 2
quality. The cutoffs p11 = p21 and p12 decrease and the cutoff p22 increases. Students in the colored
sections receive different budget sets after the increase. Students in dark blue improve to a budget
set of {1, 2} from ∅, students in light blue improve to {1, 2} from {2}, and students in red have an
empty budget set ∅ after the change and {2} before.

Proposition 5. Under the logit economy with fixed qualities δ the TTC cutoffs pcb
for b ≥ c are given by18

pcb =


∏
c′<c

pc−1
c′ − ρcπc∏
c′<c

pc
′
c′


πb|c

(3)

where πb|c is the probability that a student chooses school b given budget set C(c),

ρc = qc
eδc
− qc−1

eδc−1
is the relative residual capacity for school c, πc =

∑
c′≥c e

δc′ normalizes

ρc for when the set of available schools is C(c), and the schools are indexed in the run-

out order q1
eδ1
≤ q2

eδ2
≤ · · · ≤ qn

eδn
. Moreover, pcb is decreasing in δ` for c < ` and

increasing in δ` for b > c = `.

Figure 4 illustrates how the TTC cutoffs change with an increase in the quality

of school `. Using equation (3), we derive closed form expressions for
dpcb
dδ`

, which can

be found in online Appendix E.1.

18To simplify notation, when c = 1 we let
∏
c′<c

pc−1c′ = 1.
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Figure 4: The effects of changing the quality δ` of school ` on the TTC cutoffs pcb under the logit

economy. If c < ` then
dpcb
dδ`

< 0 for all b ≥ c, so it becomes easier to get into the more popular

schools. If c > ` then
dpcb
dδ`

= 0. If c = ` then
dpcb
dδ`

=
dp`b
dδ`

> 0 for all b > `, and p`` may increase or
decrease depending on the specific problem parameters. Note that although pcb and pc` look aligned in
the picture, in general it does not hold that pcb = pc` for all b.

Optimal investment in school quality

Consider a social planner who selects quality levels δ for schools in economy E . We

suppose that the social planner wishes to assign students to schools at which they at-

tain high utility, and for simplicity also assume the social planner wishes to maximize

social welfare. For a given assignment µ, the social welfare is given by

U (δ) =

∫
s∈S

us (µ (s) | δ) dη.

To illustrate the effects of choice when using TTC, we first consider investment

under neighborhood assignment µNH , which assigns each student to a fixed school

regardless of quality and preferences. We assume this assignment fills the capacity

of each school. Social welfare for the logit economy is

UNH (δ) =
∑
c

qc · δc,

because E
[
εµ(s)s

]
= 0 under neighborhood assignment. Under neighborhood assign-

ment, the marginal welfare gain from increasing δ` is dUNH
dδc

= q`, as an increase in the

school quality benefits each of the q` students assigned to school `.
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When the assignment is determined by TTC we need to use the budget set formu-

lation of TTC to capture student welfare.19 Assume the schools are indexed according

to the run-out order given by some fixed δ. A student who is offered the budget set

C(c) = {c, . . . , n} is assigned to the school ` = arg max
b∈C(c)

{δb + εbs}, and the logit distri-

bution implies that their utility is U c = ln
(∑

b≥c e
δb
)

(Small and Rosen, 1981). Let

N c be the mass of agents with budget set C(c). Then social welfare under the TTC

assignment given quality δ simplifies to

UTTC (δ) =
∑
c

N c · U c.

This expression for welfare also allows for a simple expression for the marginal

welfare gain from increasing δ` under TTC.

Proposition 6. For the logit economy, the increase in social welfare UTTC (δ) under

TTC from a marginal increase in δ` is given by

dUTTC
dδ`

=q` +
∑
c≤`+1

dN c

dδ`
· U c.

Under neighborhood assignment dUNH
dδ`

= q`.

Proposition 6 shows that a marginal increase dδ` in the quality of school ` will have

two effects. It will change the utility of the q` students assigned to ` by dδ`, which is

the same effect as under neighborhood assignment. In addition, the quality increase

changes student preferences, and therefore changes the assignment. The second term

captures the additional welfare effect of changes in the assignment by looking at the

change in the number of students offered each budget set. The additional term can

be negative so that dUTTC
dδ`

< q` = dUNH
dδ`

, because an increase in the quality of a school

can lead to less efficient sorting of students to schools.

In particular, when there are two schools C = {1, 2} with q1 = q2 and δ1 ≥ δ2 we

19The expected utility of student s assigned to school µ(s) depends on the student’s
budget B (s,p) because of selection on taste shocks. Namely, E [us (µ (s) | δ)] = δµ(s) +

E
[
εµ(s)s | δµ(s) + εµ(s)s ≥ δc + εcs ∀c ∈ B (s,p)

]
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have that

dUTTC
dδ1

= q1 +
dN1

dδ1

· U1 +
dN2

dδ1

· U2 = q1 +
dN1

dδ1

·
(
U1 − U2

)
= q1 −

(
q1 · eδ2−δ1

) (
ln
(
eδ1 + eδ2

)
− δ2

)
< q1,

where we use that N c =
(
qc
eδc
− qc−1

eδc−1

) (∑
b≥c e

δb
)
.

An increase in the quality of the higher quality school 1 gives higher utility for stu-

dents assigned to 1, which is captured by the first term. Additionally, it causes some

students to switch their preferences to 1 � 2, making school 1 run out earlier in the

TTC algorithm, and removing school 1 from the budget set of some students. Stu-

dents whose budget set did not change and who switched to 1 � 2 are almost indiffer-

ent between the schools and hence unaffected. Students who lost school 1 from their

budget set can prefer school 1 by a large margin, and incur significant loss. Thus there

is a total negative effect from the changes in the assignment, which is captured by the

second term, and the derivative is smaller than under neighborhood assignment. Im-

proving the quality of school 1 when δ1 ≤ δ2 will have the opposite effect, as it enlarges

student budget sets. Specifically, dUTTC
dδ1

= q1 + q2 · eδ1−δ2
(
ln
(
eδ1 + eδ2

)
− δ1

)
> q1

which is larger than under neighborhood assignment. Note that, holding δ2 fixed, the

function UTTC (δ1) has a kink at δ1 = δ2.

We now provide an illustrative example of optimal investment with quality con-

straints under DA, TTC and neighborhood assignment.

Example 3. Consider a logit economy with two schools and q1 = q2 = 3
8
, and let

Q = q1 + q2 denote the total capacity. The planner is constrained to choose quality

levels δ such that δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

Under neighborhood assignment UNH/Q = 1 for any choice of δ1, δ2. Under TTC

the unique optimal quality is δ1 = δ2 = 1, yielding UTTC/Q = 1 + E [max (ε1s, ε2s)] =

1 + ln (2) ≈ 1.69. This is because any assigned student has the budget set B = {1, 2}
and is assigned to the school for which he has higher idiosyncratic taste. Welfare is

lower when δ1 6= δ2, because fewer students choose the school for which they have

higher idiosyncratic taste. For instance, given δ1 = 2, δ2 = 0 welfare is UTTC/Q =
1
2

(1 + e−2) log (1 + e2) ≈ 1.20. Under Deferred Acceptance (DA) the unique optimal

quality is also δ1 = δ2 = 1, yielding UDA/Q = 1 + 1
3

ln (2) ≈ 1.23. This is strictly lower

than the welfare under TTC because under DA only students that have sufficiently
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(a) TTC, δ1 = δ2 = 1,
optimal investment.

(b) TTC, δ1 = 2, δ2 = 0. (c) Average student welfare
under TTC, δ1 +δ2 = 2.

(d) DA, δ1 = δ2 = 1,
optimal investment.

(e) DA, δ1 = 2, δ2 = 0. (f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 5: Illustration for Example 3. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1− δ2. Figures (d) and (e) show the budget sets
under DA, and Figure (f) shows the average welfare of assigned students under DA.

high priority for both schools have the budget set B = {1, 2}. The remaining assigned

students have a budget set B = {1} or B = {2}, corresponding to the single school for

which they have sufficient priority. If δ1 = 2, δ2 = 0 welfare under DA is UDA/Q ≈ 1.11.

TTC yields higher student welfare by providing all assigned students with a full

budget set, thus maximizing each assigned student’s contribution to welfare from

horizontal taste shocks. However, the assignment it produces is not stable. In fact,

both schools admit students whom they rank at the bottom, and thus virtually all

unassigned students can potentially block with either school.20 Example 3 shows that

requiring a stable assignment will constrain many students from efficiently sorting on

horizontal taste shocks.

20Note that this may not be a concern in a school choice setting where assignments must be
authorized by the department of education and blocking pairs cannot deviate and be assigned
outside of the mechanism.
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(a) TTC, δ1 = δ2 = 1. (b) TTC, δ1, δ2 = 1± ln(2)
2 ,

optimal investment.

(c) Average student welfare
under TTC, δ1 + δ2 = 2.

(d) DA, δ1 = δ2 = 1. (e) DA, δ1 = 2, δ2 = 0,
optimal investment.

(f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 6: Illustration for Example 4. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1 − δ2. Note that δ1 = δ2 = 1 is no longer
optimal. Figures (d) and (e) show the budget sets under DA, and Figure (f) shows the average
welfare of assigned students under DA.

We next provide an example where one school has larger capacity. Investment in

the larger school yields more direct benefit as it effects more students, but balancing

investments in both schools can yield larger budget sets for more students, leading

to more welfare from horizontal taste shocks.

Example 4. Consider a logit economy with two schools and q1 = 1/2, q2 = 1/4,

and let Q = q1 + q2 denote the total capacity. The planner is constrained to choose

quality levels δ such that δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

Under neighborhood assignment the welfare optimal quality is δ1 = 2, δ2 = 0,

yielding UNH/Q = 4/3 ≈ 1.33. Under TTC assignment the unique optimal quality is

δ1 = 1 + 1
2

ln (2) , δ2 = 1 − 1
2

ln (2), yielding UTTC/Q = ln
(

3e√
2

)
≈ 1.75. Under these

quality levels any assigned student has the budget set B = {1, 2}. Given δ1 = 2, δ2 =

0 welfare is UTTC/Q ≈ 1.61. The quality levels that are optimal in Example 3, namely

29



δ1 = 1, δ2 = 1, give welfare UTTC/Q ≈ 1.46. Under DA assignment the unique optimal

quality is δ1 = 2, δ2 = 0, yielding UDA/Q ≈ 1.45. Given δ1 = 1, δ2 = 1 welfare under

DA is UDA/Q ≈ 1.20.

Again we find that the optimal quality under TTC provides all assigned students

with a full budget set, while the optimal qualities under neighborhood assignment and

DA do not. The optimal quality levels under TTC in Example 4 imply that there is a

2/3 chance a student prefers school 1, and therefore both schools run out at the same

time and all assigned students are offered a choice between both schools. Increasing

δ1 further (and decreasing δ2) would increase welfare holding the assignment fixed,

but would result in worse sorting of students to schools on the horizontal taste shocks.

Finally, consider a central school board with a fixed amount of capital K to invest

in the n schools. The cost of quality δc is the convex function κc (δc) = eδc .21 Using

Proposition 6 we solve for optimal investment in school quality. Social welfare is

maximized when all assigned students have a full budget set, which occurs when the

amount invested in each school is proportional to the number of seats at the school.

Proposition 7. Social welfare is uniquely maximized when the amount κc invested

in school c is proportional to the capacity qc, that is,

κc (δc) =
qc∑
b qb

K

and all assigned students θ receive a full budget set, i.e., B (θ,p) = {1, 2, . . . , n}
for all assigned students θ.

Under optimal investment, the resulting TTC assignment is such that every as-

signed student receives a full budget set and is able to attend their top choice school.

More is invested in higher capacity schools, as they provide more efficient invest-

ment opportunities, but the investment is balanced across schools to prevent any

school from being over-demanded. This allows the TTC mechanism to offer assigned

students a choice between all schools.

21Note that κc is the total school funding. This is equivalent to setting student utility of school
c to be to log (κc) = log (κc/qc) + log (qc), which is the log of the per-student funding plus a fixed
school utility that is larger for bigger schools. Thus, schools with higher capacity also provide more
efficient investment opportunities.
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4.2 Design of TTC Priorities

To better understand the role of priorities in the TTC mechanism, we examine how

the TTC assignment changes with changes in the priority structure. Notice that any

student θ whose favorite school is c and who is within the qc highest ranked students

at c is guaranteed admission to c. In the following example, we consider changes to

the relative priority of such highly ranked students and find that these changes can

have an impact on the assignment of other students, without changing the assignment

of any student whose priority changed.

Example 5. The economy E has two schools 1, 2 with capacities q1 = q2 = q,

students are equally likely to prefer each school, and student priorities are uniformly

distributed on [0, 1] independently for each school and independently of preferences.

The TTC algorithm ends after a single round, and the resulting assignment is given

by p1
1 = p2

1 = p1
2 = p2

2 =
√

1− 2q. The derivation can be found in Appendix E.2.

Consider the set of students
{
θ | rθc ≥ m ∀c

}
for some m > 1 − q. Any student

in this set is assigned to his top choice, regardless of his rank. Suppose we construct

an economy E ′ by arbitrarily changing the rank of students within the set, subject to

the restriction that their ranks must remain in [m, 1]2.22 The range of possible TTC

cutoffs for E ′ is given by p1
1 = p2

1, p
1
2 = p2

2 where

p1
1 ∈ [p, p̄] , p2

2 =
1

p1
1

(1− 2q)

for p =
√

(1− 2m+ 2m2)(1− 2q) and p̄ =
√

1−2q
1−2m+2m2 . Figure 7 illustrates the

range of possible TTC cutoffs for E ′ and the economy Ē for which TTC obtains one

set of extreme cutoffs.

Example 5 has several implications. First, it shows that it is not possible to

directly compute TTC cutoffs from student demand. The set of cutoffs such that

student demand is equal to school capacity (depicted by the grey curve in Figure 7)

are the cutoffs that satisfy p1
1 = p2

1, p
1
2 = p2

2 and p1
1p

2
2 = 1 − 2q. Under any of these

cutoffs the students in
{
θ | rθc ≥ m ∀c

}
have the same demand, but the resulting TTC

outcomes are different. It follows that the mechanism requires more information to

determine the assignment. However, Theorem 3 implies that the changes in TTC

outcomes are small if 1−m is small.

22The remaining students still have ranks distributed uniformly on the complement of [1− r, 1]2.
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Figure 7: The range of possible TTC cutoffs in example 5 with q = 0.455 and m = 0.6. The points
depict the TTC cutoffs for the original economy and the extremal cutoffs for the set of possible
economies E ′, with the range of possible TTC cutoffs for E ′ given by the bold curve. The dashed line
is the TTC path for the original economy. The shaded squares depict the changes to priorities that
generate the economy Ē which has extremal cutoffs. In Ē the priority of all top ranked students is
uniformly distributed within the smaller square. The dotted line depicts the TTC path for Ē, which

results in cutoffs p11 =
√

1−2q
1−2m+2m2 ≈ 0.42 and p22 =

√
(1− 2q)(1− 2m+ 2m2) ≈ 0.22.

A second implication is that the TTC priorities can be ‘bossy’ in the sense that

changes in the relative priority of high priority students can affect the assignment

of other students, even when all high priority students receive the same assignment.

Notice that in all the economies considered in Example 5, we only changed the relative

priority within the set
{
θ | rθc ≥ m ∃c

}
, and all these students were always assigned

to their top choice. However, these changes resulted in a different assignment for low

priority students. For example, if q = 0.455 and m = 0.4, a student θ with priority

rθ1 = 0.35,rθ2 = 0.1 could possibly receive his first choice or be unassigned depending

on the choice of E ′. Such changes to priorities may naturally arise when there are

many indifferences in student priorities, and tie-breaking is used. Since priorities

are bossy, the choice of tie-breaking between high-priority students can have indirect

effects on the assignment of low priority students.

4.3 Comparing Mechanisms

Both TTC and Deferred Acceptance (DA) (Gale and Shapley, 1962) are strate-

gyproof, but differ in that TTC is efficient whereas DA is stable. In theory, the

choice between the mechanisms requires a trade-off between efficiency and stability

(this trade-off is evident in Example 3). Kesten (2006); Ehlers and Erdil (2010) show
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the two mechanisms are equivalent only under strong conditions that are unlikely to

hold in practice. However, Pathak (2016) evaluates the two mechanisms on applica-

tion data from school choice in New Orleans and Boston, and reports that the two

mechanisms produced similar outcomes. In Section 4.1 we compare DA and TTC in

terms of welfare and assignment and find potentially large differences. Pathak (2016)

conjectures that the neighborhood priority used in New Orleans and Boston led to

correlation between student preferences and school priorities that may explain the

similarity between the TTC and DA allocations.

To study this conjecture, we consider a simple model with neighborhood priority.23

There are n neighborhoods, each with one school and a mass q of students. Schools

have capacities q1 ≤ · · · ≤ qn = q, and each school gives priority to students in their

neighborhood. For each student, the neighborhood school is their top ranked choice

with probability α; otherwise the student ranks the neighborhood school in position

k drawn uniformly at random from {2, 3, . . . , n}. Student preference orderings over

non-neighborhood schools are drawn uniformly at random.

We find that the proportion of students whose assignments are the same under

both mechanisms scales linearly with the probability of preference for the neighbor-

hood school α, supporting the conjecture of Pathak (2016).

Proposition 8. The proportion of students who have the same assignments under

TTC and DA is given by

α

∑
i qi
nq

.

Proof. We use the methodologies developed in Section 3.2 and in Azevedo and Leshno

(2016) to find the TTC and DA allocations respectively. Students with priority are

given a lottery number uniformly at random in
[

1
2
, 1
]
, and students without priority

are given a lottery number uniformly at random in
[
0, 1

2

]
, where lottery numbers at

different schools are independent. For all values of α, the TTC cutoffs are given by

pij = pji = 1 − qi
2q

for all i ≤ j, and the DA cutoffs are given by pi = 1 − qi
2q

. The

derivations of the cutoffs can be found in Appendix E.3.

The students who have the same assignments under TTC and DA are precisely

the students at neighborhood i whose ranks at school i are above 1− qi
2q

, and whose

23Che and Tercieux (2015b) also show that when there are a large number of schools with a single
seat per school and preferences are random both DA and TTC are asymptotically efficient and
stable and give asymptotically equivalent allocations. As Example 3 shows, these results do not
hold when there are many students and a few large schools.
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first choice school is their neighborhood school. This set of students comprises an

α
∑
i qi
nq

fraction of the entire student population, which scales proportionally with the

correlation between student preferences and school priorities.

We can also compare TTC with the Clinch and Trade (C&T) mechanism intro-

duced by Morrill (2015b). The C&T mechanism identifies students who are guranteed

admission to their favorite school c by having priority rθc ≥ 1− q and assigns them to

c by ‘clinching’ without trade. Morrill (2015b) gives an example where the C&T as-

signment has fewer blocking pairs than the TTC assignment. The fact that allowing

students to clinch can change the assignment can be interpreted as another example

for the bossiness of priorities under TTC: we can equivalently implement C&T by

running TTC on a changed priority structure where students who clinched at school

c have higher rank at c than any other student.24 The following proposition builds

on Example 5 and shows that C&T may produce more blocking pairs than TTC.

Proposition 9. The Clinch and Trade mechanism can produce more, fewer or an

equal number of blocking pairs compared to TTC.

Proof. Morrill (2015b) provides an example where C&T produces fewer blocking pairs

than TTC. Both mechanism give the same assignment for the symmetric economy

in the beginning of Example 5. It remains to construct an economy E1 for which

C&T produces more blocking pairs than TTC. Economy E1 is the same as Ē , except

that school 2 rank is redistributed among students with rθ2 ≤ p so that students

with rθ1 ≥ p̄ have higher school 2 rank.25 The C&T assignment for E1 is given by

p1
1 = p2

2 = 0.3, while TTC gives p1
1 = p̄ and p2

2 = p (and under both p1
1 = p2

1, p
1
2 = p2

2).

Under TTC unmatched students will form blocking pairs only with school 2, while

under C&T all unmatched students will form a blocking pair with either school. See

Figure 13 for an illustration.

24For brevity, we abstract away from certain details of C&T mechanism that are important when
not all schools run out at the same round.

25Specifically, select `1 < `2. Among students with rθ2 ≤ p and rθ1 ≥ p̄ the school 2 rank is
distributed uniformly in the range [`2, p]. Among students with rθ2 ≤ p and rθ1 < p̄ the school 2 rank
is distributed uniformly in the range [0, `1]. Within each range rθ1 and rθ2are still independent. See
Figure 13 for an illustration.
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5 Discussion

We can simplify how the TTC outcome is communicated to students and their families

by using the cutoff characterization. The cutoffs {pcb} are calculated in the course of

running the TTC algorithm. The cutoffs can be published to allow parents to verify

their assignment, or the budget set structure can be communicated using the language

of tokens (see footnote 4). We hope that these methods of communicating TTC will

make the mechanism more palatable to students and their parents, and facilitate a

more informed comparison with the Deferred Acceptance mechanism, which also has

a cutoff structure.

Examples provided in the paper utilized functional form assumptions to gain

tractability. The methodology can be used more generally with numerical solvers.

This provides a useful alternative to simulation methods that can be more efficient

for large economies, or calculating an average outcome for large random economies.

For example, most school districts uses tie-breaking rules, and current simulation

methods perform many draws of the random tie-breaking lottery to calculate the

expected outcomes. Our methodology directly calculates the expected outcome from

the distribution. In Section 4.2 we characterize all the possible TTC outcomes for

a class of tie-breaking rules, and find that the choice of tie-breaking rule can have

significant effect on the assignment. We leave the problem of determining the optimal

choice of tie-breaking lottery for future research.

The model assumes for simplicity that all students and schools are acceptable. It

can be naturally extended to allow for unacceptable students or schools by erasing

from student preferences any school that they find unacceptable or that finds them

unacceptable. Type-specific quotas can be incorporated, as in Abdulkadiroğlu and

Sönmez (2003), by adding type-specific capacity equations and erasing from the pref-

erence list of each type all the schools which do not have remaining capacity for their

type.
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A Intuition for the Continuum TTC Model

In this section, we provide some intuition for our main results by considering a more

direct adaptation of the TTC algorithm to continuum economies. Informally speak-

ing, consider a continuum TTC algorithm in which schools offer seats to their highest

priority remaining students, and students are assigned through clearing of trading

cycles. This process differs from the discrete TTC algorithm as there is now a set

of zero measure of highest priority students at each school, and the resulting trading

cycles are also within sets of students of zero measure.

There are few challenges in turning this informal algorithm description into a

precise definition. First, each cycle is of zero measure, but the algorithm needs to

appropriately reduce school capacities as students are assigned. Second, a school will

generally offer seats to multiple types of students at once. This implies each school

may be involved in multiple cycles at a given point, a type of multiplicity that leads

to non-unique TTC allocations in the discrete setting.

To circumvent the challenges above, we define the algorithm in terms of its ag-

gregate behavior over many cycles. Instead of tracing each cleared cycle, we track

the state of the algorithm by looking at the fraction of each school’s priority list

that has been cleared. Instead of progressing by selecting one cycle at a time, we

determine the progression of the algorithm by conditions that must be satisfied by

any aggregation of cleared cycles. These yield equations (1) and (2), which determine

the characterization given in Theorem 2.

A.1 Tracking the State of the Algorithm through the TTC

Path γ

Consider some point in time during the run of the discrete TTC algorithm before

any school has filled its capacity. While the history of the algorithm up to this point

includes all previously cleared trading cycles, in order to run the algorithm, it is

sufficient to record only the top priority remaining student at each school. This is

because knowing the top remaining student at each school allows us to know exactly

which students were previously assigned, and which students remain unassigned.

Assigned students are relevant for the remainder of the algorithm only insofar as they

reduce the number of seats available. Because all schools have remaining capacity, all

assigned students are assigned to their top choice, and we can calculate the remaining
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capacity at each school.

To formalize this notion, let τ be some point during the run of the TTC algorithm

before any school has filled its capacity. For each school c, let γc (τ) ∈ [0, 1] be

the percentile rank of the remaining student with highest c-priority. That is, at

time τ in the algorithm each school c is offering a seat to students s for whom

rsc = γc (τ). Let γ (τ) be the vector (γc (τ))c∈C. The set of students that have already

been assigned at time τ is {s | rs 6< γ (τ)}, because any student s where rsc > γc (τ)

for some c must have already been assigned. Likewise, the set of remaining unassigned

students is {s | rs ≤ γ (τ)}. See Figure 8 for an illustration. Since all assigned

students were assigned to their top choice, the remaining capacity at school c ∈ C
is qc − |{s | rs 6< γ (τ) and Chs (C) = c}|. Thus, γ (τ) captures all the information

needed for the remainder of the algorithm.

𝛾(𝜏)

TTC path 𝛾 Assigned 
at time 𝜏

Unassigned 
at time 𝜏

Figure 8: The set of students assigned at time τ is described by the point γ (τ) on the TTC path.
Students in the grey region with rank better than γ (τ) are assigned, and students in the white region
with rank worse than γ (τ) are unassigned.

This representation can be readily generalized to continuum economies. In the

continuum, the algorithm progresses in continuous time. The state of the algorithm

at time τ ∈ R≥ is given by γ (τ) ∈ [0, 1]C, where γc (τ) ∈ [0, 1] is the percentile rank

of the remaining students with highest c-priority. By tracking the progression of the

algorithm through γ (·) we avoid looking at individual trade cycles, and instead track

how many students were already assigned from each school’s priority list.
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A.2 Determining the Algorithm Progression through Trade

Balance

The discrete TTC algorithm progresses by finding and clearing a trade cycle. This

cycle assigns a set of discrete students; for each involved school c the top student is

cleared and γc (·) is reduced. In the continuum each cycle is infinitesimal, and any

change in γ (·) must involve many trade cycles. Therefore, we seek to determine the

progression of the algorithm by looking at the effects of clearing many cycles.

Suppose at time τ1 the TTC algorithm has reached the state x = γ (τ1), where

γ (·) is differentiable at τ1 and d = −γ′ (τ1) ≥ 0. Let ε > 0 be a small step size,

and assume that by sequentially clearing trade cycles the algorithm reaches the state

γ (τ2) at time τ2 = τ1 + ε. Consider the sets of students offered seats and assigned

seats during this time step from time τ1 to time τ2. Let c ∈ C be some school. For

each cycle, the measure of students assigned to school c is equal to the measure of

seats offered26 by school c. Therefore, if students are assigned between time τ1 and τ2

through clearing a collection of cycles, then the set of students assigned to school c has

the same measure as the set of seats offered by school c. If γ (·) and η are sufficiently

smooth, the measures of both of these sets can be approximately expressed in terms

of ε ·d and the marginal densities {Hc
b (x)}b,c∈C, yielding an equation that determines

d. For the sake of clarity, we omit technical details in the ensuing discussion. A

rigorous derivation can be found in online Appendix F.

We first identify the measure of students who were offered a seat at a school b or

assigned to a school c during the step from time τ1 to time τ2. If d = −γ′ (τ1) and ε

is sufficiently small, we have that for every school b

|γb (τ2)− γb (τ1)| ≈ εdb,

that is, during the step from time τ1 to time τ2 the algorithm clears students with

b-ranks between x and x− εdb. To capture this set of students, let

26Strictly speaking, the measure of students assigned to each school is equal to the measure of
seats at that school which were claimed (not the measure of seats offered). A seat can be offered
but not claimed in one of two ways. The first occurs when the seat is offered at time τ but not
yet claimed. The second is when a student is offered two or more seats at the same time, and
claims only one of them. Both of these sets are of η-measure 0 under our assumptions, and thus the
measure of seats claimed is equal to the measure of seats offered.
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Tb (x, εdb)
def
=
{
θ ∈ Θ | rθ ≤ x, rθb > x− εdb

}
denote the set of students with ranks in this range. For all ε, Tb (x, εdb) is the set of

top remaining students at b, and when ε is small, Tb (x, εdb) is approximately the set

of students who were offered a seat at school b during the step.27

To capture the set of students that are assigned to a school c during the step,

partition the set Tb (x, εdb) according to the top choice of students. Namely, let

T cb (x, εdb)
def
=
{
θ ∈ Tb (x, εdb) | Chθ (C) = c

}
,

denote the top remaining students on b’s priority list whose top choice is school c.

Then the set of students assigned to school c during the step is ∪aT ca (x, εda), the set

of students that got an offer from some school a ∈ C and whose top choice is c.

We want to equate the measure of the set ∪aT ca (x, εda) of students who were

assigned to c with the measure of the set of students who are offered28 a seat at c,

which is approximately the set Tc (x, εdc). By smoothness of the density of η, for

sufficiently small δ we have that

η (T cb (x, δ)) ≈ δ ·Hc
b (x) .

Therefore, we have that29

η (∪aT ca (x, εda)) ≈
∑
a∈C

η (T ca (x, εda)) ≈
∑
a∈C

εda ·Hc
a (x) ,

η (Tc (x, εdc)) = η (∪aT ac (x, εdc)) ≈
∑
a∈C

εdc ·Ha
c (x) .

In sum, if the students assigned during the step from time τ1 to time τ2 are cleared via

a collection of cycles, we must have the following condition on the gradient d = γ′ (τ1)

27The students in the set Tb (x, εdb) ∩ Ta (x, εda) could have been offered a seat at school a and
assigned before getting an offer from school b. However, for small ε the intersection is of measure
O
(
ε2
)

and therefore negligible.
28In the continuum model the set of seats offered but not claimed (or traded) is of η-measure 0.
29These approximations make use of the fact that η (Tb (x, εdb) ∩ Ta (x, εda)) = O

(
ε2
)

for small
ε.
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of the TTC path, ∑
a∈C

εda ·Hc
a (x) ≈

∑
a∈C

εdc ·Ha
c (x) .

Formalizing this argument yields the marginal trade balance equations at x =

γ (τ1), ∑
a∈C

γ′a (τ1) ·Hc
a (x) =

∑
a∈C

γ′c (τ1) ·Ha
c (x) .

A.3 Interpretation of the Trade Balance Equations

The previous subsection showed that any small step clearing a collection of cycles

must correspond to a gradient γ′ that satisfies the trade balance equations. We next

characterize the set of solutions to the trade balance equations and explain why any

solution corresponds to clearing a collection of cycles.

Let γ (τ) = x, and consider the set of valid gradients d = −γ′ (τ) ≥ 0 that solve

the trade balance equations for x∑
a∈C

da ·Hc
a (x) =

∑
a∈C

dc ·Ha
c (x) .

Consider the following equivalent representation. Construct a graph with a node for

each school. Let the weight of node b be db, and let the flow from node b to node c

be fb→c = db ·Hc
b (x). The flow fb→c represents the flow of students who are offered a

seat at b and wish to trade it for school c when the algorithm progress down school

b’s priority list at rate db. Figure 9 illustrates such a graph for C = {1, 2, 3, 4}. The

node weights d solve the trade balance equations if and only if the total flow into

a node is equal to the total flow out of a node, i.e. if and only if f is a zero-sum

flow. Standard arguments from network flow theory show that any zero-sum flow can

be decomposed into a collection of cycles. In other words, the algorithm can find a

collection of cycles that clears each school c’s priority list at rate dc if and only if and

only if d is a solution to the trade balance equations.

To characterize the set of solutions we draw on a connection to Markov chains.

Consider a continuous time Markov chain over the states C, and transition rates from

state b to state c equal to Hc
b (x). The stationary distributions of the Markov chain

are characterized by the balance equations, which state that the total probability

flow out of state c is equal to the total probability flow into state c. Mathematically,
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Figure 9: Example of a graph representation for the trade balance equations at x. There is an edge
from b to c if Hc

b (x) > 0. The two communication classes are framed.

these are exactly the trade balance equations. Hence d is a solution to the trade

balance equations if and only if d/‖d‖1 is a stationary distribution of the Markov

chain.

This connection allows us to fully characterize the set of solutions to the trade

balance equations through well known results about Markov chains. We restate them

here for completeness. Given a transition matrix P , a recurrent communication

class is a subset K ⊆ C, such that the restriction of P to rows and columns with

coordinates in K is an irreducible matrix, and P b
c = 0 for every c ∈ K and b /∈ K.

See Figure 9 for an example. There exists at least one recurrent communication class,

and two different communication classes have an empty intersection. Let the set of

communicating classes be {K1, . . . , K`}. For each communicating class Ki there is a

unique vector dKi that is a stationary distribution and dKic = 0 for any c /∈ Ki. The

set of stationary distributions of the Markov chain is given by convex combinations

of
{
dK1 , . . . ,dK`

}
.

An immediate implication is that a solution to the trade balance equations always

exists. Moreover, if η has full support30 then the TTC path γ is unique (up to

rescaling of the time parameter). This is because full support of η implies that the

matrix H (x) is irreducible for every x, i.e. there is a single communicating class.

Therefore there is a unique (up to normalization) solution d = −γ′ (τ) to the trade

balance equations at x = γ (τ) for every x and the path is unique.

Lemma 1. Let E = (C,Θ, η, q) be a continuum economy where η has full support.

Then there exists a TTC path γ that is unique up to rescaling of the time parameter

t. For τ ≤ minc∈C
{
t(c)
}

we have that γ(·) is given by

dγ(t)

dt
= d (γ(t))

30η has full support if for every open set A ⊂ Θ we have η(A) > 0.
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where d(x) is the solution to the trade balance equations at x, and d (x) is unique up

to normalization.

In general, there can be multiple solutions to the trade balance equations at x,

and therefore multiple TTC paths. The Markov chain and recurrent communication

class structure give intuition as to why the TTC assignment is still unique. Each

solution dKi corresponds to the clearing of cycles involving only schools within the

set K. The discrete TTC algorithm may encounter multiple disjoint trade cycles,

and the outcome of the algorithm is invariant to the order in which these cycles are

cleared (when preferences are strict). Similarly here, the algorithm may encounter

mutually exclusive combinations of trade cycles
{
dK1 , . . . ,dK`

}
, which can be cleared

sequentially or simultaneously at arbitrary relative rates. Theorem 2 shows that just

like the outcome of the discrete TTC algorithm does not depend on the cycle clearing

order, the outcome of the continuum TTC algorithm does not depend on the order

in which
{
dK1 , . . . ,dK`

}
are cleared.

As an illustration, consider the unique solution dK for the communicating class

K = {1, 2}, as illustrated in Figure 9. Suppose that at some point x we have

H1
1 (x) = 1/2, H2

1 (x) = 1/2 and H1
2 (x) = 1. That is, the marginal mass of top

ranked students at either school is 1, all the top marginal students of school 2 prefer

school 1, and half of the top marginal students of school 1 prefer school 1 and half

prefer school 2. The algorithm offers seats and goes down the school’s priority lists,

assigning students through a combination of two kinds of cycles: the cycle 1 	where

a student is offered a seat at 1 and is assigned to 1, and a cycle 1� 2 where a student

who was offered a seat at 1 trades her seat with a student who was offered a seat at

2. Given the relative mass of students, the cycle 1 � 2 should be twice as frequent

as the cycles 1 	. Therefore, clearing cycles leads the mechanism to go down school

1’s priority list at twice the speed it goes down school 2’s list, or d1 = 2 · d2, which is

the unique solution to the trade balance equations at x (up to normalization).

Figure 10 illustrates the path γ (·) and the solution d (x) to the trade balance

equations at x. Note that for every x we can calculate d (x) from H (x). When

there are multiple solutions to the trade balance equations at some x, we may select

a solution d (x) for every x such that d (·) is a sufficiently smooth gradient field.

The TTC path γ (·) can be generated by starting from γ (0) = 1 and following the

gradient field.

46



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Illustration of the gradient field d (·) and path γ (·) (ignoring the capacity equations).

A.4 When a School Fills its Capacity

So far we have described the progression of the algorithm while all schools have

remaining capacity. To complete our description of the algorithm we need to describe

how the algorithm detects that a school has exhausted all its capacity, and how the

algorithm continues after a school is full.

As long as there is still some remaining capacity, the trade balance equations

determine the progression of the algorithm along the TTC path γ (·). The mass of

students assigned to school c at time τ is

Dc (γ (τ)) = η
({
θ | rθ 6< γ (τ) , Chθ (C) = c

})
.

Because γ (·) is continuous and monotonically decreasing in each coordinate, Dc (γ (τ))

is a continuous increasing function of τ . Therefore, the first time during the run of

the continuum TTC algorithm at which any reached its capacity is given by t(c
∗) that

solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

where c∗ is the first school to reach its capacity.
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Once a school has filled up its capacity, we can eliminate that school and apply

the algorithm to the residual economy. Note that the remainder of the run of the al-

gorithm depends only on the remaining students, their preferences over the remaining

schools, and remaining capacity at each school. After eliminating assigned students

and schools that have reached their capacity we are left with a residual economy that

has strictly fewer schools. To continue the run of the continuum TTC algorithm, we

may recursively apply the same steps to the residual economy. Namely, to continue

the algorithm after time t(c
∗) start the path from γ

(
t(c
∗)
)

and continue the path us-

ing a gradient that solves the trade balance equations for the residual economy. The

algorithm follows this path until one of the remaining schools fills its capacity, and

another school is removed.

A.5 Comparison between Discrete TTC and Continuum TTC

Table 1 summarizes the relationship between the discrete and continuum TTC algo-

rithms, and provides a summary of this section. It parallels the objects that define

the continuum TTC algorithm with their counterparts in the discrete TTC algorithm.

For example, running the continuum TTC algorithm on the embedding Φ (E) of a

discrete economy E performs the same assignments as the discrete TTC algorithm,

except that the continuum TTC algorithm performs these assignments continuously

and in fractional amounts instead of in discrete steps.

Discrete TTC → Continuum TTC Expression Equation

Cycle → Valid gradient d (x)
trade balance

equations
Algorithm progression → TTC path γ(·) γ′ (τ) = d (γ (τ))

School removal → Stopping times t(c) capacity equations

Table 1: The relationship between the discrete and continuum TTC processes.

Finally, we note that the main technical content of Theorem 2 is that there always

exists a TTC path γ and stopping times
{
t(c)
}

that satisfy trade balance and capacity,

and that these necessary conditions, together with the capacity equations (2), are

sufficient to guarantee the uniqueness of the resulting assignment.
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B Example: Embedding a discrete economy in the

continuum model

Consider the discrete economy E =
(
C,S,�S ,�C, q

)
with two schools and six stu-

dents, C = {1, 2}, S = {a, b, c, u, v, w}. School 1 has capacity q1 = 4 and school 2 has

capacity q2 = 2. The school priorities and student preferences are given by

1 : a � u � b � c � v � w, a, b, c : 1 � 2,

2 : a � b � u � v � c � w, u, v, w : 2 � 1.

In Figure 11, we display three TTC paths for the continuum embedding Φ (E) of

the discrete economy E. The first path γall corresponds to clearing all students in

recurrent communication classes, that is, all students in the maximal union of cycles

in the pointing graph. The second path γ1 corresponds to taking K = {1} whenever

possible. The third path γ2 corresponds to taking K = {2} whenever possible. We

remark that the third path gives a different first round cutoff point p1, but all three

paths give the same allocation.

B.1 Calculating the TTC paths

We first calculate the TTC path in the regions where the TTC paths are the same.

In the following, we consider only solutions d to the trade balance equations that

have been normalized so that d · 1 = −1. For brevity we call such solutions valid

directions.

At every point (x1, x2) with 5
6
< x1 ≤ x2 ≤ 1 the H matrix is

[
x2 − 5

6
0

x1 − 5
6

0

]
, so

d = [−1, 0] is the unique valid direction and the TTC path is defined uniquely for

t ∈
[
0, 1

6

]
by γ (t) = (1− t, 1). This section of the TTC path starts at (1, 1) and

ends at
(

5
6
, 1
)
. At every point

(
5
6
, x2

)
with 5

6
< x2 ≤ 1 the H matrix is

[
0 1

6

0 0

]
, so

d = [0,−1] is the unique valid direction, and the TTC path is defined uniquely for

t ∈
[

1
6
, 1

3

]
by γ (t) =

(
5
6
, 7

6
− t
)
. This section of the TTC path starts at

(
5
6
, 1
)

and

ends at
(

5
6
, 5

6

)
.
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TTC path γall clears all students in recurrent communication classes.

TTC path γ1 clears all students who want school 1 before students who want school 2.

TTC path γ2 clears all students who want school 2 before students who want school 1.

Figure 11: Three TTC paths and their cutoffs and allocations for the discrete economy in example
B. In each set of two squares, students in the left square prefer school 1 and students in the right
square prefer school 2. The first round TTC paths are solid, and the second round TTC paths are
dotted. The cutoff points p1 and p2 are marked by filled circles. Students shaded light blue are
assigned to school 1 and students shaded dark blue are assigned to school 2.

At every point (x1, x2) with 2
3
< x1, x2 ≤ 5

6
the H matrix is

[
0 1

6
1
6

0

]
, and so

d =
[
−1

2
,−1

2

]
is the unique valid direction, the TTC path is defined uniquely to lie
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on the diagonal γ1 (t) = γ2 (t), and this section of the TTC path starts at
(

5
6
, 5

6

)
and ends at

(
2
3
, 2

3

)
. At every point x =

(
1
3
, x2

)
with 1

3
< x2 ≤ 2

3
the H matrix is[

0 6x2 − 2

0 0

]
, and so d = [0,−1] is the unique valid direction, and the TTC path is

parallel to the y axis. Finally, at every point
(
x1,

1
3

)
with 0 < x1 ≤ 2

3
, the measure

of students assigned to school c1 is at most 3, and the measure of students assigned

to school c2 is 2, so c2 is unavailable. Hence, from any point
(
x1,

1
3

)
the TTC path

moves parallel to the x1 axis.

Figure 12: The valid directions d (x) for the continuum embedding Φ (E). Valid directions d (x) are
indicated for points x in the grey squares (including the upper and right boundaries but excluding
the lower and left boudnaries), as well as for points x on the black lines. Any vector d (x) is a valid
direction in the lower left grey square. The borders of the squares corresponding to the students are
drawn using dashed grey lines.

We now calculate the various TTC paths where they diverge.

At every point x = (x1, x2) with 1
2
< x1, x2 ≤ 2

3
the H matrix is

[
0 0

0 0

]
(i.e. there

are no marginal students), and so H̃ =

[
1 0

0 1

]
. Moreover, at every point x = (x1, x2)

with 1
3
< x1, x2 ≤ 1

2
the H matrix is

[
1
6

0

0 1
6

]
, and so H̃ =

[
1 0

0 1

]
. Also, at every

point x = (x1, x2) with 1
3
< x1 ≤ 1

2
and 1

2
< x2 ≤ 2

3
, the H matrix is

[
1
6

0

0 0

]
so

again H̃ =

[
1 0

0 1

]
. The same argument with the coordinates swapped gives that
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H̃ =

[
1 0

0 1

]
when 1

2
< x1 ≤ 2

3
and 1

3
< x2 ≤ 1

2
. Hence in all these regions, both

schools are in their own recurrent communication class, and any vector d is a valid

direction.

The first path corresponds to taking d =
[
−1

2
,−1

2

]
, the second path corresponds

to taking d = [−1, 0] and the third path corresponds to taking d = [0,−1]. The first

path starts at
(

2
3
, 2

3

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. The third path starts

at
(

2
3
, 2

3

)
and ends at

(
2
3
, 1

3

)
where school 2 fills. Finally, when x =

(
1
3
, x2

)
with

1
3
< x2 ≤ 1

2
, the H matrix is

[
0 1

0 1

]
and so d = [0,−1] is the unique valid direction,

and the second TTC path starts at
(

1
3
, 1

2

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. All

three paths continue until
(
0, 1

3

)
, where school 1 fills.

Note that all three paths result in the same TTC allocation, which assigns students

a, b, c, w to school 1 and u, v to school 2. All three paths assign the students assigned

before p1 (students a, u, b, c for paths 1 and 2 and a, u, b for path 3) to their top choice

school. All three paths assign all remaining students to school 1.

C Proofs for Section 2

C.1 Proof of Theorem 1

For each student s let B (s,p) = {c | rsb ≥ pcb for some b}. It suffices to show that

for each student s it holds that µdTTC (s) ∈ B (s,p), and that if c ∈ B (s,p) then s

prefers µdTTC (s) to c, i.e. µ (s) �s c. The former is simple to show, since if we let

b be the school such that s traded a seat at school b for a seat at school µdTTC (s),

then by definition p
µdTTC(s)
b ≤ rsb and µdTTC (s) ∈ B (s,p).

Now suppose for the sake of contradiction that c ∈ B (s,p) and student s strictly

prefers c to µdTTC (s), i.e. c �s µdTTC (s). As c ∈ B (s,p) there exists a school b′ such

that rsb′ ≥ pcb′ . Let s′ be the student with rank rs
′

b′ = pcb′ at school b′. (Such a student

exists since pcb′ ≤ rsb′ < 1.) Then by definition student s′ traded a seat at school b′,

so since rsb′ ≥ pcb′ = rs
′

b′ student s is assigned weakly before student s′. Additionally,

since c �s µdTTC (s) school c must reach capacity before student s is assigned, and

so since student s′ was assigned to school c student s was assigned strictly before

student s. This provides the required contradiction.
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C.2 Proof of Proposition 1

Let the schools be indexed such that they reach capacity in the order 1, 2, . . . , |C|. If

a student s was assigned (strictly) after school ` − 1 reached capacity and (weakly)

before school ` reached capacity, we say that the student s was assigned in round `.

We define new cutoffs {p̃cb} by setting p̃cb = minc′≤c p
c′

b , so that it evidently holds

that p̃1
b ≥ p̃2

b ≥ · · · ≥ p̃bb = p̃b+1
b = · · · = p̃nb for all b. We show that the cutoffs {p̃cb}

give the same allocation as the cutoffs {pcb}, i.e. for each student s it holds that

max
�s
{c | rsb ≥ p̃cb for some b} = µdTTC(s) = max

�s
{c | rsb ≥ pcb for some b} .

For each student s let B (s, p̃) = {c | rsb ≥ p̃cb for some b}. It suffices to show that

for each student s it holds that µdTTC (s) ∈ B (s, p̃), and that if c ∈ B (s, p̃) then

s prefers µdTTC (s) to c, i.e. µ (s) �s c. The former is simple to show, since clearly

p̃ ≤ p and so B (s, p̃) ⊇ B (s,p) 3 µdTTC (s) (by Theorem 1).

The rest of the proof can be completed in much the same way as the proof of

Theorem 1. Suppose for the sake of contradiction that c ∈ B (s, p̃) and student s

strictly prefers c to µdTTC (s), i.e. c �s µdTTC (s). As c ∈ B (s, p̃) there exists a

school b′ such that rsb′ ≥ p̃cb′ . Let s′ be the student with rank rs
′

b′ = p̃cb′ at school b′.

(Such a student exists since p̃cb′ ≤ rsb′ < 1.) Then by definition student s′ traded a

seat at school b′, so since rsb′ ≥ p̃cb′ = rs
′

b′ student s is assigned weakly before student

s′. Additionally, since c �s µdTTC (s) school c must reach capacity before student s

is assigned. Finally, by definition there exists some c′ ≤ c such that p̃cb′ = pc
′

b′ and

student s′ was assigned to school c′, and so student s was assigned weakly before

school c reached capacity, and hence strictly before student s. This provides the

required contradiction.
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